{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Catching Up & Happy Birthday"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First of all, let me say I'm sorry for missing last week's tutorial. There is no excuse:\n",
"\n",
"\n",
"
\n",
" \n",
" \n",
" Luna Kepler was born on January 18th, 2024, and was the cause of ML for Neuroscientists' tutor to be absent from class.\n",
" \n",
" Fatherly\n",
" \n",
" \n",
" \n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exploratory Data Analysis (EDA)\n",
"\n",
"Our main goal while doing EDA is to [summarize main characteristics of our dataset](https://en.wikipedia.org/wiki/Exploratory_data_analysis).\n",
"\n",
"It's crucial that we understand what our data is composed of.\n",
"\n",
"### First, we take a look."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"````{toggle} configuration.py\n",
" :show:\n",
"```{literalinclude} configuration.py \n",
"```\n",
"````"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"from read_data import read_data # read data from file at a destinaiton defined in configuration.py\n",
"from get_scattered_chunks import get_scattered_chunks # get scattered chunks of data\n",
"from print_table import print_table # Styling and printing the table\n",
"import pandas as pd\n",
"pd.set_option(\"future.no_silent_downcasting\", True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
test_name
\n",
"
swab_type
\n",
"
covid19_test_results
\n",
"
age
\n",
"
high_risk_exposure_occupation
\n",
"
high_risk_interactions
\n",
"
diabetes
\n",
"
chd
\n",
"
htn
\n",
"
cancer
\n",
"
asthma
\n",
"
copd
\n",
"
autoimmune_dis
\n",
"
smoker
\n",
"
temperature
\n",
"
pulse
\n",
"
sys
\n",
"
dia
\n",
"
rr
\n",
"
sats
\n",
"
rapid_flu_results
\n",
"
rapid_strep_results
\n",
"
ctab
\n",
"
labored_respiration
\n",
"
rhonchi
\n",
"
wheezes
\n",
"
days_since_symptom_onset
\n",
"
cough
\n",
"
cough_severity
\n",
"
fever
\n",
"
sob
\n",
"
sob_severity
\n",
"
diarrhea
\n",
"
fatigue
\n",
"
headache
\n",
"
loss_of_smell
\n",
"
loss_of_taste
\n",
"
runny_nose
\n",
"
muscle_sore
\n",
"
sore_throat
\n",
"
er_referral
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
SARS COV 2 RNA RTPCR
\n",
"
Nasopharyngeal
\n",
"
False
\n",
"
58
\n",
"
True
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.950000
\n",
"
81.000000
\n",
"
126.000000
\n",
"
82.000000
\n",
"
18.000000
\n",
"
97.000000
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
28.000000
\n",
"
True
\n",
"
Severe
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
1
\n",
"
SARS-CoV-2, NAA
\n",
"
Oropharyngeal
\n",
"
False
\n",
"
35
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.750000
\n",
"
77.000000
\n",
"
131.000000
\n",
"
86.000000
\n",
"
16.000000
\n",
"
98.000000
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
True
\n",
"
Mild
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
2
\n",
"
SARS CoV w/CoV 2 RNA
\n",
"
Oropharyngeal
\n",
"
False
\n",
"
12
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.950000
\n",
"
74.000000
\n",
"
122.000000
\n",
"
73.000000
\n",
"
17.000000
\n",
"
98.000000
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
\n",
"
\n",
"
23498
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
35
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
37.000000
\n",
"
69.000000
\n",
"
136.000000
\n",
"
84.000000
\n",
"
12.000000
\n",
"
100.000000
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
23499
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
24
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.750000
\n",
"
70.000000
\n",
"
128.000000
\n",
"
78.000000
\n",
"
12.000000
\n",
"
99.000000
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
23500
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
52
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
37.000000
\n",
"
94.000000
\n",
"
165.000000
\n",
"
82.000000
\n",
"
12.000000
\n",
"
98.000000
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
7.000000
\n",
"
True
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
46996
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
11
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.900000
\n",
"
78.000000
\n",
"
116.000000
\n",
"
79.000000
\n",
"
16.000000
\n",
"
100.000000
\n",
"
nan
\n",
"
nan
\n",
"
True
\n",
"
False
\n",
"
True
\n",
"
True
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
46997
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
30
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
46998
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
36
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.850000
\n",
"
81.000000
\n",
"
122.000000
\n",
"
81.000000
\n",
"
14.000000
\n",
"
100.000000
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
7.000000
\n",
"
True
\n",
"
Mild
\n",
"
False
\n",
"
True
\n",
"
Mild
\n",
"
True
\n",
"
True
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
70494
\n",
"
Rapid COVID-19 PCR Test
\n",
"
Nasal
\n",
"
False
\n",
"
32
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
70495
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
59
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
36.600000
\n",
"
75.000000
\n",
"
137.000000
\n",
"
99.000000
\n",
"
nan
\n",
"
97.000000
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
7.000000
\n",
"
True
\n",
"
Moderate
\n",
"
True
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
True
\n",
"
nan
\n",
"
\n",
"
\n",
"
70496
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
27
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
37.000000
\n",
"
63.000000
\n",
"
113.000000
\n",
"
71.000000
\n",
"
15.000000
\n",
"
98.000000
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
2.000000
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
93992
\n",
"
SARS-CoV-2, NAA
\n",
"
Nasal
\n",
"
False
\n",
"
33
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
93993
\n",
"
Rapid COVID-19 PCR Test
\n",
"
Nasal
\n",
"
False
\n",
"
46
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
"
\n",
"
93994
\n",
"
Rapid COVID-19 PCR Test
\n",
"
Nasal
\n",
"
False
\n",
"
53
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
nan
\n",
"
False
\n",
"
nan
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
False
\n",
"
nan
\n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = read_data()\n",
"data_chunks = get_scattered_chunks(data, n_chunks=5, chunk_size=3)\n",
"print_table(data_chunks)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"application/papermill.record/text/plain": "93995"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_observations"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "41"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_columns"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "'covid19_test_results'"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "target_column_name"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "1313"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_positives"
}
},
"output_type": "display_data"
}
],
"source": [
"from configuration import TARGET_COLUMN_NAME\n",
"from myst_nb import glue\n",
"\n",
"target = data[TARGET_COLUMN_NAME]\n",
"n_positives = target.sum()\n",
"\n",
"glue(\"n_observations\", len(data), display=False)\n",
"glue(\"n_columns\", len(data.columns), display=False)\n",
"glue(\"target_column_name\", TARGET_COLUMN_NAME, display=False)\n",
"glue(\"n_positives\", n_positives, display=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alright! Some things that we can already learn about our dataset from this table are:\n",
"* It contains a total of {glue:}`n_observations` observations.\n",
"* There are {glue:}`n_columns` columns with mixed data types (numeric and categorical).\n",
"* Missing values certainly exist (we can easily spot `nan` entries).\n",
"* The subsample raises a strong suspicion that dataset is imbalanced, i.e. when examining our target variable ({glue:}`target_column_name`) it seems there are far more negative observations than positive ones. A quick `sum()` call reveals that indeed only {glue:}`n_positives` of the {glue:}`n_observations` observations are positive."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{admonition} Missing Values\n",
" :class: note\n",
"> Handling missing values requires careful judgement. Possible solutions include:\n",
"* Removing the entire feature (column) containing the missing values.\n",
"* Removing all observations with missing values.\n",
"* *Imputation*: \"Filling in\" missing values with some constant or statistic, such as the mean or the mode. \n",
"\n",
"The approach we'll take when dealing with missing values depends heavily on the structure of our data, for example:\n",
"* If a column contains a small number of observations (relative to the size of the dataset) and the dataset is rich enough and offers more features that could be expected to be informative, it might be best to remove it.\n",
"* If the dataset is large and the feature in question is crucial for the purposes of our analysis, remove all observations with missing values. \n",
"* Imputation might sound like a good trade-off if there is a good reason to believe some statistic may adequately approximate the missing values, but it is also the subject of many misconceptions and often used poorly.\n",
"* There are also ML methods that can safely include missing values (such as decision trees). We will learn when and how these are used later in this course.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"from missing_values import clean_missing_values\n",
"# Extract columns with null values.\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"data = clean_missing_values(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the dataset is clean of any missing values, we can go on to inspect the kind of features that are available for us."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Categorial features:\n",
"test_name, swab_type, high_risk_exposure_occupation, high_risk_interactions, diabetes, chd, htn, cancer, asthma, copd, autoimmune_dis, smoker, labored_respiration, cough, fever, sob, diarrhea, fatigue, headache, loss_of_smell, loss_of_taste, runny_nose, muscle_sore, sore_throat\n",
"\n",
"Numerical features:\n",
"age, temperature, pulse, sats\n"
]
}
],
"source": [
"X = data.drop(TARGET_COLUMN_NAME, axis=1)\n",
"\n",
"categorial_features = X.select_dtypes([\"object\", \"bool\"])\n",
"numerical_featuers = X.select_dtypes(exclude=[\"object\", \"bool\"])\n",
"\n",
"print(\"Categorial features:\\n\" + \", \".join(categorial_features.columns))\n",
"print(\"\\nNumerical features:\\n\" + \", \".join(numerical_featuers.columns))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"application/papermill.record/text/plain": "28"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_features_after"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "37754"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_observations_after"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "718"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_positives_after"
}
},
"output_type": "display_data"
}
],
"source": [
"n_features_after = len(data.columns) - 1\n",
"n_observations_after = len(data)\n",
"target = data[TARGET_COLUMN_NAME]\n",
"n_positives_after = target.sum()\n",
"\n",
"glue(\"n_features_after\", n_features_after, display=False)\n",
"glue(\"n_observations_after\", n_observations_after, display=False)\n",
"glue(\"n_positives_after\", n_positives_after, display=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are left with {glue:}`n_features_after` features and {glue:}`n_observations_after` observations ({glue:}`n_positives_after` of which are positive)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualization\n",
"Simply looking at the values in our data isn't enough. It's helpful to visualize how different variables interact with each out, how the distribute, etc.\n",
"\n",
"### Feature Correlations"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/kAAAOYCAYAAACO7TPzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QTWRsG8CcBpEtXpPcmCCoKYu9d0bWtXddeV6zYe++9K4rYBcuuYC/r2gsWsHcFgdCRHr4/osFocHUXiPI9v3PmaCbvndx3Mgm5c+/cEeTl5eWBiIiIiIiIiH56QkVXgIiIiIiIiIgKBxv5RERERERERCUEG/lEREREREREJQQb+UREREREREQlBBv5RERERERERCUEG/lEREREREREJQQb+UREREREREQlBBv5RERERERERCUEG/lEREREREREJQQb+UREREREREQlBBv5RERERERERN9g1apVsLKygpqaGry8vHDlypUCYw8cOABPT0/o6upCU1MTHh4e2L59e5HXkY18IiIiIiIion+we/du+Pn5YcqUKbhx4wbc3d3RuHFjxMTEyI3X19fHhAkTcPHiRdy+fRu9evVCr169EBYWVqT1FOTl5eUV6SsQERERERER/eS8vLxQpUoVrFy5EgAgFothbm6OoUOHYty4cd+0jUqVKqF58+aYMWNGkdWTPflERERERET0fykzMxPJyckyS2Zm5hdxWVlZuH79Oho0aCBdJxQK0aBBA1y8ePEfXycvLw8nT57EgwcPUKtWrULN4XPKRbp1+qkNEFgpugoKsSR4uKKroBCCUmqKroJC/N58nqKroBDL/5qv6CooRLxrc0VXQSGMEh4pugoKIdbUV3QVFOJ2RmlFV0EhUrNyFF0FhXiTnKHoKihESlauoqugEP29LBVdhX/lR25XGE/piWnTpsmsmzJlCqZOnSqzLi4uDrm5uShbtqzM+rJly+L+/fsFbj8pKQmmpqbIzMyEkpISVq9ejYYNGxZa/eVhI5+IiIiIiIj+L/n7+8PPz09mnaqqaqFtX1tbG7du3UJqaipOnjwJPz8/2NjYoE6dOoX2Gp9jI5+IiIiIiIj+L6mqqn5To97Q0BBKSkp49+6dzPp3797B2Ni4wHJCoRB2dnYAAA8PD0RGRmLOnDlF2sjnNflERERERERUZJQEP+7yrUqVKoXKlSvj5MmT0nVisRgnT55EtWrVvnk7YrFY7jX/hYk9+URERERERET/wM/PDz169ICnpyeqVq2KpUuXIi0tDb169QIAdO/eHaamppgzZw4AYM6cOfD09IStrS0yMzPx559/Yvv27VizZk2R1pONfCIiIiIiIqJ/0LFjR8TGxmLy5MmIjo6Gh4cHQkNDpZPxvXz5EkJh/mD5tLQ0DBo0CK9fv4a6ujqcnJwQGBiIjh07Fmk92cgnIiIiIiKiIqMk+I5x8T+4IUOGYMiQIXKfO3PmjMzjmTNnYubMmcVQK1m8Jp+IiIiIiIiohGAjn4iIiIiIiKiE4HB9IiIiIiIiKjLfM4s9/XfsySciIiIiIiIqIdjIJyIiIiIiIiohOFyfiIiIiIiIikxJml3/Z8CefCIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyHB2/eLFnnwiIiIiIiKiEoKNfCIiIiIiIqISgsP1iYiIiIiIqMhwdv3ixZ58IiIiIiIiohKCjXwiIiIiIiKiEoLD9YmIiIiIiKjIcHb94sWefCIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyHB2/eLFnnwiIiIiIiKiEoKNfCIiIiIiIqISgsP16YdhV7MqGo3uB4vKbtA1KYs1vv0QfvCYoqv1r+36+y4Czt2CKCUdDuUMMLZ1dbiZl5Ub+zg6HmuOX0XEm1hEJaRiVAsfdK1ZQSbm+tO3CDgXjsjXsYhNeY/F3RujXnnr4kjlP9v1VzgCTl1DXMp7OJgYYlzbunCzNJYb+zhKhNWhFxH56h3eJqRgtG8tdK1dqZhr/P1qD+qGRqP7o7SxEV6HR2L30Cl4fjVcbqxHm8ZoOn4wjOysoKSijJhHz3Fi0QZcDgyWiak1oAssKrtBy0APMz2a4XV4RHGlU6CdJy9ja+hfiEtKhaO5Mfy7NIebjVmB8WFX72Jl8Em8jUuERVl9jGjfGLUqOEiff5+RiSX7juPUzUgkpb6HqaEeujTwRoe6VWW2c+vxS6w4cAJ3nr6GUCiEo4Ux1vn1gFoplSLL9VN5eXnYvH4tjoQEIzU1BW4V3OE3djzMLCy+Wi54727sCtyGeJEItvYOGD5qDJzLuwIAkpOSsHn9Wly7fAnv3kVDV1cPNWrXwW8DBkJLS1tmO0ePHMKeoEC8fvkSGpqaqFO/AUaM8S+yfAsSdCgMm/cdRlx8IhxtLDFhUC9UcLIrMD703EWsCNiDN+9iYWlqDL/fuqB21YrS58cvXI2Q42dlytSo7I71s8cXWQ7fYuf+g9iycy/i4uPhaGuL8SMGw83FqcD4sFNnsXJjAN5ER8PSzBQjBvZBrWpeAIDsnBysWL8F5y9dweu30dDS1IC3ZyWMGPgbyhgaymzn7N+XsXZLIB4+eQrVUqXgWbECls+ZVqS5fiovLw/7Atbj9J8HkZaaCofyFdB7+BiUM/v6cX7s4F4c2bMDSfEiWNjao8eQkbBzKi8T8zDiDvZsXoMn9+9BKBTC0tYB4+YuQylVNZm47KwsTB7aGy+ePMLstdthZeeAopaXl4dDgRtxPvQw0tNSYOtSAV0Gj0JZU/Ovljt9eD+O7Q9CUkI8zKzt8OvAEbB2dAEAxL2Lwvhe7eSW6+c/A54160n+36z6F8/3GTsNVWs3+I9ZFY68vDyc2bsVN079iYy0VJg7uqL5b8NhUK7g7/0Xkbfx9+HdePvsEVITROg4chqcqtQoxlp/v7y8PPx9YBvunjmKjPepMLUvj/o9h0HP2LTAMq/v38a1P/fi3fNHSEuMR6vhU2BXWfb9fHT1L9w+fQTvnj1CRloKus5YgzKWtkWdzg+JPcvFi/ubfhiqmhp4HR6JXYMnK7oq/1lY+GMsOvI3+tf3xM5hv8ChnAEGbfoD8anpcuMzsnNgql8aw5t4w1BbQ25MelYOHMoZwN+3ZlFWvdCF3nyAhSHn0L+xN3aN7AxHEyMMXBcMUcp7ufEZ2dkwM9DBsBY1CtwXP5rKHVqg3eKJODJtGWZXao7X4REYGrYN2kYGcuPfxyfh6KxVmF+tDWZUaIKLW/ai+5YFcGlUSxqjqqmBx39dQ/DYucWVxj8KvXIHC3YfxYBWdbFnykA4mBuj/+IAiJJT5cbfevwSY9ftRdualbF36kDUq+iM4SuC8Oj1O2nM/F2huHD3Eeb2bYeDs4aha8NqmL3jD5y+GSmznYFLtqFaeTsETeqPnZP649d6XhAW4/V9O7cF4MDunRg5bjzWbg6Amro6Rg0bjMzMzALLnDoehlVLF6NHn37YsC0Itvb2GDVsMBLi4wEAcXGxEMXFYuDw37F15x74T56KKxf/xvyZ02W2s3tHIDauWYXO3Xth6669WLxyDap6+xRpvvIcPfM35q3fhkFdfsG+VXPhZGOJfhNmQ5SYJDf+5r0HGD1nOdo2qYv9q+eivk8VDJ22AI+ev5SJq+HpgbM710mXBf7DiiOdAh09eQbzV67DwF5dsXfTGjja2aC/nz9ECQly42/euYcx02ajTYsm2Lt5DerVrI5h/lPx6OkzAEBGRiYiHj5G/x5dsWfzaiydNQXPX77GkLGyf+uOnzkP/xnz4Nu8EfZvXYfta5aiWYN6RZ7vpw7v3o6w4D3oPXwsZqzcBDU1NcwdNxxZWQUf5xdPH0fg2mVo2+03zFobAAsbO8wdNxxJCfHSmIcRdzBv3HBUqOyFGSu3YMaqrWjUuj0Egi9/hgZtWAFdA8Mv1helsH07cOrQPnQdMhr+SzZAVU0Nyyb5IfsreV89ewJ7N6xAi869MXHFZpjb2GHZJD8kJ0qOE33DMlgQeEhmadX1N6iqq8PV01tmWz1HjJeJq1jtx/k7f+HQLlwODUbzPr+jz8yVKKWqhsA545CTlVVgmayMdJS1tEWzXor9LH+Pq3/swa3jIajfcxg6T1kOFVU1HFjg/9U8szMzYGRhg3rdhxQck5UBEwdX1OzYpyiqTVQgNvJ/QKGhoahRowZ0dXVhYGCAFi1a4MmTJ9Ln//77b3h4eEBNTQ2enp4ICQmBQCDArVu3pDF3795F06ZNoaWlhbJly6Jbt26Ii4tTQDbf7l7oGRyatAi3QsIUXZX/bPv522hb1Rm+VZxgW1YfE9vUgpqKMkKu3pcb72peBn7Nq6GJhx1UlOV/LGs4WWBI46qo5/pz9N5/tP3MDbSt5gpfr/KwNTbAxPb1oVZKGSGX78mNd7Uwhl+rmmhayRGllJWKubb/TgO/PriwYRcubt2LqMjHCBowAdnv0+HTu4Pc+IdnL+FWSBii7z9B3NOXOLV8C97cvg/bGp7SmMuBwfhzxnLcP3GhuNL4R9vC/sYvtTzRpmYl2JqWweTuLaFeSgXB52/IjQ88fhHVXe3Qq2kN2JiUwdC2DeBiWQ47T12WxoQ/eYlWPh6o4mQNU0M9tK9TBQ7mxrjz7I00ZsGuo+hc3xt9mteCnWlZWJczQpOqbiilUjyD0fLy8rB3VxC69e6DGrXrwNbeAeOnTocoLhZ/nT1TYLk9QTvQwrcNmrVsDSsbG4wcNwFqamr48/BBAICNrR1mzFuI6jVrw9TMHJWqVEWfgYPx9/lzyMnJAQCkJCdj09rVGD9lOho2aQpTM3PY2jugeq3axZG6jK0H/kD7JvXRtnFd2FmaYcqwPlBTLYUDYaflxm8POYoanh74rX0r2FqYYViPjnCxs8aOg7Lf8aVUlGGkrytddLS1iiOdAm3btR/tWjZFm+ZNYGtticmjh0NNTRXBR+T/bQrcG4zqXlXQu3MH2FpZYmjfnnBxsEPQfsn7rK2liY1L56FJ/dqwtjCHu6sLxvsNQcSDR4iKjgEA5OTkYu6y1Rg5uC86+raElYUZbK0t0aR+8b3PeXl5CD2wC75desGzem1Y2Nhj4NipSBTF4dqFswWW+3P/TtRt1hp1mrSEmaUNfvt9HFRV1XA29LA0JnD1EjRu0wGtfu0BMysbmJhbwrtOA6iUKiWzrVtX/sad61fQpX/xNQ7z8vJwImQPmnfqAY9qNWFmbYdeIychURSHmxfPF1juePBu1GjSEtUbNYeJhTW6DBmNUqqquHDsCABAqKQEHX0DmeXm3+fgWbM+1NRlT2Cra2rLxKmUUi3SnL9VXl4eLh89gFptusLJszrKWtrCd/BYpCTE4f61vwosZ1/RC/U69oZz1R+79/6jvLw83AwLhlerzrCr7AMjCxs06T8GqYkiPL5R8N9ga/eqqN6uF+w9C87TpXoDVPPtCovyFQuMISoKbOT/gNLS0uDn54dr167h5MmTEAqFaNOmDcRiMZKTk9GyZUu4ubnhxo0bmDFjBsaOHStTPjExEfXq1UPFihVx7do1hIaG4t27d+jQQX6DgwpXdk4uIt/Ewss+fyibUCiAl50Zbr9895WSJU92Ti4iX8fA2yF/yKNQKIC3vQVuv4hSYM0Kj5KKCiwquyLyk8Z4Xl4eIk9cgE21b7vMwLGeD8o62uDxuStFVc3/LDsnBxEv3sLbxUa6TigUwtvFFuFPXsktE/7kFbxdZIcl+rjaIfxxfk+uu60Fztx6gHcJycjLy8OVyKd4ER0Hn/KSIeCi5FTcfvoa+qW10HXWetT+fS56zt2EGw9fFEGW8kW9fYN4URwqV/WSrtPS0oZzeVfcu3Nbbpns7Gw8vB+JylXyywiFQlSu4lVgGQBIS02FhqYmlJUlJzCuXr6EvDwxYmNj0a1DW7Rr0QRT/Mci5l10IWX3bbKycxDx6Cm8K7lJ1wmFQlSr6IZbEY/klrkV+RDVKrrKrKte2R3hkQ9l1l29HYEaHfqi2W+/Y9ryjUhMTin8BL5RdnY2Ih4+hLdn/mdXKBTC27MSwu/Jv1wm/G4EqnnKftZ9vDwRfjdSbjwApKamQSAQQFtbEwAQ+fAR3sXGQSgQoF2vAajTuiMGjBwvHQ1QHGKi3iIxXgTXSvmXymhoacHWuTweRdyRWyYnOxvPHt6XKSMUCuFaqYq0TFJCPB7fvwcdXX1MGdYHA9o1wXS/Abh/55bMtpISRNi4eDYGjZ0K1c+G8BeluOi3SE4Qwdkj/ySrhqYWrB1d8DTyrtwyOdnZePn4AZw9qkjXCYVCOHt44ul9+WVePLqPV08foUajFl88t3PNIozo1Ayzf++Dv44dQV5e3n/MqnAkxkQhNTEeNm75x7eahhbM7Jzx6qHiLx8rLEmx0UhLiodF+fw8VTU0YWzjhKjHBX+O6fsoCQQ/7FIS8Zr8H9Avv/wi83jz5s0wMjJCREQE/vrrLwgEAmzYsAFqampwcXHBmzdv0LdvX2n8ypUrUbFiRcyePVtmG+bm5nj48CEcHL68vi0zM/OLYae5yIMSSuaBX5QS3mcgV5wHAy11mfUG2up4HpuomEopSEJaumRffDbs3kBbA89i4gso9XPRMtSDkrIykt/JjpRJeRcLY6eCr7tTK62NuW8uQUW1FMS5YuwcNBGRJwruGVG0hJT3yBWLYVBatpfVoLQWnkXJHyUUl5QqNz7uk+H947s0x7SAg2gwcgGUlYQQCASY2qM1PB2tAACvYyVDX9ccPIWRHZrAycIYh/6+hT4LtyB4xlBYlpV/SURhiheJAAD6+voy6/X0DRAvkp97UmIicnNzofdFGX28fPFcbpnExARs27wBLX3bStdFvX0DsViMHVs3Y6jfKGhqaWHT2tUYOWQQNgfthopK8cxJkJicjFyxGIa6OjLrDfR08PTVW7ll4hISYaCnK7POUE8HcQn5w/treLqjQfWqMDMug5dR77B0y070nzAHQUtnQkmp+PshEpKSkJsrhoG+nsx6A309PHsh/2RWXHyCnDz1EBcv/zsuMzMLS9ZsRLMGdaGlKWnkv3orOem5evN2jBk6ACbGZRGwax96DR2FP3ZugU7p0v8xs3+WlCA5znX0ZI9ZHV19JBWQS0pSIsTi3C/L6Onj7SvJibiYKMmonP3bNqBz/2GwsnXA+eN/YvaYIZi3IQjlzCyQl5eHtfNnoH6LtrBxdEZstPxjqigkf7isQPuzHErr6iP5wz75XGqyJO/Sn5XR1tVH1KuXcsv8dewIyplbwdbFTWZ9q6594OReGaXU1BBx4wqCVi1CZno66rdu/29TKjSpHy490NSR/Txo6ughLVH+5Ss/o/dJkmNAQ0dXZn1Jy5P+v7CR/wN69OgRJk+ejMuXLyMuLg5isRgA8PLlSzx48AAVKlSAmlr+We6qVWUnqAoPD8fp06ehpfXlkMcnT57IbeTPmTMH06bJTu5TGTrwhG4hZEREn8tMScUsj2ZQ1dKEU30ftFs8CXFPX+Hh2UuKrlqxCjp5CbefvMKKYV1QzkAX1x8+x6zAIzDSLY1q5W2lPVrt61RBm5qSXhZnSxNcjnyK4PPX8Xu7RoVep+Ohf2LRnFnSx3OXLC/01/hcWmoqxo0YDktrG/Tq11+6XiwWIycnB8NGjkYV72oAgMkz56BN04a4ee0qqlYr/mvzC1OzOvmTVDlYW8DR2gKNew7Dldv3UK2i21dK/pyyc3IwcvIM5CEPk0blD0nPE0uO837dO6NhHcn12DPHj0L9tp0RduocOvh+2fv7X/11MhSbluTP+TFm1uJCfw0A0s9wvRZtUKdJSwCAlb0j7t68hrOhh9Gpz2CEhexB+vs0tP61R5HU4VOXT4chcMUC6eMh0xZ8JbpwZGVm4sqZ42j+a88vnmvRuZf0/xa2DsjMSMex/UEKaeTf/usEjmxYIn3ceezsr0T/vCL/PokTW5ZJH/uOnKnA2hAVDTbyf0AtW7aEpaUlNmzYABMTE4jFYri6uiLrK5N/fCo1NRUtW7bEvHnzvniuXLlycsv4+/vDz89PZt1InZL3A6s46GmoQUkogOizSfZEKek/zURyhUVPU12yLz6bZE+U8h6GpTUVVKvClRqXgNycHJQuKztRlHZZIyRHxxZYLi8vD7FPJD1dr8MjYOxsh8b+g37YRr6etgaUhMIvJtkTJafCQEf+NdSGOlpy4w0/9O5nZGVj2f4TWDbkV9RydwQAOJob48HLaASE/YVq5W1hqCOZZd7GxEhmOzbljBAVL3/Ct/+qes3a0hnwASA7KxsAEB8fDwPD/HokxItg5+Aodxs6urpQUlKSTrKXXyYe+gayow/ep6Vh9PAh0NDQwMz5i6CsnN87b/Bh9nVL6/zLJHT19KCjq4t3xThkX7d0aSgJhYj7bJI9UUISDD/rxf7IUE8XooREmXVxCUkw1NORGw8A5uXKQk9HGy/fRiukka+nowMlJSFE8bK9d6L4BBga6MktY6ivJyfPBBh+NoojOycHIyfNxNvoGGxevkDaiw8ARoaSWFsrS+m6UqVKwaxcOUS9i/kvKRWocrWaMjPg52RLjvOkhHjofTLxXVJiPCxt7eVuQ1tHF0Khkswkex+3ofuhl1tXX7ItM0vZ+WRMLawQFyO5hO3ezWt4FHkX3ZvKTjg3cVBPVK/fGAPHTvk3Kcrl7lUD1o6f5i35bZWSEC+tKwAkJ8bD3EZ+3lqlJXknf5Z3SmI8dD573wHg+l+nkZWZgWr1m/xj/awdy+OPnVuRnZ0FFZVS/xhfmBwr+8DMzln6+OMxkZaUAG29/O+ttKQElP2JZ4i3rVgNxrb5d8vI/ZDn+6REaOnK5vn/OhN+UVDi4OBixWvyfzAikQgPHjzAxIkTUb9+fTg7OyPhkxl9HR0dcefOHZmh9VevXpXZRqVKlXDv3j1YWVnBzs5OZtHUlN+wUlVVRenSpWUWDtX/d1SUleBsaoQrj/MnDhOL83Dl8RtUsJB/C72SSkVZCc5mZXD5Yf4wV7E4D5cfvUIFS/knnH42udnZeHn9Lpzq5/eoCgQCONX3wdOL8iekk0cgFEJFtXh/0H0PFWVluHzoQf9ILBbjUuRTuNvKv82Uu625TDwAXLz3BO52kttx5eTmIic3F4LProcTCgUQf+j9MzXURRldbTz/7JKAF+/iYGKg+1/TkktDUxNm5hbSxcrGBvoGhrhxNX/OhLTUVETeu4vybhXkbkNFRQUOTs64/kkZsViMG9euyJRJS03FyKGDoKKigtmLlkBVVXbCLbcKHgCAV58M8U9OSkJSYiKMjYvvM1RKRRku9ja4dDP/2myxWIxLt+7Cw0V+Q8jD2QGXbslen3zxxh24Oxd8S7ToWBESk1NhpC+/QV3UVFRU4OLggMvXb0rXicViXL5+E+7lXeSWcXd1waVrN2XWXbx6A+6u+Y2ljw38l6/fYOPSedDVkR1+7+Joj1KlVPDs1SuZMm+io2FiXDR/N9Q1NGFsai5dTC2toatvgHs3839TvE9LxZPIe7B3kX/CRVlFBdYOTrh3I7+MWCzGvZtXpWWMjMtBz8BIOnz/o6jXL2FYVnIr1R6DR2LuukDMWbcdc9Ztx5jZklEFwybORIfeAwo1bzUNTZQxMZMu5SysUVrPAJHh16Ux6e/T8OxBBGycXeVuQ1lFBRZ2jrgffk0m78hb12Hj9GWZC8eOwN2rBrR1/vm4fvX0ETS0tIu9gQ8Aquoa0Dc2lS5GZpbQ0tXH07v5f8sy36fh9eNImDvI/zz8DEqpa0CvrKl0MTC1hKaOPl5G5H+OM9PTEP30Psp9ctKD6GfCRv4PRk9PDwYGBli/fj0eP36MU6dOyfSwd+7cGWKxGP369UNkZCTCwsKwcOFCAJD+UB48eDDi4+Px66+/4urVq3jy5AnCwsLQq1cv5ObmKiSvb6GqqQEzdxeYuUv+cBham8PM3QV65iYKrtn361azAg5cicSh6w/w9F0CZgWfQ3p2Nlp7Snr9Ju4+heVH82cYz87Jxf23cbj/Ng45OWLEJKfh/ts4vIzL7zV7n5ktjQGAN/HJuP82DlEJipuk6lt0q1MJBy7dxaErEXj6Lh4z951EelY2fL0k7/OEHWFYdiT/WvTsnFzcfxOD+29ikJ0rRkxSGu6/icHLH3g+gxOLN6JG31/h3f0XGDvZ4tc1s1BKUwN/b9kLAOgZsAi+s8dI4xuPGwTnBjVgaG0OYydbNPDrA+9ubXA5MFgao6GnAzN3F5RzkUxAV9bRBmbuLihdVrZHuzh1b+yD/Wev4+CFm3j6NgYzth9GemYWfGtIhtGP37APS/cdk8Z3bVgNF+4+QkDoBTyNisXqkFO49/wtfq0nmYxOS10Nno5WWLw3DFfvP8Pr2ASE/HUDh/++hfqVJMeHQCBAzyY1EHTyEo5du4uX70RYceAEnkXFoW3NysWSt0AgQPtOnbFt80ZcOHcWTx4/wuypk2FgaIQatetI40YM6o8De3ZJH3fo3AV/HAxG6JHDeP7sKRbPm4309HQ0bdEKgKSBP2rYIGRkpGPMxMlIS02DKC4Oorg46Xe1uaUlatSqgxWLF+Lu7XA8ffIYs6dNhoWlFSp6eqI49WzbHPuOnkLI8bN48vI1pq3YiPSMTLRpJNkH4+avxOLNQdL4br5N8de1cGzZdxhPX77Byu17cffRE3Rp3ViSf3oGFmwIRHjkQ7yJjsHFm3cwZOoCWJgYo0Zl92LN7VPdO/2CfYf/xMGjx/Dk+QvMWLgc6ekZ8G0uqbf/jHlYsnaTNL5r+za4cPkqtu7ci6cvXmLVpm24d/8hOv/SGoCkse43cTruPXiIuZPHQSwWI04UjzhRPLI/9CBqaWqiQ+sWWL1pGy5cuYZnL19hxkLJcOJGdWuhOAgEAjRp2wnBO7bg+t/n8PLpY6yZNw26BobwrJ4/y/+s0YMRFrJX+rjZL7/i9J8Hce7YH3jz4hk2L5uHjIwM1G7SQrrdFh26ICx4Dy6fO4noN6+wZ8tavH31AnWbSj4LhmWNYW5tK13KmUlOBJYxMYOBUdGeHBcIBGjg2wF/7grArUvn8frZE2xeOAO6BoYyt7Jb7D8Mpw7vkz5u2KYjzocext8n/kTUy+fYsWohsjIzUL1hc5ntx7x9jUd3b6FG45ZfvHb45b9wPvQQ3jx/ipi3r3Hmj2Ac3b0N9Vq1K7qEv4NAIIBX07Y4H7wDD679jXcvnyJ49Vxo6xnC6ZMZ5bfNGIUroSHSx1kZ6Yh+/hjRzx8DABJiohH9/DGS4n7MyYcFAgEqNm6DyweD8OTGRcS+eobQdfOhpWsAu0r5lxTtnTsGN48flD7OykhHzIsniHkhuQNWUmw0Yl48QXJc/uib9NRkxLx4AtFbyVwNCVGvEPPiCdISS8a8RPTj4nD9H4xQKMSuXbswbNgwuLq6wtHREcuXL0edOnUAAKVLl8bhw4cxcOBAeHh4wM3NDZMnT0bnzp2l1+mbmJjgwoULGDt2LBo1aoTMzExYWlqiSZMmEAp/3PM6lp4V4Hcm/wdy+yWTAAAXt+5DQK9RiqrWv9LY3Q4JaRlYc+wq4lLew9HEEKt7N5dOQBeVmIJPOy9jktPQaVn+j4dt58Kx7Vw4KtuUw6b+kh+K917HoO/6/FsSLTpyEQDQsrIDZnQo3nspf48mFR2RkJqO1aEXEZf8Ho6mhljd3xcGH2aVjk5IhlBmX6Si48L8hkLA6esIOH0dnram2DRE8RMRyXN9zxFoG+mj5fQRKG1shNe3IrGiSQ+kxEhOyOhbmEqvuQUAVU11/Lp6BnTNyiE7PQPR959gc9cRuL7niDTGvVVD9Ni6UPq47+6VAIAjU5fiyLSlxZPYZ5pUdUN8ShpWhZxEXFIqnMzLYe2I7jD8MFw/Kj4Jgk++YzzsLDC3X3usPHACyw4ch2VZAywb2hn2Zvk/2hcM6ICl+45j3Pq9SEpLRzkDXQxt2wAd6uTPWt2tkQ8ys3Mwf+dRJKelw8HcGOtH9oR5mS+HxRaVX7v3QHpGOhbOnonU1BS4uXtgwbKVMj3vb9+8RlJiovRxvYaNkZiQgM3r1yBeJBnav2DZSulw/YcP7iPirqSnu3Pb1jKvtyvkCMqZSE5wjp86HSuXLMLYEcMgFAjhXqkSFixfKTOsvzg0reOD+KRkrNi2B3EJiXCyscK6Wf7S4fpRsSKZvzEVyzti/rihWB6wG0u37oKliTFWTBkNeytJA05JKMTDZy9w8PhZJKeloYyBPqpXqoChPTqgVKnize1TTevXQUJiIlZuDEBcfAKc7GyxdtFsGH4YXRD1LgbCT760KrqVx7wp/lixYSuWrd8CSzNTLJ8zFfY2kuHpMbFxOP2X5Pu6XS/ZXunNyxeiaiXJCY2Rg/tBSUkJ/jPmITMzC24uTti8bAF0SmsXR9oAgJYduyEzIx0bl8zB+9RUOLi6Y9zcZSj1yS3d3r19g5SkROnjanUbIjkpEfu2rkdiggiWtg4YN2cpdD4Z3t30l1+RnZWF7WuWIi0lGRY29vCftxxlTczwI2jcrgsyM9IRuGI+3qemwq58BQyfvkjmVnaxUW+QmpR/4r1K7QZISU7Eoe0bkZwQDzMbewybvuiLyfguHDsCXcMycKkkO38SACgpKePMkQPYs2E5kAcYmZiifd+hqNmkVdEl+52qt+qE7MwMHN6wGBnvU2Hh6Iau4+ZA+ZPbH8a/e4v3Kfn75u2TBwiYMVL6+Nj2NQAA91qN4DtI9o5QP4oqzTsgOzMDx7csReb7VJjau6LtqNkyeSbFRCH9kzzfPXuIvXNGSx+fDVoHAHCp0RBN+knWP715CWEb8v+W/7FaMs+Bt29X+LTtXqQ5/WhK6iz2PypB3o9ynw7613bs2IFevXohKSkJ6urq/1zgGw0QWBXatn4mS4KHK7oKCiEoVXy3LPqR/N78y7kr/h8s/2u+oqugEPGuzf85qAQySpB/m7uSTqxZfCeCfiS3M4p+Nv4fUWpWjqKroBBvkjMUXQWFSMn6cUenFqX+Xpb/HPQDWqBV8KVaijY69eE/B/1k2JP/E9q2bRtsbGxgamqK8PBwjB07Fh06dCjUBj4RERERERH9fNjI/wlFR0dj8uTJiI6ORrly5dC+fXvMmjXrnwsSEREREREVM86uX7zYyP8JjRkzBmPGjPnnQCIiIiIiIvq/8uPOwkZERERERERE34U9+URERERERFRkOLt+8WJPPhEREREREVEJwUY+ERERERERUQnB4fpERERERERUZDi7fvFiTz4RERERERFRCcFGPhEREREREVEJweH6REREREREVGQ4u37xYk8+ERERERERUQnBRj4RERERERFRCcHh+kRERERERFRkOLt+8WJPPhEREREREVEJwUY+ERERERERUQnB4fpERERERERUZDhcv3ixJ5+IiIiIiIiohGAjn4iIiIiIiKiE4HB9IiIiIiIiKjJKAo7XL07sySciIiIiIiIqIdjIJyIiIiIiIiohOFyfiIiIiIiIigxn1y9e7MknIiIiIiIiKiHYyCciIiIiIiIqIThcn4iIiIiIiIoMZ9cvXoK8vLw8RVeCfkzpIUsUXQWFGNFmmaKroBDL/16k6CooRG7sG0VXQSGUfNoqugoKIcgTK7oKCiHMSFJ0FRRCrKaj6CooRF4pDUVXQSFySmkpugoKoZISregqKESyehlFV0EhDLR/zs93kJGLoqtQoM6xEYquQqHjcH0iIiIiIiKiEoLD9YmIiIiIiKjIcHb94sWefCIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyHB2/eLFnnwiIiIiIiKiEoKNfCIiIiIiIqISgsP1iYiIiIiIqMhwdv3ixZ58IiIiIiIiohKCjXwiIiIiIiKiEoLD9YmIiIiIiKjIcHb94sWefCIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyAg5XL9YsSefiIiIiIiIqIRgI5+IiIiIiIiohOBwfSIiIiIiIioyAiUO1y9O7MknIiIiIiIiKiHYyCciIiIiIiIqIThcn4iIiIiIiIqMkMP1ixV78omIiIiIiIhKCDbyiYiIiIiIiEoIDtcnIiIiIiKiIiNQYt9yceLeJiIiIiIiIioh2MgnIiIiIiIiKiHYyP8HderUwe+//w4AsLKywtKlS7+57NatW6Grq1sk9SIiIiIiIvoZCJQEP+xSEvGa/O9w9epVaGpqFvvrCgQCBAcHw9fXt9hfuzDs+vsuAs7dgiglHQ7lDDC2dXW4mZeVG/s4Oh5rjl9FxJtYRCWkYlQLH3StWUEm5vrTtwg4F47I17GITXmPxd0bo1556+JIpUjY1ayKRqP7waKyG3RNymKNbz+EHzym6Gp9s50nLmLr0fOIS0qFo4Ux/Lu2hJuNeYHxYVfuYOWB43gblwgLYwOMaN8Etdwdpc+/z8jEkr1hOHUjAkmp72FqpIcuDXzQoZ7XF9vKy8vDwMUBuHDnIZYO7Yr6lV2KJMdvsevCHQScvQlRynvJce5bC24WBR3nIqwJu/LhOE/BqFY10LWmu0zM9advEXDmJiLfxCA2+T0W92iKeq42xZHKV+3cH4KtQXsQFx8PRztb+I8YCjcXpwLjw06dxcoNW/A2OhoWZmYYMbAvavlI3svsnBysWL8Z5y9ewZu3UdDS1IR3lUr4fUAflDEylG6j8S+d8Tb6ncx2hw/ogz7dfi2aJOXYuf8gtuzcK8nb1hbjRwz+57w3BuBNdDQszUwxYmAf1Kr2ad5bcP7SFbx+Gw0tTQ14e1bCiIG/oYyhJO8rN8LRe9go+XXZsBJuzo5ynytsQQePYvOeQ4iLT4SjrSUmDPkNFZzsC4wPPfs3VmzdhTfRsbA0LQe/vl1R26uS3NipS9dhz5HjGDewJ7r/0kLmubOXrmN14F48fPoSqqVU4FnBBSunjy3U3L6muN/vj87+fRlrtwTi4ZOnUC1VCp4VK2D5nGlFmuundu7dj62BQYgTxcPR3g7+o0bArXzB36thJ05h5boNeBsVDQtzM4wYMhC1qvtInz9x+gz2HAhBROQDJCUnY2/gFjg5OMhso9eAIbh246bMuvZtWmOy/5jCTe4TeXl5WLNmNYIPHEBKSgrcPTwwfvwEWFpafrXc7l27EBAQAJEoDg4ODhg7dhxc3dykz2dmZmLxokUICwtFVlYWqvn4YPz4CTAwMAAAJCYmYsJ4fzx89AhJiYnQ19dHnTp1MGToMGhpaQEAJk+ahMOHD33x2jY2Nth/ILgQ98KXdh44hC0793047m0w/vdBXz/uT5/7cNy/kxz3A35DrWpVpc+v2rwdoSfPIDomFirKKnBxtMOwvr1QoXzB2ywOeXl52LhuDQ4FByMlNQUV3N0xetx4mFt8/f3fv2c3dmwPQLxIBDt7B/iNHgsXV1fp8yEH9uN46FE8eHAf79PSEHb6HLS1tWW28eB+JFYvX4bIiHsQKimhTr36GDZiJDQ0NIokV/r/xZ7872BkZMQP4XcKC3+MRUf+Rv/6ntg57Bc4lDPAoE1/ID41XW58RnYOTPVLY3gTbxhqy9/X6Vk5cChnAH/fmkVZ9WKjqqmB1+GR2DV4sqKr8t1CL9/Ggl1/YoBvfeyZNhgO5uXQf+EWiJJT5cbfevQCY9fuRttantg7fQjqVXTB8OWBePQ6Whozf+efuHDnIeb264CDs0ega6PqmB14GKdvRn6xve3HLkDwA5yADbv1CIsO/4X+Datg5+8d4GBiiEEbDyM+9b3c+IzsHJgalMbwZtW+cpxnw8HEAP6+tYuy6t8l9MRpLFixFgN6d8eezWvhYGeL/n5jIUpIkBt/6849jJ06E21bNMXeLetQr2Z1DPefjEdPnwEAMjIyEPngEfr37Irdm9diyeypeP7yFYaOnfTFtgb36YnTh/ZKl87tfIsyVRlHT57B/JXrMLBXV+zdtAaOdjbo7+dfYN4379zDmGmz0aZFE+zdvAb1albHMP+pn+SdiYiHj9G/R1fs2bwaS2dNwfOXrzFkbP53QEU3F5w5uFtm+aVlU5iVM4ark4Pc1y30vE9fwLy1ARjUrT32rZ0PJxsr9Bs3E6KEJPl537uP0bOWom2T+ti/dgHqV6+CoVPm49Gzl1/EnvjrMsIjH6GMgf4Xzx07dwlj561Am8Z1Ebx+IQKXzUTzesX3fa+I9xsAjp85D/8Z8+DbvBH2b12H7WuWolmDekWe70ehx09gwdIVGNCnN/Zs2wwHezv0H+YHUXwBn+/bdzB20lS0bdUCe7dvQb3aNTF8tD8ePXkqjUlPz0BF9woYMWTgV1/7F99WOP3nIeniN3Rwoeb2ua1bt2Bn0E6MnzAR27YHQl1dHYMHDURmZmaBZcLCQrFo0UL0798fQTt3wcHBEYMGDUR8vEgas3DhApw7dxbzFyzAxk2bERsbi5F+ftLnhUIhatepi6VLlyHk4CFMmz4Dly9fxqyZM6Uxo8eMwfETJ6VLaNgx6OjooGHDRkWzMz6QHPfrMbBnF+zduEpy3I+cAFFCotx4yXE/B22aN8HeTatRr6YPho2fhkdPn0tjrMxNMX7EYBwIWIdtqxfBxNgY/Ub6I76AbRaXwICt2LtrJ0b7j8fGrdugpqaOEUMHf/X9P3EsDMuXLELvvv2xJTAIdg4OGDF0EOLj46UxmRkZ8PLxQfdeveVuIzY2BsMGDYCZuTk2bN2OxctX4dmTJ5g59ef7/Uc/PjbyP5GWlobu3btDS0sL5cqVw6JFi2Se/3y4/uLFi+Hm5gZNTU2Ym5tj0KBBSE39snETEhICe3t7qKmpoXHjxnj16pXM8wcPHkSlSpWgpqYGGxsbTJs2DTk5OdLXBIA2bdpAIBBIH/9Tuby8PEydOhUWFhZQVVWFiYkJhg0bVgh76ftsP38bbas6w7eKE2zL6mNim1pQU1FGyNX7cuNdzcvAr3k1NPGwg4qy/MOzhpMFhjSuinquP2/v/afuhZ7BoUmLcCskTNFV+W7bwv7CL7WroE3NyrA1LYvJPVpDvVQpBJ+7Ljc+8PjfqO5mj17NasHGpAyG/tIQLpYm2HnikjQm/PELtKpeCVWcbWBqpIf2darCwdwYd57Kfm7uv3iLgNC/MKP3L0Wa47fYfu4W2nqVh28VZ8lx3raO5Di/8uWJCQBwNS8LvxbV0cTDHirKSnJjajhZYkgTb9RzU3zv/Ufbdu/DLy2boU3zJrC1tsLk0b9DXVUVwUdC5cYH7jmA6l5V0KtLR9hYWWJov15wcbDHzn0hAABtLS1sWLYATerXgbWlOdxdXTDebygiHjxE1Gc995oaGjA00JcuGurqRZ2u1LZd+9GuZdMPeVti8ujhUFNTRfAR+Z/ZwL3BqO5VBb07d4CtlSWG9u0JFwc7BO0/CADQ1tLExqXz0KR+bVhbfMx7CCIePEJUdAwAQEVFRSZfHZ3SOH3+InybN4agmM5sbd1/GO2bNUDbJvVgZ2mOKb/3g5qqKg6EnpIbv/3An6hRxQO/dWwNW0szDOv1K1zsrLHj4FGZuHdxIsxauQnz/YdD+bPjPyc3F3NWb8boft3QqWVjWJmZwM7SHE3r+KC4KOL9zsnJxdxlqzFycF909G0JKwsz2Fpbokn94jvJty1oN37xbYk2LZvD1sYak8eNhrqaKoIPH5Gf9649qO7thV7dusDG2gpDB/SDi5MDdu7ZJ41p2awJBvbpDe+qVb762upqqjA0NJAuWlpFN2oyLy8PQTt2oG/fvqhbty4cHBwwY8ZMxMbG4vRp+cc2AARu3462bduita8vbG1tMWHiRKipqSEkJAQAkJKSgpDgYPiNHIWqVb3g4uKCadOmIzz8Fm7fvg0AKF26NDp06IDy5cvDxMQEXl5eaN+hA27evCF9HW1tbRgaGkqXiHv3kJycjFatWxfZPgGAbbsPoF3LJmjTvLHkuB81THLc/1HAcb8vBNWreqJ35/awtbLA0D49JMf9gYPSmOYN66GaZyWYm5SDnbUVxgzth9S093j45FmR5vI1eXl52LMzCD1/64taderCzt4Bk6fPQFxsLM6dOV1guV07AtHKty1atGoNaxtbjPGfAFU1NRw5FCKN6di5C7r37A1X1wpyt3Hh/HkoKytj5Fh/WFpZwaV8eYwZPwFnTp3E61dfngwtaYRKgh92KYnYyP/E6NGjcfbsWRw8eBDHjh3DmTNncOPGjQLjhUIhli9fjnv37iEgIACnTp3CmDGyw8vev3+PWbNmYdu2bbhw4QISExPRqVMn6fPnz59H9+7dMXz4cERERGDdunXYunUrZs2aBUByiQAAbNmyBVFRUdLH/1Ru//79WLJkCdatW4dHjx4hJCQEbp8MKSsO2Tm5iHwTCy97M+k6oVAALzsz3H757isl6WeQnZODiOdv4e1iJ10nFArhXd4W4U/k/7EKf/xSJh4AfNzsZeLd7Sxx5lYk3iUkIS8vD1cin+DFuzj4uOYPEU7PzMLYdbsxoVsrGOrKDoUrbgUe5/ZmuP0i+islfy7Z2dmIePAQ3lXyh14LhUJ4e1ZC+N0IuWXC70XA27OyzDofL0+E35MfDwApqWkQCATQ1taSWb8pcCdqNPVF+579sWXHbuTk5P6HbL5ddnY2Ih4+hLennLwLyCP8bgSqecoOUffx8kT4XfknfQAgVZq3/MbNmb8uIjE5Gb7NGv+LLL5fVnY2Ih4+hXel/B+rQqEQ1Sq54VbEA7llbkU8RLVKsj9uq1fxQHjEQ+ljsViMcXNXoHeH1rC3+vKynohHT/EuLh4CgQBt+49CrQ590M9/ptzRAEVBUe935MNHeBcbB6FAgHa9BqBO644YMHK8dDRAUcvOzkbE/QfwrpLfGBcKhfCu4onwO3fllgm/cw/eVT1l1vl4eyH8zr3vfv0/Qo+jZsNmaNOpK5auWoP0jIzv3sa3evPmDeLi4uDllX8JmLa2Nlzd3HA7/LbcMtnZ2YiMjISXl7d0nVAohJeXt7QBHxkZgZycHHh/sl1ra2sYlyuH2+HhcrcbExODUydPoXLlynKfB4CQkGB4eXnBxMTku/L8HpLj/hG8K39+3Ff8ynEfiWqeFWXW+VStXOBxn52djb2H/oS2liYc7RR38vrtmzcQieLgWTX/fdLS0oaLqyvu3in4/X9wPxKen7y3QqEQVap64e5t+WXkbicrCyoqKhAK85tfqqqqAIDwW7e+MxOir+M1+R+kpqZi06ZNCAwMRP369QEAAQEBMDMzK7DMxwn5AEmP+8yZMzFgwACsXr1auj47OxsrV66U/jEJCAiAs7Mzrly5gqpVq2LatGkYN24cevToAUByzdWMGTMwZswYTJkyBUZGRgAAXV1dGBsbS7f7T+VevnwJY2NjNGjQACoqKrCwsEDVqvnXSX0uMzPzi2FK4uwcqKr8+0Mk4X0GcsV5MNCS7XEz0FbH89jEf71d+jEkpLxHrlgMAx3ZxphBaS08i4qVWyYuKVVufFxSivTx+K4tMW1rMBqMmAdlJSEEAgGm9moDT8f8kRvzd/4BDztL1KukuGvwP0pI+3icyw67N9DSwPMY+cNcf0YJiUnIzRXDQF9PZr2Bvh6evXwlt0ycKF5ufJwoXm58ZmYWlqzZgKYN6kHrk/lPOrdvAxcHe5QurY3wOxFYum4jYkUijBk26D9m9c8Skr6S94sC8o5PgIGersw6Qz09xMV/Le+NaNagrkzenzpw5CiqV60M4zJG35/Ev5CYlIJcsRiGejoy6w30dPH01Ru5ZeISEr/MW1cHcfGJ0scbd4VASUmIrm2ayd3G6yjJCeBV2/Zg7ICeMDU2wta9h9Fj5BT8uXU5dEsX7Uk9Rb3fr95GAQBWb96OMUMHwMS4LAJ27UOvoaPwx84t0Cld+j9m9nUJiYnIzc2Fgb7s5RMG+vp49kL+CZY4kUhufNwnw9e/RbPGDWFibAwjI0M8fPwYS1auwfMXL7F0/pzvS+IbxcXFAQD0P1wn/5GBvgFEoji5ZRISEpCbm/tlGQMDPH8uOREjihNBRUUF2p+9Vwb6+l9sd9y4sTh75gwyMjJQq3ZtTJ4yVe7rxsTE4MKFC5g9u2j2xUcJSckfjntdmfUGev9w3H/2OTHU10PcZ5d3nLlwCaOnzUFGRiaMDPSxfvEc6OnKfq8Up3jRx/df9tjV1zdAvEj+sZuY+OH91/+yzIvnz7/5tStXqYrlSxZjx7YAdPi1M9LT07F6xXIAgChO/u8mon+LPfkfPHnyBFlZWTJndvX19eHoWPDkRidOnED9+vVhamoKbW1tdOvWDSKRCO/f51+Hq6ysjCqfnBl3cnKCrq4uIiMlZzrDw8Mxffp0aGlpSZe+ffsiKipKZjuf+6dy7du3R3p6OmxsbNC3b18EBwdLh/LLM2fOHOjo6MgsC/af+KZ9R1SYgk5cxO0nr7BieDfsmjoYozo1w6zth3Dx3mMAwOmbkbgS+RRjOzdXcE2pMGXn5GDUpOlAXh4mjR4u81yPTu1RpZIHHO1s0aFNS4weMgA794UgKytLQbUtPNk5ORg5eQbykIdJo+RfUhUdE4sLV66jbYumxVy7wnXv4RNsD/4Ts0cPKfCSA7E4DwDQv/MvaFTLG+UdbDFr9GAIBAKEnbtYnNUtEgW933kf8u7XvTMa1qmJ8k4OmDl+lCTvU+cUVd1i0b5Na1Sv5gUHO1u0aNIYs6dMwskz5/Dq9etC2f6ff/wBn2re0uVrv4WKy6hRoxG0cxeWLF2G169eYdHChXLjDh8+DG1tbdStV3xzMxS2qpU8sH/zagSuWYLqXp4YNWVWgdf5F4Wwo3+ifk0f6aLI99/G1haTpk3Hzh3bUa9GNbRs3AAmpqbQNzCAQFDym2QCofCHXUoi9uT/S8+fP0eLFi0wcOBAzJo1C/r6+vjrr7/w22+/ISsr65sn6EtNTcW0adPQtm3bL55TU1P71+XMzc3x4MEDnDhxAsePH8egQYOwYMECnD17FioqKl+U8ff3h98nk8MAgDhs3TflUBA9DTUoCQUQfTbJniglvcDJxujnoaetASWhEKIk2XkoRMmpMNCR39tmqKMlN97wQ3xGVjaW7TuGZUO7oJaHZPZdR/NyePAyCgFHz6NaeTtciXiCVzHx8Bk0Q2Y7fit3oJKDFbb49y2sFL+JnubH41z2pJwo9X2JOs71dHWgpCT8YhIuUXzCF715Hxka6MuNN/ysB+VjA//tu3fYtHxhgb3ZH7m5OCMnNxdvot7B2rLgOzkUBj2dgvM2NNCTW8ZQX++LH7FxCQkw1P8y75GTZuJtdAw2L19QYN4hf4ZBt3Rp1KlR7d8n8p10dbShJBQi7rNJ9kQJiTD8rNf6I0M93S/zTkyC4Yfewet3IhGfmIT6nQdIn88VizF/3TZsO/AHTuxYA6MP+9TWMn8UXalSKjArVwZRMfJ7WQuTot5vI0NJrK1V/uzepUqVglm5coh6F/NfUvomerq6UFJSguiz0Qei+HgYyJkcEQAMDQzkxhvqG8iN/1ZurpIRWi9fvYH5V0ZTfqvaderIzICf/eHkYLxIJB0tCQCieBEcHeR37Ojp6UFJSemLnl6RSASDD3dIMDA0QHZ2NlKSk2V68yX7UPYuCh+vt7e2toaOTmn07tULffv1k6lPXl4eDoaEoHnzFnJ/txUmPZ3SH477RJn1ooR/OO4/+5zExSfA8LPefQ11NViYmcLCzBTu5Z3R7NdeOHAkFH27dUJxqFGrNsp/MgN+VlY2ACBeFA9Dw/z9HR8vgn0B77+u7of3/7PjPT5e9MXojn/SqElTNGrSFPEiEdTU1SEQCLBrRyBMC+FYJ/pUyTx18S/Y2tpCRUUFly9flq5LSEjAw4cP5cZfv34dYrEYixYtgre3NxwcHPD27dsv4nJycnDt2jXp4wcPHiAxMRHOzs4AgEqVKuHBgwews7P7Yvl4zY6Kigpyc2WvP/2Wcurq6mjZsiWWL1+OM2fO4OLFi7hz547cfFRVVVG6dGmZ5b8M1QcAFWUlOJsa4crj/KGdYnEerjx+gwoF3FqMfh4qyspwsTLB5YjH0nVisRiXIp7A3dZCbhl3Owtcjngis+7ivcfS+JzcXOTk5kIglO3lEwoFEOdJerp+a14b+2cMxd7pQ6QLAIzp3Bwz+hT/JHz5x3l+r5PkOH+NCpbGXyn5c1FRUYGLowMuX8u/1ZVYLMal6zfh7ir/sgn38i64fF12XpOLV6/D/ZNbcn1s4L989QYbli6Ars4/D+O8/+gxhEIh9AtobBYmFRUVuDg44PJ12bwvX78pk8en3F1dcOmT/QQAF6/egLurs/Txxwbfy9dvsHHpPOjqyB+OnZeXh5A/wtCySQOoKBffeflSKipwcbDBpRv5fzPEYjEu3bwDDxf5P4Q9XBxw6abs35iL18Ph7iK5G0CrBrURsn4RDqxbKF3KGOijd/tW2DB3IgCgvL0NSqmo4Pnr/L+n2Tk5eBsdC5NiuFRBUe+3i6M9SpVSwbNPJubNzsnBm+homBgX/d9LFRUVuDg54vLV/N8rYrEYl65dh7ubq9wy7m7lcfmq7CSrFy9fhbtb+f9UlwcPHwEADA3/28mCjzQ1NWFhYSFdbGxtYWhoiMtX8n/vpaam4u6dO6jgLn/CNBUVFTg7O8uUEYvFuHLlMipUkJRxdnaBsrIyLl+5Io15/vw5oqOiUMHd/Ytt5m9H8rct+7ORSdevXcOrVy/h28b3u3P+XpLj3l7OcX/rK8e9My5dvyWz7uI12eNeHrE4D1nZ2f+5zt9KU1MTZuYW0sXaxgYGBoa4djX/vUxLTUXE3btwdSv4/Xd0csb1z97/a1evwLWC/DL/RN/AABoaGjh5LAylSpVClU/meyAqDOzJ/0BLSwu//fYbRo8eDQMDA5QpUwYTJkyQmRzjU3Z2dsjOzsaKFSvQsmVLXLhwAWvXrv0iTkVFBUOHDsXy5cuhrKyMIUOGwNvbW3p9/OTJk9GiRQtYWFigXbt2EAqFCA8Px927dzHzwy1VrKyscPLkSVSvXh2qqqrQ09P7x3Jbt25Fbm4uvLy8oKGhgcBAyS1i/ukesIWtW80KmLTnNFzMjOBqVgY7/rqN9OxstPaU/EicuPsUypTWxLCmH+8nnIsnH65jzskRIyY5DfffxkGjlAosDCU//t9nZuOlKL936U18Mu6/jYOOuirK6Sl2ErZ/Q1VTA0Z2VtLHhtbmMHN3QVp8IhJefXni6EfSvXENTNiwD+WtzeBmY4btxy4gPTMLvjUlk/eMX78XZfRK4/f2ksnCujb0Qa+5GxBw9Dxqujsi9PJt3Hv2BlN6+gIAtNTV4OlojcW7j0JNRQXlDHVx7f4zHL5wE6N/lVzDa6irLXeyPWN9XZgZye9xKmrdanlg0u6TcDErA1fzMthxPhzpWTloXUXyY2fizhMoo6OJYc0kPbHZObl48k7SI5CTm4uYpFTcfxMLDVUVWBjqAgDeZ2bhZdxnx/mbWOhoqCnsOO/esR0mzJqH8k4OcHNxwvY9+5GekQHf5pL3d/yMuShjaIjfB/YBAHTt0Ba9Bo9AwM49qOnjjdATp3Hv/kNMGSsZNZSdkwO/CdMQ+fARVs2fBbFYLL1eX6e0NlRUVHDr7j3cuXcfVSt5QENDHeF3I7Bg+Rq0aFQfOkV8fbY0706/YMKs+Sjv5ABXZ0cE7glGenp+3v4z5qGMkSFGDPhNknf7Nug1ZCS27tyLWj5eOHriDO7df4ipY37Pz3vidEQ8fIxV82bIzfujy9dv4nVUNH5pWfxD9Xv+0hL+81fC1dEWbo522HbgD6RnZKJNk7oAgHFzl6OMoQH8+nQBAHRr2ww9/KZgy95DqO1VGX+e/gt3Hz7FtBGSnntdHW3ofjbKR1lZCYb6urA2NwUAaGlqoGPLRlgZsBvGRgYwKWuEzXsk9wxvXLt4RjIo4v3W0tREh9YtsHrTNhiXMYKJcVlsCdoDAGhUt1bx5N25IyZMm4Xyzk5wK++C7bv2SPJuIbk0avyUGShTxhC/D5bcDq9rpw7o1X8wAnbsRM3qPgg9dgL3Iu9jyvix0m0mJSUj6l00YmIlozCef7i+31BfMov+q9ev8UfYcdT0qQZdHR08fPwY85csR+WKHnC0t0NREAgE6NylCzZu2AALC0uYmppi9apVMDIyQt26+cPi+/fri7r16qFTp18l+XbrhsmTJsHFpTxcXV0RtCMQ6enpaN3aF4Bk8j7fNm2waNFC6OiUhqamFubNnYsKFdylJwLOnz+PeJEI5V3LQ0NdA0+ePMGSpUvg4eEBE1NTmXqGhATDzc0Ndnb2KA7dO7bFhNkL84/7vR+O+2aSW/f5z5yPMoaGGDFAcnu4ru180WvoaGzdtQ+1qlXF0ZNnce/+I0wd/TsA4H16BtZvC0LdGtVgZKCPhKRk7DxwCDFxcWhcV3G3QBYIBOjwa2cEbNoIc3MLmJiaYv2a1TA0MkKtOnWlcUMH9kftOnXRrqNkxEGnLl0xc+pkOLm4wKW8K3YHBSEjPR0tWubf9UAUFweRSITXryXH+ZPHj6ChoQljY2OU/nACe9/uXXBzd4e6ugauXr6ElcuWYuDQodDW/vl+v36vkjqL/Y+KjfxPLFiwAKmpqWjZsiW0tbUxcuRIJCXJvx+wu7s7Fi9ejHnz5sHf3x+1atXCnDlz0L17d5k4DQ0NjB07Fp07d8abN29Qs2ZNbNq0Sfp848aNceTIEUyfPh3z5s2DiooKnJyc0KdPH2nMokWL4Ofnhw0bNsDU1BTPnz//x3K6urqYO3cu/Pz8kJubCzc3Nxw+fBgG3zms6L9q7G6HhLQMrDl2FXEp7+FoYojVvZvD4MMw5qjEFJn7nMckp6HTsvzb72w7F45t58JR2aYcNvWXfJHeex2DvusPS2MWHZFcp9mysgNmdPj5rluz9KwAvzO7pI/bL5HcI/zi1n0I6DVKUdX6Jk28KiA+JQ2rgk8gLikFThblsHZkL+nw+yhRosy1tx72lpjbvyNWHjiOZfuPwbKsAZYN6wp7s/we7wUDO2HpvjCMW7cHSWnvUc5AF0N/aYQOdb2+eP0fRWMPeySkpWNN2OX847xPi8+O8/z9EJOchk5L90gfbzt7C9vO3kJlGxNsGtgGAHDvdSz6rg2Rxiw6fAEA0LKyE2Z0ql8MWX2pSYO6iE9MwqqNWxEXnwAne1usXTRXOiw56l2M7PvtVh5zp07AyvWbsWzdZliamWLZnOmwt5FMohgTG4czf/0NAGjXs5/Ma21esQhVKnmglIoKQk+cxprNAcjKyoapiTG6dfwF3Tu1K6asgab16yAhMRErNwZI8razxdpFs6XDUqPexUD4yeiTim7lMW+KP1Zs2Ipl67fA0swUy+dMlcn79F+S7612vQbIvNbm5QtRtVJ+r9+BI6HwcHOBjaX80TFFqWnd6ohPSsaKrbsQl5AIJ1srrJszQTpcPyomTuZEeMXyTpg/fjiWb9mFpZuDYGlaDiumjYG99ffVfVS/blBSEmLc3BXIyMpCBSd7bF44FTqf3XGhqCjq/R45uB+UlJTgP2MeMjOz4ObihM3LFhTbyawmDRsgPiERq9ZvRJwoHk4O9li7bJH08pqod+9kRll5VHDD3BlTsXLteixbvQ6W5mZYtmAO7G3zZ04/ff48Jk2fLX08esIUAMDAPr0xqN9vUFFRwaUr1xC4cw/SMzJgXLYMGtatg369exZprj179kJ6ejpmzpiOlJQUeFSsiFWrV0tnOgeAV69eI/GTyzAaN26ChIQErFmzGqK4ODg6OmLV6tUyv6tGjRoNoUCIUSNHIisrCz4+PvAfP0H6vJqaKg4cOICFCxciOzsLZcuWRb369dH7s/uqp6Sk4OTJkxg9WvaOTUVJctwnYeWmbR+OexusXTjrk+M+FsJPrhuXHPfjsGJDAJat3wpLMxMsnz0F9jZWAAAloRDPXr7GoYkzkJCUDN3S2nB1dkDAykWws7Yqtrzk6dqjJzIy0jFv9kykpqSggocHFi9fJfP+v3n9ComJidLHDRo1RmJCAjasXYN4kWRo/+IVq2SG6wfv34fNG/IvdR3UV3IicMKUaWjeshUAIOLeXWxcvxbp79/D0soKY8ZPQNPmLYo4Y/p/JMjL+zAGlugz6SFLFF0FhRjRZpmiq6AQy/9epOgqKERurPyZwks6JZ8v5/P4fyDIEyu6CgohzJB/wrqkE6spbhZvRcorVXLmA/keOaWK50TQj0YlpeTcrvV7JKuXUXQVFMLgJ53v51SFgu/ypWj1bl/556CfDHvyiYiIiIiIqMgIOFy/WHHiPSIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyAiU2LdcnLi3iYiIiIiIiEoINvKJiIiIiIiISggO1yciIiIiIqIiI+Ts+sWKPflEREREREREJQQb+UREREREREQlBIfrExERERERUZERCDlcvzixJ5+IiIiIiIiohGAjn4iIiIiIiKiE4HB9IiIiIiIiKjJCJfYtFyfubSIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyAiUOLt+cWJPPhEREREREVEJwUY+ERERERERUQnB4fpERERERERUZDhcv3ixJ5+IiIiIiIiohGAjn4iIiIiIiKiE4HB9IiIiIiIiKjJCJfYtFyfubSIiIiIiIqJvsGrVKlhZWUFNTQ1eXl64cuVKgbEbNmxAzZo1oaenBz09PTRo0OCr8YWFjXwiIiIiIiKif7B79274+flhypQpuHHjBtzd3dG4cWPExMTIjT9z5gx+/fVXnD59GhcvXoS5uTkaNWqEN2/eFGk92cgnIiIiIiKiIiNQEvywy/dYvHgx+vbti169esHFxQVr166FhoYGNm/eLDd+x44dGDRoEDw8PODk5ISNGzdCLBbj5MmThbFbC8RGPhEREREREf1fyszMRHJyssySmZn5RVxWVhauX7+OBg0aSNcJhUI0aNAAFy9e/KbXev/+PbKzs6Gvr19o9ZeHE+9RgQSl1BRdBYVY/vciRVdBIYb5jFR0FRRiUVAfRVdBIYR3zyq6CgohKF9T0VVQiDylUoqugkLkahkpugoKkSf4/7wfda44T9FVUIhcrbKKroJC5GaLFV0FKiHmzJmDadOmyaybMmUKpk6dKrMuLi4Oubm5KFtW9jNXtmxZ3L9//5tea+zYsTAxMZE5UVAU2MgnIiIiIiKiIiMU/rgnH/39/eHn5yezTlVVtdBfZ+7cudi1axfOnDkDNbWi7UxlI5+IiIiIiIj+L6mqqn5To97Q0BBKSkp49+6dzPp3797B2Nj4q2UXLlyIuXPn4sSJE6hQocJ/qu+34DX5RERERERERF9RqlQpVK5cWWbSvI+T6FWrVq3AcvPnz8eMGTMQGhoKT0/P4qgqe/KJiIiIiIio6AiUSkbfsp+fH3r06AFPT09UrVoVS5cuRVpaGnr16gUA6N69O0xNTTFnzhwAwLx58zB58mQEBQXBysoK0dHRAAAtLS1oaWkVWT3ZyCciIiIiIiL6Bx07dkRsbCwmT56M6OhoeHh4IDQ0VDoZ38uXLyEU5p/QWLNmDbKystCuXTuZ7cib2K8wsZFPRERERERE9A2GDBmCIUOGyH3uzJkzMo+fP39e9BWSo2SMmyAiIiIiIiIi9uQTERERERFR0REq/bi30CuJ2JNPREREREREVEKwkU9ERERERERUQnC4PhERERERERUZAYfrFyv25BMRERERERGVEGzkExEREREREZUQHK5PRERERERERUagxL7l4sS9TURERERERFRCsJFPREREREREVEJwuD4REREREREVGSFn1y9W7MknIiIiIiIiKiHYyCciIiIiIiIqIThcn4iIiIiIiIqMQMjh+sWJPflEREREREREJQQb+UREREREREQlBIfrExERERERUZERKrFvuThxbxMRERERERGVEGzkExEREREREZUQbOT/ZJ4/fw6BQIBbt259V7mtW7dCV1e3SOpERERERERUEIGS4IddSiJek08KseuvcAScuoa4lPdwMDHEuLZ14WZpLDf2cZQIq0MvIvLVO7xNSMFo31roWrtSMdf4n+08cRFbj55HXFIqHC2M4d+1JdxszAuMD7tyBysPHMfbuERYGBtgRPsmqOXuKH3+fUYmluwNw6kbEUhKfQ9TIz10aeCDDvW8vthWXl4eBi4OwIU7D7F0aFfUr+xSJDkWJruaVdFodD9YVHaDrklZrPHth/CDxxRdrX9t95UH2HbhHkSp6XAw1sOYplXhamYoN/ZJTCLWnA5H5FsRopLSMLKxJ7pUc5aJ2Xz+Dk5FvsLzuCSoKivB3dwIwxpWgpWhTnGk8812nb6Krcf/RlxSKhzMysK/U1O4WZsWGH/segRWHjyNt6JEWJQxwIi29VHTzV76vCg5FUsOnMTFiCdIeZ+BSvaW8O/UBJZlDYojnQLt3H8QW3buRVx8PBxtbTF+xGC4uTgVGB926ixWbgzAm+hoWJqZYsTAPqhVTfLZzc7JwYr1W3D+0hW8fhsNLU0NeHtWwoiBv6GMoewxc/bvy1i7JRAPnzyFaqlS8KxYAcvnTCvSXD8VFPwHtuwORlx8AhxtrTF+WD9UcHYoMD7szF9YsXkH3kTHwNLMBH79eqCWt6f0+VVbg3D01HlEx8ZBRVkZLg52GP5bV1Rwyf/ue/7qDRau3YKbdyORnZMDBxsrDO3dBV4VKxRZnrt27UJAQADiRCI4ODhg3NixcHNzKzD+2LFjWLV6Nd6+fQsLCwv8Pnw4atasKX0+Ly8Pq9eswYEDB5CSkgIPDw9MGD8elpaW0pgNGzbg/PnzePDwIVSUlfHXX3998Tp3797FsuXLERkRAQgEcHV1xYjff4ejo+MXsd8iLy8Pa1avlqnX+AkTZOolz8f9I4qLg4ODA8aOGyezfzIzM7Fo0SKEhYYiKysLPj4+GD9hAgwM8j+3UVFRmDVrFq5dvQp1dXW0bNUKw4YNg7Ky5KfozRs3sHTZMjx/9gwZGRkoV64cfmnXDt26dZOpy7t377Bs6VJcuHABGRkZMDc3x7Tp01G+fPnv2g/r1qxBcPABpKakwN3dA+PGj4fFP+yHPbt3YXtAAEQiEewdHDB67Fi4usruh6WLF+FYWBiysrLgXc0H48aPl+6Hw4cOYtqUKXK3fezkKejr62Pq5Ek4cvjwF8/b2Nhgz/4D35zjt1DUfgCAK5cvY+3qVXj8+DHU1dXRvGVLDBo8RHo8FKW8vDxsWr8Wh0OCkZqaArcK7hg5djzMLSy+Wu7A3t3YGbgN8SIRbO0d8PuoMXAp7woASE5Kwqb1a3H18iW8excNXV091KxdB30GDISWljYA4PHDhwjctgV3bt1CYlIiypUrh9Zt26F9p85FnjP9/2FPPhW70JsPsDDkHPo39saukZ3haGKEgeuCIUp5Lzc+IzsbZgY6GNaiBgy1NYq5tt8m9PJtLNj1Jwb41seeaYPhYF4O/RdugSg5VW78rUcvMHbtbrSt5Ym904egXkUXDF8eiEevo6Ux83f+iQt3HmJuvw44OHsEujaqjtmBh3H6ZuQX29t+7AIEP9mJSFVNDbwOj8SuwZMVXZX/LOzucywOu4Z+dSogqH9z2JfVw+DAk4hPTZcbn5GdA1M9LQxrUBGGWupyY64/j0GHKo4I6NMUa7o3QI44D4O2n0R6VnZRpvJdQq/ew4J9xzCgeW3sntAPjmbGGLB8B0TJaXLjbz15hbEb96NN9YrYM7Ef6nk4Yvia3Xj0JgaA5IfX8NW78To2AcsGdcTuif1gYqCDfksD8T4zqzhTk3H05BnMX7kOA3t1xd5Na+BoZ4P+fv4QJSTIjb955x7GTJuNNi2aYO/mNahXszqG+U/Fo6fPAAAZGZmIePgY/Xt0xZ7Nq7F01hQ8f/kaQ8bKfhaOnzkP/xnz4Nu8EfZvXYfta5aiWYN6RZ7vR0dPncf8NZswqEcn7F2/BI62Vug/ZgpECYly42/ejcToGQvRtllD7NuwFPVqeGHopNl49OyFNMbSzBQThvdH8KYV2L58HkyNy6DvmCmIT0ySxgwaPwO5uWJsXjwTe9ctgaOtNQaPn4HYePn7+78KDQvDwkWL0L9/f+zauROODg4YOGgQRPHxcuNv3bqFcf7+aOPri927dqFu3br4fcQIPHr8WBqzZetW7AwKwsQJExC4fTvU1dUxcNAgZGZmSmOys7PRsGFDtG/fXu7rvH//HoMGD4axsTECAwOxdcsWaGpqYuCgQcjO/nffA1u3bEHQzp2YMHEitgcGQl1dHYMGDpSp1+fCQkOxaOFC9O/fHzt37YKDoyMGDRyIeJFIGrNwwQKcO3sWCxYswKbNmxEbGws/Pz/p87m5uRg6ZAiys7OxNSAAM2bOxOFDh7B69WppjLq6Ojp16oRNmzfjQHAw+vbti1UrV2Lfvn3SmOTkZPTs2RPKyspYuWoVDhw4AL+RI1G6dOnv2g8BW7di184g+I+fgK3btkNNXR1DBw/66n44FhaGJYsWoW///ggM2gkHBwcMHTQI8Z8cJ4sXLsS5c+cwd/4CrN+4CXGxsRg9Mn8/NGzUGKHHT8gs1Xx8UKlyZejr6wMARo0eI/P8H6Fh0NHRQf2GDb8rxx95Pzx88ADDhw5BNZ/q2LFzF2bPnYdzZ89i5fLlhZ6jPEHbArB/906MGjce6zYHQF1dHSOHDf5q3iePh2Hl0sXo2acfNm4Lgp29PUYOG4yED3nHxcVCFBeLwcN/x7adezB+8lRcvvg35s6cLt3Gg/sR0NPTx8TpM7F911506/Ub1q1aif17dhV5zvT/h438H5RYLMb8+fNhZ2cHVVVVWFhYYNasWdLnnz59irp160JDQwPu7u64ePGiTPmtW7fCwsICGhoaaNOmDUSf/DFWtO1nbqBtNVf4epWHrbEBJravD7VSygi5fE9uvKuFMfxa1UTTSo4opaxUzLX9NtvC/sIvtaugTc3KsDUti8k9WkO9VCkEn7suNz7w+N+o7maPXs1qwcakDIb+0hAulibYeeKSNCb88Qu0ql4JVZxtYGqkh/Z1qsLB3Bh3nr6S2db9F28REPoXZvT+pUhzLGz3Qs/g0KRFuBUSpuiq/Gc7LkagTSV7tK5oB5syupjQwhtqKko4ePOJ3PjypoYY0agyGrtZQ6WA2WZXdauPVhVtYVtGFw7G+pjm64PopDREvJXf8FCEbScu4pcaleBb3QO2JkaY1KU51EupIOTvm3Ljd5y8jOrl7dCrsQ9syhlhSOu6cLYoh11nrgIAXsTE4/azN5jYpRlcrUxhbWyIiZ2bIyM7G0ev3i3O1GRs27Uf7Vo2RZvmTWBrbYnJo4dDTU0VwUfkH7uBe4NR3asKenfuAFsrSwzt2xMuDnYI2n8QAKCtpYmNS+ehSf3asLYwh7urC8b7DUHEg0eIipac8MjJycXcZasxcnBfdPRtCSsLM9haW6JJ/drFlnfA3oNo17wR2jRtADsrC0zxGwQ1NVUcOHpCft77D6NG1Uro3aktbC3NMax3V7jY2yAo+A9pTIsGtVGtsgfMTYxhZ22BMYN+Q2raezx88hwAkJCUjBev36JP51/gaGv9YTRAd6RnZOLxJycLCtP27dvRtm1b+Pr6wtbWFhMnToSamhpCQkLkxu8ICoKPjw969uwJGxsbDBk8GM7Ozti1S/JDPS8vDzt27EDfvn1Rt25dODg4YOaMGYiNjcWp06el2xk0aBC6desGezs7ua/z7NkzJCUlYfCgQbCysoKdnR0G9O8PkUiEqKio785TXr1mzJyJ2NhYnD516l/vn5SUFAQHB2PkqFGo6uUFFxcXTJs+HeG3buH27dsAgIsXL+Lp06eYPXs2nJycUKNGDQwaNAh7du+WnrBwcnZG06ZNYWdnB1NTUzRv0QI+Pj64eeOGtC5bNm+GcdmymD5jBtzc3GBqZgYfHx+Ymxc8ak7eftgZtAO/9e2LOnXrwt7BAdM/vD9nPnl/PrcjcDt827ZFq9a+sLG1hf8EyX449GE/pKak4GBIMEb4jUSVqlXh7OKCKdOm4XZ4OO582A9qamowNDSULkpCIa5euYLWvm2kr6OlrS0TExlxD8nJyWjVqvU35/ij74fjx8Jgb2+Pvv37w9zCApU9PTFs+O/Yu2c30tLknyQuzLz37ApC9959ULN2HdjZO2DC1OkQxcXi/NkzBZbbHbQDLX3boHnL1rC2scGocROgpqaGPw5LvtdtbO0wc95CVK9ZG6Zm5qhcpSr6DRyMv8+fQ05ODgCgeStfDB85GhUrVYaJqRkaN22OZi1b4tzpgj9/JYlASfjDLiVRycyqBPD398fcuXMxadIkREREICgoCGXLlpU+P2HCBIwaNQq3bt2Cg4MDfv31V+mXyOXLl/Hbb79hyJAhuHXrFurWrYuZM2cqKhUZ2Tm5iHwdA2+H/D/IQqEA3vYWuP3i+3+0/Aiyc3IQ8fwtvF3yf6gJhUJ4l7dF+JOXcsuEP34pEw8APm72MvHudpY4cysS7xKSkJeXhyuRT/DiXRx8XPOHNqdnZmHsut2Y0K0VDHW1Czkz+hbZObmIfBsPL5v8y02EQgG8bMrh9uvYQnudlAxJT7aOeqlC2+Z/kZ2Ti8iXUfB2tpauEwoF8HKyRvjT13LLhD99DS8na5l1Pi620visD99hqir5wzWFQgFKKSvj5mPZk1vFJTs7GxEPH8LbM/8SIaFQCG/PSgi/FyG3TPjdCFTzlL2kyMfLE+F3vxyF81FqahoEAgG0tTUBAJEPH+FdbByEAgHa9RqAOq07YsDI8dLRAEUtKzsbEQ8fo1plD+k6oVAI70ruCL93X26ZWxH34V3ZXWZd9SqVcKuA+KzsbOw9EgZtTU042kmOC93S2rA2N8XBY6fxPj0DObm52HM4DAZ6OnBxkN8Y/i+ys7MRGRkJb6/8y6CEQiG8vbykDdTP3b59WyYeAHyqVZPGv3nzBnFxcfD6JEZbWxtubm64HR7+zXWzsrKCrq4ugoODkZ2djYyMDAQHB8PGxgYmJibfk+Y/1iu8gFw/7h8vb2/pOqFQCC9vb2m+kRERyMnJkdmutbU1ypUrh/AP+d4OD4edvb3McG0fHx+kpqbiyScjID51PzIS4eHhqOyZf7nH2bNn4VK+PEaNGoW6deqgY4cO2L9//3fvB1FcHKp+Ul8tbW24urrhzm357092djbuR0bK5CgUClH1k+MkMjJSsh+882OsrK1hbFwOtwvY7h9HjkBNTQ31GzQosL4HQ0JQ1csL5f7Fe/41itwPWVnZKKWqKrNtVVVVZGZmIjJS/vdqYYl6+wbxojh4Vv0kby1tOJd3xb07BX8OHt6PROUqsnl7VvEqsAwApKamQkNT86uXIKSmpkJb58e6DI9KBjbyf0ApKSlYtmwZ5s+fjx49esDW1hY1atRAnz59pDGjRo1C8+bN4eDggGnTpuHFixd4/OEP5bJly9CkSROMGTMGDg4OGDZsGBo3bqyodGQkpKUjV5wHg8+G3RtoayCugCG+P7qElPfIFYthoKMls96gtBZESSlyy8QlpcqNj/skfnzXlrA1KYMGI+ahUp9JGLBoKyZ0awVPx/xG0vydf8DDzhL1Kv341+CXVInvM5Gblwf9z4bd62uqQVTAcP3vJRbnYWHoNXiYG8GurF6hbPO/Skh9/+GzrCmz3qC0JuKS5F+mEpecCoPSnx/3+fHWxoYop6+DZcGnkJyWjuycXGwOvYB3Cckyn43ilJCUhNxcMQz0Zfe7gb4e4kTyh4/HxSfAQE9XZp2hnh7iChj+nZmZhSVrNqJZg7rQ0pTsz1dvJSc9V2/ejv49umDVvBkora2FXkNHISk5+T9m9c8Sk5Il32uf5WGgp4u4+ES5ZeLiE+XGf35Zw5mLV+HZtAMqNW6HbfsOYsPC6dDTkQy3FggE2LhoBu4/eoqqzTuiUqNfELD3INbNmwodbdljpzAkJCQgNzdXpvEJAAYGBoiLi5NbJi4u7qvxH//9IkZfH3HfMapOU1MTGzduxB9//omqXl6o5uODC3//jVUrV/6r65YLqpe+gQFEBeT6LfsnTiSCiorKF0Pm9fX1pduNE4lg8GE4+qev+/G5TzVq2BBVPD3RuXNndOzYEW3btpU+9/r1a+zdswcWFhZYs2YN2nfogPnz5uHQoUPftA8ASOtkoP/5ftAvcNRj4of9oP9FGQOIRJLtiURxUFFRgbb2Z/vhK9s9GBKCJk2bQk1NTe7zsTEx+PvCBfi2aSP3+f9Ckfuhmk813A4PR+jRo8jNzUVMzDtsXL8eABAXK/9YLCwf66D3+fGob4B4kfzXTkpM/JC3bBk9/a/sq8QEBGzegFa+beU+DwB3bofj1PHjX40h+rfYyP8BRUZGIjMzE/Xr1y8wpkKF/AmIypUrBwCIiYmRlvf6rJehWrVqX33NzMxMJCcnyyyZ//KaPyocQScu4vaTV1gxvBt2TR2MUZ2aYdb2Q7h4T3Iy5/TNSFyJfIqxnZsruKZU1Ob+eQVPYhIxp13Nfw7+iakoKWHJgPZ48U6EGn4LUHXobFx58Bw1XO0g+NkmnfhG2Tk5GDl5BvKQh0mjhknX54nzAAD9undGwzo1Ud7JATPHj4JAIEDYqXOKqm6hqOrhhv0bl2LHynmoUaUSRk6bJ73OPy8vDzOXroW+ng62LZuDXWsWoV51LwwePxOxoh/nUpXikJGRgalTp8LD3R3bt21DwNatsLOzw5ChQ5GRkfGP5f/44w9U8/aWLh9H+/3otnwyb8COHTtw9OhR6XNisRhOzs4YNmwYnJyd0a5dO7Rt2xb79u4tcHtH//wDNX2qSZcfZT/cDg/Hs2dPZYbqf+7I4cPQ0tZGnbr/fS6OH2k/eFfzwbDfR2DO7Fnw8aqKtq1bo3qNGgAkPeSF6Vjon2hUu7p0KY6801JTMWbEcFhZ26B3v/5yY54+eQz/USPQq08/VPX++m/0kkIgFP6wS0nE2fV/QOrq8ifi+pSKior0/x9//IrF4n/9mnPmzMG0abIzNk/o3AwTu7T419uUR09THUpCwReT7IlS3sOwtGYBpX5setoaUBIKIfqs91KUnAoDHflD6A11tOTGG36Iz8jKxrJ9x7BsaBfU8pDM4O1oXg4PXkYh4Oh5VCtvhysRT/AqJh4+g2bIbMdv5Q5UcrDCFv++hZUifYWuhiqUBIIvJtmLT8uAQQGT6n2PuX9cwfmHr7GxVyOU1flxPiN6WhofPsuyI3BEyWkw1JHf42pYWuuLySg/j3exNMHeSf2Rkp6B7Jxc6GtrovOcjShvWbhDVb+Vno4OlJSEEH026ZsoPgGGBvJHVRjq630xOV1cQgIMP+sFys7JwchJM/E2Ogably+Q9uIDgJGhJNbWKn+W61KlSsGsXDlEvYv5Lyl9E12d0pLvtc/yECUkwlBfV24ZQ31dufEGerL7SUNdDZamJrA0NYG7ixOadu2PA38eR98u7XH5xm2cvXQNFw8FQUtTMuJrssNAXLx+CyFhp9C3c7vCShEAoKenByUlpS9640QiEQwN5d8dw9DQ8KvxH/8ViUQwMjLKj4mPh6NDwXcm+NyfR4/i7du32L5tm7ThM3fOHNSoWROnz5xB0yZNvlq+Tp06MjPgZ2Vlya1XvEgEhwJm6/+W/WNoYIDs7GwkJyfL9ObHx8fD4JOYu3dl59X4OHGf4WejBEzNzAAA9vb2iBeJsHbNGjRt2hQAYGRkBFsbG5l4axsbnDghf54IAKhVu47MzO9Z2R/2Q7wIhjL7IR4OjvLfH90P+yE+XnY/xItEMDCQ5GhgYIjs7GykpCTL9GLHi+K/GAkBACHBwXBwdISzi/yReHl5eTh0MATNmjeX+c33b/1o+6Frt27o0rUr4mJjoV26NKLevsXKFcthalbw3Vn+jRo1a0tnwAeA7A+T1ybEx8PQ8JO840Wwd5D/OdDR1f2Qt+yJxoT4L9/b92lpGDV8CDQ0NDBr/iIoK3/53j17+hS/Dx6AVr5t0eO3Pl88T1QYSuapi5+cvb091NXVcfLkyX9V3tnZGZcvX5ZZd+nSpQKiJfz9/ZGUlCSzjO5Q+EP8VZSV4GxWBpcf5l9fKxbn4fKjV6hgWa7QX684qCgrw8XKBJcj8q8rFIvFuBTxBO628m/H4m5ngcsRspOyXbz3WBqfk5uLnNxcCISyvZdCoQDiPEkP32/Na2P/jKHYO32IdAGAMZ2bY0afn2sSvp+ZirISnE30ceVZ/p0RxOI8XHkajQpmRl8p+XV5eXmY+8cVnL7/Eut6NISp3o8154KKshKcLcrhcmT+NeJicR4u338GdxszuWXcbcxw+b7sNeWXIp/KjddWV4O+tiZevBMh4kUU6nr8u1uG/VcqKipwcXDA5ev5kwmKxWJcvn4T7uXl/zh3d3XBpWuykw9evHoD7q75t0n82MB/+foNNi6dB10d2aGtLo72KFVKBc9evZIp8yY6GibGZVHUSqmowMXBDpdu5F+bKxaLcfnGbbiXl3/rQA8XJ1y6IXt96sXrt+BRQPxHeXl5yPowciz9w+zWX373CZH3H05kF0RFRUXyN/PKFek6sViMy1euyIyY+1SFChVk4gHJ39iP8aampjA0NJSJSU1NxZ07d1DBXXbOgq/JyMiAUCiUGcUiEAggEAi+aV9oamrCwsJCutja2sLQ0BBXPvl98LFe7gXk+nH/fFpGLBbjyuXL0nydXVygrKyMK5/k+/z5c0RFRcH9Q74V3N3x+NEjmRn5L166BC0tLdjY2haYg1gslh4bAODu4YHnz5/LxLx48eKr16tramrC3MJCutjY2MLA0BBXL8u+P3fv3oFbBfnvj4qKCpycnXHlsuxxcvWT48TZ2VmyHy7L7ofo6ChU+Gy779+/x4njx77ai3/9+jW8evXqqzHf40fcDwKBAEZlykBNTQ1hoaEoa2wMJyfZ28n+VxqamjAzt5AuVjY20DcwxPWr+fVLS01F5L27KO9W8OfAwclZpoxYLMb1a1dkyqSlpsJv6CAoq6hg7qIlUP1s3gEAePbkCYYP6ocmzVqg36AhhZgpkSz25P+A1NTUMHbsWIwZMwalSpVC9erVERsbi3v37n11CP9Hw4YNQ/Xq1bFw4UK0bt0aYWFhCA0N/WoZVVXVL76MMgrhzLE83epUwqSgYyhvXhaulsYIPHsD6VnZ8PWS/GCesCMMZXQ0MbyFZOhWdk4unryT/DDIzhUjJikN99/EQKNUKVgY6RZJHb9X98Y1MGHDPpS3NoObjRm2H7uA9Mws+NaUTL41fv1elNErjd/bS06cdG3og15zNyDg6HnUdHdE6OXbuPfsDab09AUAaKmrwdPRGot3H4WaigrKGeri2v1nOHzhJkb/2gwAYKirLXeyPWN9XZgZ6X+x/kejqqkBIzsr6WNDa3OYubsgLT4RCa/eKq5i/0KXai6YEnwBLiYGKG9qiKBLkUjPzkGripIfr5MOXECZ0uoY2kByPGTn5OJprOSWYdm5YsSkvMeDqHiol1KGhYGksTf3jys4eucZlvxaFxqlVBCXIhkpoKWmAjWVH+Oru3uDapi4NQQuViZwszJB4MnLks+yjwcAYPyWEJTV1cbwNpLvrS71vdB7YQACjl9ELTd7HL16F/devMXkrvkjho5dj4CelgbK6evg0ZsYzNsTiroejvBxKbghUNS6d/oFE2bNR3knB7g6OyJwTzDS0zPg21zyefafMQ9ljAwxYsBvAICu7dug15CR2LpzL2r5eOHoiTO4d/8hpo75HYCkse43cToiHj7GqnkzIBaLEfdhKLpOaW2oqKhAS1MTHVq3wOpN22BcxggmxmWxJWgPAKBR3VrFkneP9q0xfu5SlHewg5uzA7bvO4T0jAy0aSJ5P/1nL0EZI32M6NtDkvcvLdHz9/HYuicYtbyr4Oipc7j74DGmjhwMAHifnoH1gXtQt3pVGOnrIyEpGTtD/sC7WBEa15Z833uUd0JpLU2Mn7MUA7t3gppqKez74xheR71DLe8qRZJnt27dMGnSJJR3cYGrqysCd+xAeno6fFtLZjOfMHEiypQpg+HDJJdTdOncGb/16YOAbdtQq2ZNhIaG4l5EBCZNltwCUSAQoEuXLtiwYQMsLSxgamqKVatWwcjICPXq1pW+blRUFJKSkhAVHY1csRj370smKPx4Z5xq3t5YsmQJZs+ejV9//RVisRibt2yBspISqlT5/n3xab0sLC1l6lW3Xv5w8H59+6JevXro9OuvMvvHpXx5uLq6YkdgINLT09Ha1xeAZPK+Nm3aYNHChdApXRqaWlqYO3cuKri7Sxt+1apVg42NDSZMmIDfR4yAKC4Oq1auRIeOHVGqlGQy0V27dqGcsTGsrCXzzty4fh3btm3Dr53z7yHetWtX9OzRAxs3bkSjRo1w9+5d7N+3T7rvv3U//Nq5CzZt3ADzD+/PmtWS/VDnk/dnYP9+qFO3Hjp26gQA6NK1G6ZOngQXFxeUd3VFUJDkOGn54TjR0tZGa982WLJoEXR0dKCpqYkF8+aiQoUKcPvsJMqxsDDk5uaiWfNmBdbzYEgIXN3cYFfA3Rf+K0Xvh20BW+HjUx0CoQCnT57C1i2bMXf+fCgpFe1dlAQCATp06oyAzRthZm6BciYm2Lh2DQwMjVCzdh1p3PBB/VGrTl380kGSd8fOXTB72hQ4ObvAuXx57N0VhPT0dDRr0QrAhwb+sEHIyMjApOkzkZaahrRUyUi3jyMgnj55jOGD+qOqdzV07NxVOi+CUEkJeno/xnw7RUlYQmex/1H9GL8U6QuTJk2CsrIyJk+ejLdv36JcuXIYMGDAN5X19vbGhg0bMGXKFEyePBkNGjTAxIkTMWPGjH8uXAyaVHREQmo6VodeRFzyeziaGmJ1f1/pBF7RCcn4tBMnJjkVHRcGSR8HnL6OgNPX4Wlrik1D5N9fuLg18aqA+JQ0rAo+gbikFDhZlMPakb2kw++jRIkyvTEe9paY278jVh44jmX7j8GyrAGWDesKe7P8GdoXDOyEpfvCMG7dHiSlvUc5A10M/aUROtT1+uL1f0aWnhXgdyb/3rDtl0wCAFzcug8BvUYpqlr/SmNXKySkZWDN6XCIUtPhaKyHlV3rSYfrRyelyRzTsSnp+HVd/m3Ftv8dge1/R6CyZVls6NUIALD32kMAQN+tx2Rea2prH+nJA0VrUqU8ElLTsPrQGcQlp8LRrCzWDOssnVwvOj4Jwk+Pe1tzzO3TFisOnsbykFOwKKOPZQM7wt60jDQmNikFC/Yegyg5FUY62mjpXQH9mxdPo7YgTevXQUJiIlZuDEBcfAKc7GyxdtFsGH6YjC/qXQyEn7zBFd3KY94Uf6zYsBXL1m+BpZkpls+ZCnsbSeMlJjYOp/+S3Pa0XS/Z7/XNyxeiaiVJb9fIwf2gpKQE/xnzkJmZBTcXJ2xetgA6pYtnVEfTejURn5SElVuDJHnb2mDdvKn5ecfEyvS4V3R1xvyJI7F88w4s3bgdlqYmWDFjPOytJZccKCkJ8ezVaxyccgoJScnQLV0aro522LZ8LuysJaOY9HRKY938qVi2MRC9R05ETk4O7KwssHLmBDjZWX9ZyULQpHFjJCQkYPWaNYiLi4OjoyNWr14tHYYbHRUlexx7eGDO7NlYuWoVVqxYAQsLCyxdskTmVni9evZEeno6ps+YgZSUFFSsWBGrV6+WOZm+evVqHDp8WPr4YyNq44YNqFKlCqytrbF82TKsXbcO3bt3h0AohJOTE1avXi0z3P579OzVC+np6ZgxfXqB9Xr1+jUSEhOljxs3aYKEhASsWb1a7v4BgFGjR0MgFGLkyJHIysqCj48Pxk+YIH1eSUkJy1eswKxZs9Cje3eoq6ujZcuWGDRokDQmTyzG8uXL8ebNGygrK8PMzAzDf/8d7drlX6Lh6uqKxYsXY/ny5Vi/bh1MTU0xeswYNG/+fXPT9OjZExnp6Zg9U/L+eHhUxPJVsvvh9atXSEzMv0yn0YfjZO2aNRCJ4uDg6IgVq2T3g9+oURAKBRgzSrIfqvn4YKz/+C9e/1BIMOrWq/fF5HQfpaak4NTJkxg1evR35fW9FLkf/r5wAZs3bkR2djbsHRywaMlS6XX5Ra1z9x5Iz0jHgtkzkZqaAjd3DyxctlIm77dvXiPpk89B/YaNkZiQgE3r1yBeJIKdgyMWLlspnUDy4YP7iPhwSUqntrK3O9wTcgTlTExw5uQJJCYk4NjRP3Hs6J/S543LlcPeg3+AqDAJ8vI+jP0l+kzGn2sUXQWFEOqV+eegEmiYz0hFV0EhFgX9f14Pp1yuaBpMPzph+ZI9eWFBBNmFc6eHn02OnvxLpkq6vBI6UeU/yRHzJ+3/k/Tswr+E52dQ5gean+d7PBpYuHOqFCb7NfsUXYVCx558IiIiIiIiKjICDtcvVtzbRERERERERCUEG/lEREREREREJQSH6xMREREREVGR4XD94sW9TURERERERFRCsJFPREREREREVEJwuD4REREREREVGYGQfcvFiXubiIiIiIiIqIRgI5+IiIiIiIiohOBwfSIiIiIiIioyAiUlRVfh/wp78omIiIiIiIhKCDbyiYiIiIiIiEoIDtcnIiIiIiKiIiNQYt9yceLeJiIiIiIiIioh2MgnIiIiIiIiKiE4XJ+IiIiIiIiKjFDIvuXixL1NREREREREVEKwkU9ERERERERUQnC4PhERERERERUZzq5fvLi3iYiIiIiIiEoINvKJiIiIiIiISggO1yciIiIiIqIiw+H6xYt7m4iIiIiIiKiEYCOfiIiIiIiIqITgcH0iIiIiIiIqMgIh+5aLE/c2ERERERERUQnBRj4RERERERFRCcHh+lSg35vPU3QVFGLJQT9FV0EhFgX1UXQVFGJk542KroJCrHx9VNFVUIhcDT1FV0EhlJIzFV0FhRBmJCm6CgqRolxa0VVQCIGiK6AgWpnxiq6CQrzJ/f88zsvoKLoG/w5n1y9e3NtEREREREREJQQb+UREREREREQlBIfrExERERERUZHhcP3ixb1NREREREREVEKwkU9ERERERERUQnC4PhERERERERUZIYfrFyvubSIiIiIiIqISgo18IiIiIiIiohKCw/WJiIiIiIioyAiE7FsuTtzbRERERERERCUEG/lEREREREREJQSH6xMREREREVGREXB2/WLFvU1ERERERERUQrCRT0RERERERFRCcLg+ERERERERFRkO1y9e3NtEREREREREJQQb+UREREREREQlBIfrExERERERUZERCNm3XJy4t4mIiIiIiIhKCDbyiYiIiIiIiEoIDtcnIiIiIiKiIiNUUlJ0Ff6vsCefiIiIiIiIqIRgI5+IiIiIiIiohOBwfSIiIiIiIioyAiX2LRcn7u0fWJ06dfD7778ruhpERERERET0k2BP/k9MIBAgODgYvr6+iq7KV9Ue1A2NRvdHaWMjvA6PxO6hU/D8arjcWI82jdF0/GAY2VlBSUUZMY+e48SiDbgcGCwTU2tAF1hUdoOWgR5mejTD6/CI4krnm+26cAcBZ29ClPIeDuUMMNa3FtwsysqNfRwtwpqwK4h4E4uohBSMalUDXWu6y8Rcf/oWAWduIvJNDGKT32Nxj6ao52pTHKl8l91XHmDbhXsQpabDwVgPY5pWhauZodzYJzGJWHM6HJFvRYhKSsPIxp7oUs1ZJmbz+Ts4FfkKz+OSoKqsBHdzIwxrWAlWhjrFkU6hs6tZFY1G94NFZTfompTFGt9+CD94TNHV+mZBIX9iy+5gxMUnwtHWCuOH9kUFZ4cC48POXMCKLUF4Ex0DS7Ny8OvbHbW8PeXGTluyBnsOh2HsoN7o3q6VdP26wL04d+ka7j95BhVlZVw6HFToeX1u1+492LptO+JEIjg42MN/zGi4uboWGH/s+AmsXLMGb99GwcLCHCOGDUXNGjWkz+fl5WH12nXYHxyMlJRUeLi7Y+L4cbC0sJDGNGneEm+jomS2O3zoEPzWq6fMdgK2B2L/gWC8jYqCnq4uOrRvh359fiu85D8RFHwEW3YdQFx8AhztrDF+WH9UcHYsMD7szF9YsSkQb6LfwdLMBH79e6KWdxXp86u27MDRU+cRHRsLFWVluDjYYXif7qjgIrvNsxevYs22nXj45DlUS6nA090NK2ZNLJIc5dm5LxhbA3chLj4ejna28B85HG7lnQuMDzt5GivXb8bbqGhYmJtixOABqOXjLX3+xOlz2BN8EBH3HyIpORl7t22Ek4O9zDZevX6DhStW42b4HWRlZaN6tarw9xsOQwP9Isvzc3l5edi4bg0OBQcjJTUFFdzdMXrceJhbWH613P49u7FjewDiRSLY2TvAb/RYuHzyeQk5sB/HQ4/iwYP7eJ+WhrDT56CtrS19/sa1axgyoK/cbW8MCIRL+fKFk2AB8vLysOGzvMd8Q9775ORd/rO8j32S97HP8gaANi2bIfqzz/3AIUPRvWfvwkuwADv3h2Br0J7843zEULi5OBUYH3bqLFZu2IK30dGwMDPDiIF9UcvHCwCQnZODFes34/zFK3jzNgpamprwrlIJvw/ogzJGsr8Bzv19CWu3bMfDx09RSrUUPD0qYPncGUWa66fy8vIQtHkdjh8OQVpqKpzcKmCg3ziYmFt8tdwfB/YgZFcgEuJFsLK1R7/ho+Hgkn9sThjWH3dv3ZAp07hVWwwa5S99vH7ZQty/E44Xz57A3NIKSzcX/d8z+v/EnnwqUpU7tEC7xRNxZNoyzK7UHK/DIzA0bBu0jQzkxr+PT8LRWaswv1obzKjQBBe37EX3LQvg0qiWNEZVUwOP/7qG4LFziyuN7xZ26xEWHf4L/RtWwc7fO8DBxBCDNh5GfOp7ufEZ2TkwNSiN4c2qwVBbQ25MelY2HEwM4O9buyir/p+E3X2OxWHX0K9OBQT1bw77snoYHHgS8anpcuMzsnNgqqeFYQ0qwlBLXW7M9ecx6FDFEQF9mmJN9wbIEedh0PaTSM/KLspUioyqpgZeh0di1+DJiq7Kdzt6+i/MX7MZg7p3wt51i+Foa4X+Y6dBlJAoN/7m3fsYPXMR2jZtgH3rF6NedS8MnTwXj569+CL2xPlLCI94gDJyGjTZOTloVLs6OrZqUtgpyRUadgwLFi/BgH59sTsoEI72DhgweChE8fFy42+Fh2Ps+Alo07o19gTtQL06dTDcbxQePX4sjdkSEICgnbswabw/dgRshbq6GgYMHorMzEyZbQ0eOACnjoVKl187dZR5ft6ChTgQEgK/EcNx8MA+LF+yGG6uRdMAOnrqHOav3ohBPX/F3g3L4Ghrjf6jJ3/l/Y7E6Onz0bZ5Q+zbuBz1anhj6MRZePT0uTTG0twUE4YPQPDmVdi+Yj5Mjcui7+hJiE9MksYcO3sB42YvQpsmDXBg0wpsX7kAzRsU3/de6PFTWLBsFQb06YE9ARvgYG+L/r+Pgig+QW78rdt3MXbyDLRt2Qx7AzagXq2aGD5mAh49eSqNSc9IR0V3N4wY3F/uNt6np6Pf8FEQQICNK5dg2/qVyM7OwdDR/hCLxUWSpzyBAVuxd9dOjPYfj41bt0FNTR0jhg7+4jj91IljYVi+ZBF69+2PLYFBsHNwwIihgxD/yeclMyMDXj4+6N5LfsPVzd0dh0OPyywtfdvAxNQUzi4uhZ7n5z7mPcZ/PDZt3QZ1NXX8/o15/9a3P7YGBsFeTt4ZGRnw9vFBjwLy/qjvgIE4EnpcurTv+Guh5VaQ0BOnsWDFWgzo3R17Nq+Fg50t+vuNhSihgOP8zj2MnToTbVs0xd4t61CvZnUM95+MR0+fAZDkGvngEfr37Irdm9diyeypeP7yFYaOnSSzneOnz8F/+lz4NmuCfQHrsX3NMjRrWL/I8/3UgaBt+GP/bgwc6Y8F67ZATU0dU0cNRdZX3u/zJ49h86ql6NizDxZv3A5rO3tMHTUUiQmyfxcatfTF1uCj0qXnwKFfbKt+s5aoUa9hoef1oxMoCX/YpSQqmVmVIGKxGGPGjIG+vj6MjY0xdepUAICVlRUAoE2bNhAIBNLHU6dOhYeHB7Zv3w4rKyvo6OigU6dOSElJUUj9G/j1wYUNu3Bx615ERT5G0IAJyH6fDp/eHeTGPzx7CbdCwhB9/wninr7EqeVb8Ob2fdjWyO/5uxwYjD9nLMf9ExeKK43vtv3cLbT1Kg/fKs6wLauPiW3rQE1FGSFXIuXGu5qXhV+L6mjiYQ8VZfm3GKnhZIkhTbxRz+3H673/aMfFCLSpZI/WFe1gU0YXE1p4Q01FCQdvPpEbX97UECMaVUZjN2uoFPAlu6pbfbSqaAvbMrpwMNbHNF8fRCelIeKt/AbXj+5e6BkcmrQIt0LCFF2V7xaw9yDaNWuENk3rw87KHFNGDISaqioOHD0pNz7wwGHUqFoJvTu1ga2lOYb17gIXexsEhfwpE/cuVoTZKzZg/ng/KMs5/of0/BU92reCvfXXe9UKy7YdO/BLG1/4tm4FWxsbTJrgD3U1NYQcPCQ3fkfQLlSvVg29enSHjY01hgwaCGcnJ+zavQeApNcoMGgn+vb5DXXr1IGDgz1mTZ+O2NhYnDpzRmZbGhoaMDQ0lC4a6vknv54+fYY9+/Zh2eJFqFu7NsxMTeHi4oxq3t4oCgF7Q9CueWO0adoQdlYWmOI3GGpqqjjw53G58YH7D6FG1cro3ekXyfv9Wze42NsiKPiINKZFgzqo5ukBcxNj2FlbYszgPkhNe4+HTyQNhZycXMxdsR6jBvRGx9bNYGVuCjsrCzSpW7NIcpRn2849+KV1C7Rp0Qy21laYPHYk1NXUEHzkT7nxgbv3obp3VfTq+itsrK0wtP9vcHF0wM59+SPQWjZtjIG/9YR3lcpyt3Hr9l28jYrGzMn+cLCzhYOdLWZN9se9yAe4fO2G3DKFLS8vD3t2BqHnb31Rq05d2Nk7YPL0GYiLjcW5M6cLLLdrRyBa+bZFi1atYW1jizH+E6CqpoYjh0KkMR07d0H3nr3h6lpB7jZUVFRgYPg/9u47LIqrC+Dwj0UEBaRaEKU3KYIV7DVRY+yx99iNvYO99967WBC7JiaWaKJptpiIBVuMxorCUgSDUpbvj8XFlcVopPiR8z7PPsrsmdl75s7M7p25c8da8zIzN+PHkydo3KQpenp62Z2qlrS0NHb8i7y3v0Xe7f4h75cKFzbWyr9QId0nvbPT5h27adXkE1o0bqjezkcOoZChIfsOHtYZv3XnXqr5V6J7x7Y4OdgzsHd3PN1c2b57PwCmJiasXTyXhvVq42hfGl9vT4KGDST8+g0eRTwG0vfvxcsZ/kVv2rRogoNdaZwdHWhYr3aO5/tSWloaX+3aTuvOn+NfoxYOzq4MGTuZaGUUp386meV8B3aG8PGnzan/SVPsHJzoNzwQQyMjjn2t/b1gaGiEhZW15lXY2ETr/d6DR9C4ZRtK2NjmSH5CvCSN/A9ccHAwxsbGnDlzhjlz5jBlyhS+/fZbzp07B8DGjRt59OiR5m+AW7dusX//fg4ePMjBgwc5efIks2bl/lVvfQMD7Cp4c/WVxnhaWhpXj/2MU5Xyb7UM97pVKe7uxB8/nM2pYma75JRUrj6IxN+1lGaaQqGHv2spLv4VkYcly1nJKalcfRiNv1MJzTSFQg9/Jxsu3o/Mts+Jf54EgFmhgtm2TPHPkpKTCb9xiyoVMn6sKhQKAir4EhZ+Xec8F8KvE1Be+8dttUrluHAlI16lUjFm5iK6t22Oi+Obu0rmhuTkZK5evUaAv79mmkKhwN+/MmEXL+qcJ+zSRfz9K2tNq1qlCmEXLwHw4MEDoqKUBLwSY2pqgo+3tybmpQ2bgqlRpx5t2ndgY/BmUlJSNO+d+OEHbG1t+eHHn2j4aVMaNm7CxClTiYuLI7slJScTfv0PqlTw00xT17cfYeHXdM5z4co1Al6JB6hWuTwXsohPSk5m11eHMTU2xt3ZEYDwm3/wOEqJQqFHq56DqNWyM31GTdTqDZCTkpOTCb9+Q6sxrlAoCKhUgbBLV3TOE3b5SqbGe9WASlnG65KUlISenh4FDQw00wwLFkShUPB72KU3zJl9Hj54gFIZRcXKGdu+iYkpnt7eXL6ke9tPTk7m+rWrVHxtf6lU2Z/LWewvb+PHkyd5GhdH4ybN/vUy3tbLvCv9i7wrZVPeW4I30qBebbp0aMfWzcFa+31OyNjOM36LKRQKAiqWJ+yy7tsfw66EE1Dxte3cvyJhV7K+XTI+4Rl6enqYmqobuldv3ORJZBR6CgWtu/WhTtPW9B0+RtMbIDc8fvSAmGglvhUzjsfGJia4lfHi+uWs6/vWjWta8ygUCnwrVOb6Fe398+S3h+nUpD4Du7Zl8+plvHj+PGcSEeIfyD35H7iyZcsyceJEAFxdXVm2bBnHjx/no4/U3XzMzc0pUaKE1jwqlYpNmzZp7vvq3Lkzx48fZ/r06bladhNrC/QLFODp4yit6fGPIynh4ZzlfEZFTJn14DQGhgVRparY3n8cV4/9lNPFzTYxz56TqkrDykS7272VSWHuPNHdDS4/iP37BalpaVi+1u3e0tiIO1HZ0whRqdKYd/hX/EoXxaW4RbYsU7yd2Lh4UlUqrCzMtaZbWZhx++59nfNERcfqjH+1O+j60L0U0FfQqeWn2V3kfyUmNpbU1FSsLLVvG7CytOT2nTs654mKUmL12m0GVlaWRCmV6vfT/7WytMoUo4xSav7u0L4tZTw8MCtixoWLYSxeupyoqChGDh8GqE8WPHoUwdFvjzF9ymRUqlTmzl/AsJGjWb9m1Xvl/brYuKfq+rY01y6zhfkb6jtGZ7wyOlZr2olfzjJiyhyev3hBUSsL1s6fioW5eoyN+w/VJ0KXbwphVP+e2JYozqad++g2JIivt67GvIj2/czZLSY2Lr3+tY8vVhYW3L5zV+c8UcponfFRyrfvbVTW24tCRkYsXL6aQf16kZaWxqLlq0lNTSVSqfznBWSDaKX6u9rytW3Z0tKK6CzKEBsbQ2pqKpaWmef5K4v95W0cPLAf/4AqFCuuexyb7KR8Q97KXMi7Tdv2uHuUoYhZES6GhbFq+VKUUZEMHjbinZbzLtTbuSrzdmtpwe2793TOo3M7t8x6O3/xIomFK9fSqH5dTIyNAbj/8CEAK9cHM3JgP0ralCA4dBefDxjGwdBgzIoUed/U/lFMep2aW2gfj80trYiJ1l3fT+NiUaWmYm5h+do8lty/e0fzd836DShawgZLq6LcuXWTzauX8eDuXwROn5u9Sfyf0lPIteXcJI38D1zZstpXwWxsbHjy5Mkb53FwcNAa2OVt5nnx4kWme89SSUOfnO0mp7Ms8QlM9/sEQxNjPOpV5bMF44n68x43Tp7O9bKID8usb85y60ksGz5vkNdFEdngyo0/2LLnILtXL8jxLrn/D7p06qT5v5ubKwYFDJg6YwaDBw6gYMGCqFRpJCUlMX3qZBzs1bcuTJowgXYdO3H7zh0c02/b+tBVLleWPeuWEBv3lN1fH2H4pNlsXzkfKwtzVGlpAPTu1JaPa1UDYProIdRt3ZWjJ36iTdNGeVn0HGNpYc78GZOZOmcB23buQaFQ0OijupRxd0ORQ/vGkUPfMGfGNM3f8xYtyZHPeVdPHj/mzOlTTJ05O0eWf+TQN8z+gPJu36mz5v8urm4YGBgwe8Z0+g0YRMGC/5891pJTUhgxfgqkpTF+5GDNdJVKvX/36tqRj+qox1qaFjSS+i3aceS7k7Rp3iTby3Li6CFWzp+p+Xv87IXZ/hkvNWjaUvN/B2cXLK2sGT+0P48e3MfGttQb5hQi+0kj/wNn8ErXPVCPqP9Pg/D8m3lmzpzJ5MmTtaZVwIyKmL99YV+TEBVDakoKRYprj6pqWrwoTyOy7r6dlpZG5C31wFz3w8IpUcaFBoH9/28a+RbGRugr9FC+NsieMuHvLAfVyw/MCxuir6eXaZC96GfPscpiUL13Mevrs/x44z7run9McTPj916eeDfmZqboKxSZBl1TxsRhbam7V4W1pbnOeCsLdfz5i+FEx8ZRv11PzfupKhVzV21iy56v+Hb72mzN4W1YmJujr6+faZA9ZXQ01la6Bwy1trZC+drVLKUyI/7lv8poJUVfGWVaqYzG3T3rJxP4+HiTkpLKg4cPcXRwwNramgIF9DUNfAAnRwcAIiIisrWRb25WRF3fr12FV8bEvqG+LXTGv351v3AhI+xLlcS+VEl8vTxo1LEXe785Sq+ObSiafjXV2b60Jr5gQQNKlSzBoyfZd9tPVizMzdLrX7vXlTImJlNvjZesrSx1xr/rqPhV/StxaM92YmJj0dfXp4ipKbU/aUEp25LvlsRbql6zltZI8Enpg5lGK6Oxti6qmR4drcTVTfcTFczNLdDX19cabO7lPJZZ7C//5OuvDlDEzIwatXJmsMXqNWtpjfyf/Ia83f5F3lb/Mu+XvLx9SE1N4dHDh9jn0Ik79XauyLzdRsdk6sX0ks7tPDrzdv6ygf/w8WPWL5mnuYoPZOzfDhnHsIIFC1KqpA0Rj998Merfqly9Ju6er9R3svqWv9gYJZbWGcfj2Gglji66j8dFzMxR6OtnGmQvNjoaC8us69st/XMfPbgnjXyR66TfxP8xAwMDUlNTs2VZgYGBxMXFab3K8X6PKEtNTubu+ct41Kuqmaanp4dHvar8eertBxLSUygwMPz/OZttUECfMrZFOftHRpdWlSqNs3/cp6x9iTfM+f/NoIA+ZUpacvZ2xrgDKlUaZ/+MoGypom+Y883S0tKY9fVZvr92l9VdP8LWIme76wrdChoY4OnmzOnfMu5ZVKlUnPntIr6eun8I+3m6a8UDnPr1An5e6vimH9Vm37pF7Fm7UPMqZmVJ9zbNWTN7Uo7l8iYGBgaUKePBmbMZ44CoVCrOnD2Hb1ndg2f5+pTlzNlzWtNOnzmDb1kfAGxtbbG2ttKKSUhI4NLly5oYXa5fv4FCodD86C7n50tKSir37mUcW/66q+5CbmNj846ZvllBAwM83V04/VvG405VKhVnzofhm8Ujtvy8PDj92wWtaad+/R2/NzySC9T7+MsGppebCwUNDLhz74Hm/eSUFB5GPMGmeLF/mc3bMzAwwNPdjTPnzmumqVQqTp/7DV8f3U8x8PX20ooHOHX21yzj/4mFuTlFTE058+tvRMfEULtGtX+1nH9ibGxMqdJ2mpejkxNWVtb8eu6MJuZZQgLhly/j7ZP1gHnuHmU4fzZjHpVKxa/nzuKdxf7yJmlpaXz91Zc0avwpBQoY/PMM/4KxsTGlS9tpXu+T96/ZlPerbt64jkKhwCKLxnZ20Gznv/6umaZSqTh9/nd8vXU/zcDXy5Mz57V/u506dx5fr4z4lw38u/cesHbRXMzNtH9Henq4UbCgAXdeuSUgOSWFB48isCmRM7dmFC5sjE2p0ppXaQcnLCytuHg+43j897MEbly9gvsbBoZ0dvPQmkelUnHxt3O4e2V9DL/9xw0ALK10P0b4vyavR9D/r42uL1fy/485ODhw/PhxqlWrhqGhIRYW//4eZUNDQwwNDbWmZUdX/WML1tEteD5//XqJO2cvUHdIDwoaF+aXjbsA6BY8n9gHj9kfNAeABmP6c/fXi0Te+osChgXx/qQOAZ1bENIv4/nIhS3MsLSzxbyk+gdfcXf1aPNPIyJ5+jjnr/S8jc41/Ri/4ziepYrhXboY234MIzEphWaV1M9ZHrf9GMXMjBn0SRVAPWjdrcfqM8Qpqak8iUvg2oNIChsaYGdtDsDfL5K4+8q97Q+in3LtQSRmhY2w+UAavh2reDJx3894lrTCy9aakNNXSUxOoWk59RgM4/f+TLEihRhYXz3YT3JKKn9GqnNKTlXxJP5vrj+KplDBAthZqe/Nm/X1WQ5dus3C9nUoXNCAqHh1TwETIwOMDP7/DmGGxoUp6uKg+dvasTSlfD15Fh1LzL2HeVewt9C1dTOCZi3Gy90FHw9Xtuz5isTnz2nRUP34o8CZiyhmbcXQXurup51aNqHb0LFs2rmfmgEVOfTdj1y+cYtJw/sD6qvF5mba92AWKKCPtaU5jnYZIw8/fBxJXHw8j55EkapScfUP9aPJ7GxtMM6BUai7dOzIuImT8PT0xMfLi60hISQmJtK8qboradD4CRQvVozBAwcA0LFDOz7v1ZvgLVupWb06h44c4Up4OBPGBQHqk5udOrRnzbr12NmVxrakLctXrqRo0aLUrV0bgLCwi1y8fJnKlSpiXLgwYRcvMWf+Ahp/0ogi6fepBvhXpoyHBxMmT2HUiGGkqdKYPms2VQL8ta7uZ5eurZsTNHMhXu6u+JRxY8vuA+r6blQfgMAZ89X13bsbAJ1aNaXb4DFs2rGXmgGVOPTdD1y+/geThqvX09+Jz1mzdQd1qvpT1MqSmLinbN9/kMeRShrUrg6AiXFh2jRtxPKN2yhRzJqSxYuxMXQvgCYmp3Vp34axU2fiVcYDH08PtuzYTeLzRJo3Vt8qEDR5OsWKFmVI/97qvNt+Rvd+gwjetoMa1QI4/O13XLl6nYljMu6pjot7yqPHj3mSPgbDnb/UjRxrK0tNT499B7/BycEeS3NzLly6wuyFS+ncrjWO9rkzIKWenh5t2ncgeP06Spe2o6StLWtWrsC6aFFq1q6jiRvYrw+1atfhs7btAGjXsRPTJk3Aw9MTTy9vdoSE8DwxkU9fGTRPGRWFUqnk/n31Salbf9ykcGFjSpQoQZFXGoLnz53l4YMHNGneIldyBnXebdt3YFN63ja2tqzVkfeA9Lxbp+fdvmMnpqbn7eXlTeg75F28RAnMzMy4dDGMK5cvU6FiRQoXNubypYssXjCPBo0+0ez3OaVL288YO302Xh5u6u185x4Snz+neWP17XBBU2dRzNqaIf3UPa06tWlJ9y+GErx9JzWqBnD42PdcuXaDiaPVY4Ykp6QwbOxkrt64yfI501GpVJr79c2KmGJgYICJsTFtmjVh+fpgShQrhk2J4mwK2QHAx3Vy5zGZenp6NGndnp2bN2BTqjTFbWwJWb8KSytrAqpnlGH8kH4E1KhD41bqp0E1a9OBxTMn4+JeBtcyXny1azvPExOp/4n6e+HRg/v8cOwwFQKqYVrEjDu3brJh2UK8fMvh4OyqWe6j+/dITPybmGglL1684M+b6oFoSzs4ZeqJK8T7+P/7hSw05s+fz7Bhw1i7di22trbceY9BbnLK+Z0HMS1qSZMpQylSoij3L1xlacOuxD9JH+jGzpa09Hu0AAyNC9F+xVTMS9mQnPiciGu32NBpKOd3ZjyCybfpR3TdNE/zd68dywA4OGkRBycvyp3E/kEDP1diniWy8sgZouL/xr2kNSt6fopVenf9R7HxWvcgP3n6jHaLdmr+3nzyAptPXqCCU0nW91P/2LlyP5Jeq/ZrYuZ/pX5qQZMKHkxtl7vPmM1KA28HYp49Z+X3YSgTEnEvYcGyTnU13fUj4p6heOXcUWR8Iu1Xf635e8sv4Wz5JZwK9sVZ2/1jAHb9qj4T3mvTUa3PmtSsqubkwf8T+4plGXYiVPN364XqZwif2rSb4O45N9BSdmhUpzrRsXEs27idqJgYPJwdWT17Itbp3bEfPYlE75UKLuftwZyxw1iyYRuL1m/F3rYkS6eMeedH4S3bFMKBIxmPsvqst/pH5cYFU6nsl/VVlH+rYYOPiYmJYcXKVUQplbi7u7Fy2VJNN9yIiAgUrwwg5Ofry6zp01m6YgVLli3Hzq40ixfMw9XFRRPTvWtXEhOfM2XaDOLj4ynn58fKZUs0J1cNChbk8JGjrFq9hqTkZGxLlqRzxw506dRRswyFQsHSxQuZOXsO3Xv2plChQlSvWpURw4Zk+zoAaFS3Znp9byUqOgYPFydWz5mi6a7/6HEkenoZ66GcdxnmjB/JkvVbWLRus7q+p43F1ckBAH2Fgtt373PgyHFi4p5iXqQI3h6ubF46G5dXtokR/T6ngL4+gTMW8PzFC8qWcWfDgumYmWo/iiqnNPyoLtGxsSxfu4EoZTQeri6sWjhX0y35UcQTrbz9ynoza8p4lq1ez+JVa7EvXYrFc6bj6pzxuNPvf/yZ8dMynnIzcrz69rh+PbrRv1d3QN3wX7xiLXFPn2JrU4Je3TrRpb3ux83mlE5du/H8eSKzZ0wjIT6esn5+LFiyXOsiwIP794iNjdX8Xf/jBsTGxLB21Uqilequ/QuWLtfqrr9vz242rF2t+bt/rx4AjJ04mcZNmmqmf3VgPz5lfXFwcMzBLDPr1LUbic8TmfVK3gt15B33Wt4xMTGsW7USZXreC3Xkvf6VvPul5z0uPe+CBQty7OgR1q9ZRVJyMiVLlqRth46075hxn35OaVi/DtGxcSxft0m9f7s6s2r+LKzTexA8evxE63eKn48XsyaNZdmaDSxevQH7UrYsnjkFVyd1XT2JjOLET78A8Fm33lqftWHpfCqV9wNg2IA+6BfQJ3DqTF68SMLH04P1S+ZjlsODar6qZYcuPH+eyIp5M3iWkEAZH18mzltCwVfqO+LhA57GxWr+rlHvY57GxhKyYTUx6V37J85bgnl6d/0CBQoQ9utZvtoVyvPniVgXLU6VWnVp0+Vzrc9eNmcaly9k9IgY2kM9FsuaHQcobpMzt+aI/ya9tLS0tH8OE/9FffUc8roIeWLhgWF5XYQ8oXr2NK+LkCeGd1iX10XIE8vuH8rrIuSJVPP/5n2R+k/z7+M730Rl9GH0cspt8QVyfpTyD9F/dfhOkxdv/ySH/OTP1P/mdu5R/P8z74RtU/K6CFky6Tghr4uQ7fLnTQhCCCGEEEIIIcR/kDTyhRBCCCGEEEKIfELuyRdCCCGEEEIIkWP0FHJtOTfJ2hZCCCGEEEIIIfIJaeQLIYQQQgghhBD5hHTXF0IIIYQQQgiRY/QU+nldhP8UuZIvhBBCCCGEEELkE9LIF0IIIYQQQggh8gnpri+EEEIIIYQQIudId/1cJVfyhRBCCCGEEEKIfEIa+UIIIYQQQgghRD4h3fWFEEIIIYQQQuQchVxbzk2ytoUQQgghhBBCiHxCGvlCCCGEEEIIIUQ+Id31hRBCCCGEEELkGD19GV0/N8mVfCGEEEIIIYQQIp+QRr4QQgghhBBCCJFPSHd9IYQQQgghhBA5RyHd9XOTXMkXQgghhBBCCCHyCWnkCyGEEEIIIYQQ+YR01xdCCCGEEEIIkXOku36ukiv5QgghhBBCCCFEPiGNfCGEEEIIIYQQIp+QRr4QQgghhBBCiByjp1B8sK93tXz5chwcHDAyMsLf35+zZ89mGXvlyhVatWqFg4MDenp6LFq06D3W4tuTRr4QQgghhBBCCPEPduzYwbBhw5g4cSK//fYbvr6+NGjQgCdPnuiM//vvv3FycmLWrFmUKFEi18opjXwhhBBCCCGEEOIfLFiwgF69etG9e3c8PT1ZtWoVhQsXZsOGDTrjK1WqxNy5c2nXrh2Ghoa5Vk4ZXV8IIYQQQgghRM75gEfXf/HiBS9evNCaZmhomKlRnpSUxPnz5wkMDNRMUygU1K9fn1OnTuVKWd+WNPJFlpb8NCevi5A33KvmdQnyhOLyybwuQp5Ydv9QXhchTwwo1Sivi5AnFsf9ltdFyBOKZ8q8LkKe0Et5ntdFyBOFrM3zugh5IjUtLa+LkCdSTazzugh5wipJlddFEPnEzJkzmTx5sta0iRMnMmnSJK1pUVFRpKamUrx4ca3pxYsX59q1azldzHcijXwhhBBCCCGEEP9JgYGBDBs2TGtabnatzwnSyBdCCCGEEEIIkXM+4O76urrm62JtbY2+vj6PHz/Wmv748eNcHVTvbcjAe0IIIYQQQgghxBsULFiQChUqcPz4cc00lUrF8ePHqVKlSh6WLDO5ki+EEEIIIYQQQvyDYcOG0bVrVypWrEjlypVZtGgRz549o3v37gB06dIFW1tbZs6cCagH6wsPD9f8/8GDB1y4cAETExNcXFxyrJzSyBdCCCGEEEIIkWP0FPmjA3nbtm2JjIxkwoQJRERE4Ofnx+HDhzWD8d29exfFK7k+fPiQcuXKaf6eN28e8+bNo1atWpw4cSLHyimNfCGEEEIIIYQQ4i0MGDCAAQMG6Hzv9Ya7g4MDaXnw5I/8cUpFCCGEEEIIIYQQciVfCCGEEEIIIUQO+oBH18+P5Eq+EEIIIYQQQgiRT0gjXwghhBBCCCGEyCeku74QQgghhBBCiJwj3fVzlVzJF0IIIYQQQggh8glp5AshhBBCCCGEEPmEdNcXQgghhBBCCJFj9PSlu35ukiv5QgghhBBCCCFEPiGNfCGEEEIIIYQQIp+Q7vpCCCGEEEIIIXKOQq4t5yZZ20IIIYQQQgghRD4hjXwhhBBCCCGEECKfkO76QgghhBBCCCFyjkJG189NciVfCCGEEEIIIYTIJ6SRL4QQQgghhBBC5BPSXV8IIYQQQgghRI7Rk+76uUqu5AshhBBCCCGEEPmENPKFEEIIIYQQQoh8Qrrri2y3/fgZNh3+iai4BNxLlyCwY2N8nEplGX/k3GWW7TvOw6hY7IpbMrR1A2qWddO8//fzFyzc/S3f/X6VuIS/sbW2oGP9ANrUqay1nAt/3GXp3mNc+vM+CoUCd7sSrB7WFaOCBjmW66u279nPppCdREVH4+7iTODQgfh4emQZf+S7kyxbu5GHERHYlSrF0H69qFnVH4DklBSWrtnAj6fO8uDhI0yMjQmoVJ4hfXtSrKi1ZhkNWnXgYcRjreUO7tuTnp3b50ySbyH0+3Ns+vYXouIScCtVnMB2jfBxtM0y/uj5cJYd+J6HyljsilkxtGU9avi4at5XPk1g4d7jnAq/Rfzfzynvak9gu4bYF7fKjXSyFLL/Gzbu2EdUdCzuzg4EDexF2TJuWcYfOfEzSzeG8CDiCfalbBjWqws1AyrqjJ28cCU7vzrC6P6f0+Wzpprpq7fu4ofTv3Lt1m0MChTg9Fch2Z5XTnGpUZmPR/bGroIP5iWLs7J5b8IOHM3rYr210J272bR1G1HKaNxcXQgcOQwfL68s448eO86yVWt4+CgCu9KlGDrwC2pUq6p5/9h3J9i1dx/h164RF/eUnVuD8XDX3n6mzJjF6bO/EhkVSeFChfEt68PQgf1xdHDIqTT/0baDx9iw5xBRMXF4OJZmbN9OlHV3zjL+8I9nWbJ1Lw8eR2FfsjjDu7ehViVfrZhbdx8yf+MOzl2+TmpqKs52tiwOGkjJYnm3j4ccOMSGnV+m79/2jB3Qg7IerlnGHz75C0s3hfIgIhJ7WxuG9epELf/yOmMnLVrNzoPfMqZfN7q0+lTrvZOnz7Ni6y5u/HkXw4IGVCzrybIpo7M1t1elpaWxcuUK9u3dS3x8PL5+fgQFjcXe3v6N8+0IDSU4OBilMgo3NzdGjx6Dt4+P5v0XL16wYP58jhw5TFJSElWqViUoaCxWVuo6jY2NZWxQIDdu3iQuNhZLS0tq167NgIGDMDExAWDC+PF89dWXmT7bycmJPXv3vXfeq1euZN++vSTEx+Pr68eYoCDs/iHvnTtC2RIcjFKpxNXNjZGjR+PtrZ33ogXzOXrkCElJSQRUqcqYoCBN3l99eYDJEyfqXPbR499haWmpNe3Chd/p07Mnzs7OhOzY+V45Q3p9r1jB3vT69vPzI2jsP9d36Mv6jkqv7zFj8HmtvufPn8+Rw+r6rlq1KkFjM+r7+vXrbNywgd9//53Y2FhKlizJZ61b07FjR80yfv/tNxYtXsyd27d5/vw5NjY2tPrsMzp37vzeeetaD+tXr+Sr/fuIT4jHp6wvI8YEUdruzethz84dbN8aTLRSibOrG0NHjsbTyxuAp3FxrF+zkrOnT/P4cQTm5hbUrF2bnn37Y2JiqlnGonmzuRgWxu1bf2Dv4MimkB3Znt8HSyHXlnOTrO3/mKSkpBxd/uGzl5i74xB9m9Zh58R+uJUuQZ8FwSifJuiMv/DHXUav3kXLGhXYNakfdcuVYfDSEG7ez2i4zgk9zM+XbzKr12ccmD6ITh9VYca2r/n+96tay+m3cDNVvFwIGd+H7eP70L6uPwo9vRzN96XDx75n7tJV9P28Czs3rMLNxZk+w0ajjInRGX/h0hVGT5pGy08bsWvjaurWqMbgwAnc/PM2AM+fP+fq9Zv06daJHRtWsXDGJO7cvcfA0eMzLeuLnt34/stdmleHz5rnZKpvdPjcFebuPkrfxrXYMbY37qVK0HfJNpRPn+mMv3DrHqPX7aFFtXLsHNebun7uDF65g5sPngDqL+LBK3ZwPzKGxf3bsmNcb0pamdF70Vb+fpGz2/KbHPr+J+as3ED/Lu3YtXoB7s4O9Bk9GWVMrM743y9fY+S0+bRsVJ/daxZQt5o/AyfM4ubtvzLFHvvxNGHh1ylmZZnpveSUFD6uVY22TRtmd0o5ztC4MPfDrhL6xYS8Lso7O3z0GHMXLaFvzx7s2LIJd1dX+g4cijI6Wmf8hbCLjB43kRbNmrBzazB1a9Vk8IjR3PzjliYm8Xki5XzLMmTAF1l+rqeHB1MmjGX/zlBWLl1EWloafQYMITU1NdtzfBvf/HCG2Wu380WHZuxZMhl3x9L0Gj8PZexTnfG/h99kxJyVtPq4JnuXTKFelfIMnLaYG3fua2LuPnpMx1HTcCxdkuBZgexfPo1+7ZpimEsnZ3U59P3PzF4VTP/Ordm9ag4eTg70HjMNZUyczvjfr1xj5PRFtGxYjz2r5lKvWiUGTpzDzdt3M8Ue++kMYVdv6ty/j/5wmtGzl9KiQR32rZnH1sXTaFy3Rrbn96pNmzayPWQ7QWPHsXnLVgoVKsQX/fvx4sWLLOc5cuQw8+fPo0+fPoRsD8XNzZ3+/fsRHa3UxMybN5cffjjJnLlzWbd+A5GRkQwfNkzzvkKhoFbtOixatJj9B75k8pSpnDlzhunTpmliRo4axbfHjmteh48cxczMjI8++vi98w7etInQ7SEEBo1l0+YtGBUqxMAv+r8x76NHjrBw/nx69enD1pDtuLm5MbB/f6JfOQ4smDePH374gVlz5rJm3XqiIiMZOTwj748+bsDhb49pvapUrUr5ChUyNfDj458ycfx4KlXWvqDxPjZt3EjI9u2MHTeOLVvV9d2/3z/U9+HDzJ+nru/toaG4ubvTv18/opWv1Pfcufxw8iRz585l/QZ1fQ97pb6vhodjYWnJ9Bkz2LN3Lz179mTpkiWEbt+uiSlUqBDt2rVj/YYN7N23j169erF82TJ2796dbfm/tG3zJnbv2M6IwCDWbNxMoUKFGDbwizeuh+NHj7Bs0Xy69+zD+i0huLi6MWxgf2LS6z8qMpKoyEi+GDyULaG7GDtxMqdP/cKsqZMzLatxk2bUzYbtWIg3kUb+e1KpVMyZMwcXFxcMDQ2xs7Nj+vTpAIwePRo3NzcKFy6Mk5MT48ePJzk5WTPvpEmT8PPzY8uWLTg4OGBmZka7du2Ij49/q+UD3Lt3jzZt2mBubo6lpSXNmjXjzp07mve7detG8+bNmT59OiVLlsTd3T1H18fmI7/QqmZFWtQoj7NtMSZ0aUKhggbs+/E3nfFbvz1FNW8XujeqjlPJYgxsWR9Pexu2f3dGExN26y5Nq/pRycMRW2sLWteuhFvpEly6/UATMzf0EB3qBdCzcU1cbIvjaFOUhpV9KGiQO51VNu/YTasmn9CicUOcHR2YMHIIhQwN2XfwsM74rTv3Us2/Et07tsXJwZ6Bvbvj6ebK9t37ATA1MWHt4rk0rFcbR/vS+Hp7EjRsIOHXb/DotSv3xoULY21lqXkVLlQop9PN0uZjp2hVvTzNq/nhXLIo4zs2plBBA/b/8rvO+G3Hz1DNy4XuDariZFOUAc3qUMbOhtAT5wD460k0F28/YFzHT/B2sMWxhDXjOjTmeXIyh85dzs3UtATvOsBnn3xMi0b1cHEozcSh/TAyNGTvoeM647fu/YrqlcvzebsWONuXZtDnHfF0dSJk/zdacY8jlcxYupY5QcMoUCDzADUDurWna+umuDq++WrDh+jK4RN8OX4+F/YfyeuivLPNIdtp1bwpzZt+irOTI+MDR1HIyJD9Xx7UGb8tdCfVqvjTvXMnnBwdGNCvD2U83AndlfFjtcknjejbqwcBlStl+bmftWxOxfLlsC1pg6eHOwP79SHi8WMePnqU7Tm+jeB9h2ndsBYtP6qJi50tkwZ0w8ioIHuP/qAzfvOXR6lewYcerT7B2a4kgzu3ooyzAyEHj2liFm3eQ82Kvoz8vC2ezvbY2RSnbkB5rMyL5FZamWza8xWtP6lPy4Z1cbEvzcQhvdX79+HvdMZv2fsN1Sv50aNtM5ztSzGoe3s8XRzZduCQVtzjKCXTl61nTuDgTPt3SmoqM1dsYGTvzrRr0gCHUiVxsS9No9pVySlpaWmEbNtGr169qFOnDm5ubkydOo3IyEi+/153rgBbt2yhZcuWNGveHGdnZ8aOG4eRkRH79+8HID4+nv379jFs+AgqV/bH09OTyZOnEBZ2gYsXLwJQpEgR2rRpg5eXFyVLlsTf35/Wbdrw++8ZvxVMTU2xtrbWvMKvXOHp06c0bdbsvfPeHrKNHr16UbtOHVzd3JgydSqRkZGc+P77LOfbtnULzVu2pGmz5jg5OxM4Vp33l+l5J8THc2D/PoYOG06lypUp4+nJxMmTuRgWxqX0vI2MjLRy0lcoOHf2LM2at8j0eTOmTadhw0b4lC37Xvm+mve21+t7Wnp9f5d1fW9Jr+/m6fU9Tkd979u3j+EjRlDZP72+p0wh7EJGfTdv0YLRo0dTsWJFSpUqReNPP6Vps2YcP57xnelRpgyNGjXCxcUFW1tbGn/6KVWrVuX333T/fnyf9bBrewhdPu9FjVp1cHF1Y9zkqSijIvnxZNb1HxqylSbNW9K4aTMcnZwZGTgWIyMjDn6pXg9OLi5MnzOf6jVrYVuqNBUqVaZ3vwH8/OMPpKSkaJYzZMRoWrVpS0nbrHu4CpEdpJH/ngIDA5k1axbjx48nPDyckJAQihcvDqi/oDZt2kR4eDiLFy9m7dq1LFy4UGv+W7dusX//fg4ePMjBgwc5efIks2bNeqvlJycn06BBA0xNTfnxxx/5+eefMTExoWHDhlpX7I8fP87169f59ttvOXhQ94/S7JCckkL4Xw8J8HTSTFMoFAR4OhN2657OecJu3SPAU7urZ1VvF8L+yLgC4utsx4kL13kc85S0tDTOXv2TvyKiqOrlAqi7c1/88z6WRUzoNH0NtYbMotus9fx2I/NV0pyQnJxM+PUbBFTK6JqpUCgIqFiesMvhOucJuxJOQMUKWtOq+lck7IrueID4hGfo6elhamqiNX391u1Ub9Sc1t36sHHbDlJS8uYqX3JKKlfvPiKgjKNmmkKhh7+HI2F/3tc5T9if9/H3cNSaVtXTWROflP7FaPjKyRqFQo+CBQrw+x+6t6mclpScTPiNW1SpkPHDS6FQEFDBl7Dw6zrnuRB+nYDy2j/UqlUqx4UrGfEqlYoxMxfRvW1zXBztcqbw4p0lJydz9dp1rca4QqHAv3Ilwi7pPtEUduky/pW0G+9VA/yzjH8bfycmsv+rg9iWLEmJ9O+A3JSUnMKVP+5QxS/jFgWFQkEVPy8uXPtD5zxh1/7QigeoXt5bE69SqTh5LgwH2xL0HD+Xah0G0HboZI6dOp9zifwD9f79p9b+qlAoqFLehwtZ7t83qJJp//YjLPyG5m+VSsWYWUv5vE0zXB1KZ1pG+M0/eRwVjZ6eHi37jKBmm570DpymszdAdnnw4AFRUVH4+/trppmamuLt48PFsIs650lOTubq1av4+wdopikUCvz9AzQNuqtXw0lJSSHgleU6OjpSwsaGi2FhOpf75MkTvjv+HRUqVND5PsD+/fvw9/enZMmS75Tn6x48eIAyKorKr5TPxNQUb28fLl3UXb7k5GSuXb2qta4UCgWV/f1fyfsqKSkp+AdkxDg4OlKihA0Xs1ju1wcPYmRkRL369bWmf3lgPw8e3KdXnz7/Os/XZVXfPj4+hF38h/oOeK2+A16p73B1ffu/Vt82NjaEZVHfoD4pYmZmluX7165eJSwsjAoVdd/W9m89fPAApTKKSpVfqX8TUzy9vLn8hvVw49pVKlbWrv+Klf25ckn3PADPEuIxNjamQAG5OxrUo+t/qK/8SLa69xAfH8/ixYtZtmwZXbt2BcDZ2Znq1asDMG7cOE2sg4MDI0aMIDQ0lFGjRmmmq1QqNm3ahKmp+n6dzp07c/z4caZPn/6Py9+xYwcqlYp169ahl94tfePGjZibm3PixAk+/ljdFcjY2Jh169ZRsGDBHF0fMfF/k6pSYVVEuxFqVcSE24+idM4TFZegMz7qle79QR0bMzn4APWHz6WAvgI9PT0mdW1GRXcHAO5HqrvErzzwHcPbNMTDrgRf/nKBnvM2sm/qwBy/dzsmNo7UVBVWlhbaeVhacPuu7oZolDJaZ3yUUnf33xcvkli4ci2N6tfFxNhYM71D6xZ4urlSpIgpYZfCWbR6HZFKJaMG9X/PrN5dTMLfpKrSsDI11ppuVcSY2xFZ1P9TXfVvTFScuv4dS1hjY2nG4n3fMaFjYwoZFmTLsdM8jnlKVFy8rkXmuNi4ePV2bmGuNd3Kwozbd3WfzIiKjtUZ/+rtHOtD91JAX0Gnlp8iPhwxsbGkpqZi9VpXWitLS27f0X0iMUqpxMoqc3zUK91b31borj0sXLqcxMREHOztWLN8MQYGud+VPfZp+nZvrv2j3MrcjNv3dPcsiIqJw/q1K/JW5mZEpXd7V8Y+5e/E56zbdZBBnVsxvFsbfjp/iUHTl7Jp5hgq+2Q9pklOebl/W1u8lqeFOX/ee6BznqiYzPu3tbkZUdGxmr/Xhe5HX19Bpxaf6FzG/UfqHlrLN+9kdN9u2JYoyqZdX9F1+ES+2bQE8yKmOud7H1FR6uOypZX2d6SVpRVKpe5jdkxMDKmpqZnnsbLizh317WbKKCUGBgaYFnmt7i0tMy13zJjRnDxxgufPn1OzVi0mTJyk83OfPHnCzz//zIwZM986v6wo0/O2stTOwdLKEmUW+2jsy7wzzWOl6T2pVEap8zYt8lpM1ss9sH8/DRs1wsjISDPt7l9/sWzJEtZu2JitjcOX9W1llTmHl+vkdS/r+/V5rKysuHNbXd9RSnV9F3mtvi0tLbNc7oULFzh69ChLli7N9N7HH32k+dy+ffvSsmXLt0vwLUWnb4MWrx2jLaystG5BeFVc7Mv6157H0tKKv17pPfuq2NgYNq1fS5MWrd6/0EL8C9LIfw9Xr17lxYsX1KtXT+f7O3bsYMmSJdy6dYuEhARSUlIyHQQdHBw0DXwAGxsbnjx58lbLDwsL448//tCaH9T3c9+6lXHvp4+Pzz828F+8eJHpXiS9pOQ8vS/ypZDjp7l46x5LB3XExsqc8zfuMH3rQYqaF6GKlzNpaWkAtK5diRY11FfTy9iX5MzVP9n343mGfPb/fd9TckoKI8ZPgbQ0xo8crPVe13atNf93d3HGwKAAU+YsZEjfnjl+Uic3GOjrs7BvayZu/orqw+air9DD38OJ6t4umnrPD67c+IMtew6ye/UCzQk7IQAaN2pAFf/KREZFEbw1hBGB49i8bjWGhoZ5XbT39nIfrhtQnm4t1ONMlHG25/erN9nxzXd50sjPCVdu3GLLvm/Ys3JOlvu3SqVeF306tOLjmuqrptNHfkGd9n048sMp2n76/t9j33z9NdOmTdX8vWTpsvde5vsaMWIkffr05a+//mLpksXMnzePoLFjM8V99dVXmJqaUqdu3Xf+jEPffM2MV+71X7Qkc8MyL1wMC+P27T+Z8krZUlNTGRcUSO++/f5xMLx/8vXXXzNtakZ9L12W9/UN8MfNmwwdMoQ+ffpQtWrm21E2btzI34mJXLx4kSWLF1Pazo5GjRr96887eugb5s7MWMdzFi7518t6W88SEhg5ZBAOjk706J19vTGEeBfSyH8Phd5w7/OpU6fo2LEjkydPpkGDBpiZmREaGsr8+fO14l6/IqOnp4dKpfrH5QMkJCRQoUIFtm3blum9okWLav5vbGyc6f3XzZw5k8mTtQcHGdf9M8b3aJ3FHJlZmBZGX6HINMie8mkCVmYmOuexNjPRGW+dfnX3eVIyi/ccY/GA9tT0VY8n4F66BNfvRhB85CeqeDljbaY+yeFUsqjWcpxsivIoWvdASdnJwtwMfX0FymjtQfaU0TGZrv69ZG1lqTPe+rUzyy8b+A8fP2b9knlaV/F18fEsQ0pqKg8ePcbRPnOX0JxkYVIYfYUeynjtQfaUT59hnVX9F9FV/9rxnvYl2TW+D/GJz0lOScXS1JgOM9fhZf9+XTb/LXMzU/V2/toge8qYOKxf653xkrWluc54Kwt1/PmL4UTHxlG/XU/N+6kqFXNXbWLLnq/4dvvabM1BvD0Lc3P09fUzDbKnjI7G2kp3LyFrKyuUyrePfxNTExNMTUywtyuNr4831ep+zPETJ/mkQe6evDQvkr7dx2ofU5WxcZmuer9kbWFG1GuD8r0ab17ElAL6+jjbae/LTqVL8tsrXd1z08v9O+q1QfaUMbFYv3a1/iVri8z7d1RsHNaW6vjzl64SHRtHvQ59Ne+nqlTMWb2ZzXu/5ti2lRS1Uh8LnO0z7tMtWNCAUjbFePRE99XQd1Wrdm2tEfCT02/ri1YqtX4zKKOVuLvpHr/HwsICfX39TFc8lUolVtbqJ79YWVuRnJxM/NOnWlfzldHRWFlZa8338t50R0dHzMyK8Hn37vTq3VurPGlpaRzYv5/GjT/9V71YataqrTUCflJykiZP61c+J1oZjZu77iekmL/MO1o772ilUpOTlZW1Ou/4p1pX86OV0ZmuhAPs37cPN3d3ynh6aqb9/fczwsPDuX79OnNnq2/dVKlUpKWl4V+xAstWrHzrgfhq166tNQL+y9s4la/Vd7RSiVsW4zW9rO/XeyIolUqs0+vb2kpd30+fPtW6kBUdHa3ZJl66desWvXv3pmWrVvTq3VvnZ9qWUu8Drq6uRCuVrFq58r0a+dVr1sLT21vzd1KSemysGGU01tYZ6yFGqcQli+3ezPxl/Wsf16OjlZnq9u9nzxg+6AsKFy7MjLkLKFAg7y+WfTDyabf4D5Xck/8eXF1dKVSokNbAIS/98ssv2NvbM3bsWCpWrIirqyt//fVu94i/afkA5cuX5+bNmxQrVgwXFxet15vuc9IlMDCQuLg4rdeozs3faRkGBQrgmX4F/SWVSsXpq3/i66y7wenrXForHuDUlVv4uqjvSU5JTSUlNTXT1Q+FQg9V+lUgW2tzipmbcue1WwL+ehxFSSvzd8rh3zAwMMDT3Y0zv2YMLqdSqTh9/nd8vT11zuPr5cmZ89qDyZw6dx5fr4z4lw38u/cesHbRXMzfok6v3fwDhUKBZRY/RnOSQQF9ytjZcObqbc00lSqNM9du45vFIxR9nUpx5tptrWmnr/6pM960kBGWpsb89VhJ+F+PqOOXs4NIZqWggQGebs6c/i3jPjyVSsWZ3y7i66m7TH6e7lrxAKd+vYCflzq+6Ue12bduEXvWLtS8illZ0r1Nc9bMnpRjuYh/ZmBgQBkPd86c+1UzTaVScebcr/j6eOucx9fHWyse4PSZs1nGv620tDRISyM5Kfmfg7NZQYMCeLk4cPpCxrghKpWK0xfC8fNw0TmPr4cLp8O0xxn55fcrmviCBgXwdnXk9v0IrZg7DyMoWUy7cZBb1Pu3E6d/u6SZplKpOP37Jfyy3L/dOP37Ja1pp86H4eupbjA2rV+L/Wvms3f1PM2rmJUln7duytpZ6tv6vFydKGhgwJ37DzXLSE5J4WFEJCWLaZ/A/reMjY2xs7PTvJycnbG2tubM2YyBbhMSErh86RJlfXUP9mZgYECZMmW05lGpVJw9e4ay6QPElSnjSYECBThz9qwm5s6dO0Q8ekRZX99My8xYjvo7Pfm1pwCd//VX7t27S/MWzd85Z1DnXdrOTvNycnLGytqac2cyypeQkMDly5fwKau7fAYGBniUKcPZV+ZRqVScO3v2lbzLUKBAAa2YO3fuEBHxiLKvLffvv//m2LdHMw24Z2xsQuiu3WwL3aF5tfrsM+wdHNgWukPrJM3b5P1qfTun1/fZM9r1fenSJXyzGNzvZX2/Oo9KpeLsmVfq21Nd32dfq+9Hjx7h+0p9//HHH/Tq2ZMmTZsycODAt8pBpVKRlPx+x7vCxsaUKm2neTk6OWFlZc2v5zJyepaQQPiVy3i/YT24eZTh/Dnt9XD+3Fm8fDLmeZaQwNCB/ShgYMDsBYvyRY8r8f9LruS/ByMjI0aPHs2oUaMoWLAg1apVIzIykitXruDq6srdu3cJDQ2lUqVKfP311+zb927PdX3T8nv06EHHjh2ZO3cuzZo1Y8qUKZQqVYq//vqLvXv3MmrUKEqVevuROw0NDTMdjJL+RVf9Lg2qMnbdXrwcbPFxtGXLt6dIfJFE8+rqbvRBa3dTzKKIpgt9p4+q0H32eoIP/0wNXzcOn7nElTsPmdhVPXquSSEjKro7sGDXEYwKGmBjZc6v12/z1S8XGNlOfWZXT0+Pbg2rs+LAd7jblcCjtA0Hfv6d24+iWNA/d54X36XtZ4ydPhsvDzd8PD3YsnMPic+f07xxA3XeU2dRzNqaIf3UV2o7tWlJ9y+GErx9JzWqBnD42PdcuXaDiaPVj5xJTklh2NjJXL1xk+VzpqNSqTT365sVMcXAwIALl69w6co1Kpf3o3DhQoRdDmfukpV8+nE9zHLg/s23Wg/1qzBu0348HUri41CSrcfPkJiUTPOqfur1sHE/xc1NGdxCfQtKx3r+fD4vmOBvT1HTx5VD5y5z5a+HTOiUcV/60fPhWJgUxsbSjJsPnjB752Hq+LlT9bUBG3NT19bNCJq1GC93F3w8XNmy5ysSnz+nRUN1XoEzF1HM2oqhvdTP9+3Usgndho5l08791AyoyKHvfuTyjVtMGq4eO8HcrAjmZtq38hQooI+1pTmOdraaaQ8fRxIXH8+jJ1GkqlRc/UN9gszO1gbjPHyqwtswNC5MURcHzd/WjqUp5evJs+hYYu49zHrGD0CXDu0ZN3kqnmU88PHyYuv2UBITn9O8iXo7DZo4meJFizJ4gLo+O7Zrw+d9+hO8NYSa1aty6Ogxrly9xoSgMZplxsXF8SjiMZHp96ze+Us9wJq1lRXW1lbcv/+Aw98eo2qAPxYW5jx+/IT1wVswNDKkerUqubwG1Lq2aEjggrV4uzri4+bE5gNHSHz+ghYfqR/zNnr+aopbWTCsWxsAujT9mC5jZrJx7yFqVfLlmx/OcOWP20we2F2zzM9bNWL47BVU9HbHv2wZfjp/kRNnLhA8KzBPcgTo1qoJgXOW4e3ujI+7C5v3fq3Os2EdAMbMWkIxayuG9VQ/47tzy0/oOmwiG3d9SS3/Cnzz/U9cvvEnk4eqr9ybm5libqZ9TNbs36XV+7eJcWHaNvmYZcE7KFHUipLFi7Jhp/oZ8Q1q5Ux96+np0aFjR9atXYudnT22trasWL6cokWLUqdORrf4Pr17UaduXdq1U3+fdurcmQnjx+Pp6YW3tzch27aSmJhIs2bNAfVgbs1btGD+/HmYmRXB2NiE2bNmUbasr6Zh+OOPPxKtVOLl7UXhQoW5desWCxctxM/Pj5K2tlrl3L9/Hz4+Pri4uGZb3u07dGT9urWUtrPD1taWlSvUedeuU0cT169Pb2rXqUvbdu0A6NipM5MmjMfT0xMvb29CQraRmJhIk/TR/k1MTWnWvAUL58/HzMwMY2Nj5s6eRdmyZTONkH/0yBFSU1P5pLH2GA0KhQIXF+2TZhaWlhgWLJhp+r/Ju2PHjqxduxY7e3V9L39Z36/cBtG7Vy/q1q1Lu/bq+u7cuTPjx4/H00td39u2ptd38+aAur5btGjB/HnzMCtSBGMTE2bNmkVZ34z6/uPmTXr16kXVqlXp3LmzZnwAhUKhuc89NDQUmxIlcHBUD8b72/nzbN68mfYdOrxX3rrWQ+v2HQjesI7Spe2wsbVl3aoVWFkXpUatjPof3K8PNevUoVUbdf2369CJ6ZMn4FHGkzJe3uzcHkJiYiKNm6jrX93A78+L58+ZMGU6zxKe8SxB3bPxZU8QgPv37pL4dyLRyihevHjBzevqAT0dnJzyZLwVkX9JI/89jR8/ngIFCjBhwgQePnyIjY0Nffv2pUePHgwdOpQBAwbw4sULGjduzPjx45k0aVK2LB+gcOHC/PDDD4wePZqWLVsSHx+Pra0t9erVy3Tvf25pWNmH6PhnLN9/nKi4BDxK27BqaBdN9+tH0XHoKTI6kPi52DGrd2uW7T3G4r3fYl/cisUDO+BaKmP06Ll927Bo97eMWbOLuGeJ2FiZM7BlfdrUzhi9uvPHVXmRnMKc7Yd4+iwRt9IlWDO8G6WL6e4un+15169DdGwcy9dtIio6Bg9XZ1bNn4V1+pfXo8dPtHoj+Pl4MWvSWJat2cDi1RuwL2XL4plTcHVSf7k9iYzixE+/APBZN+0ubRuWzqdSeT8KGhhw+Nj3rNwQTFJSMrYlS9C5bSu6tPssV3LWpWElL2ISnrHiyxNEPU3AvVRxVg7qoBlcLyI6DsWr68G5NLN6tmTpge9Zsv877IpZsrhfW1xti2liIuPimbvrKMqnCRQ1M6VJQFn6NK6Z67m9qlGd6kTHxrFs43aiYmLwcHZk9eyJmu65j55EoqfIyLOctwdzxg5jyYZtLFq/FXvbkiydMuadH4W3bFMIB45kPOLns97qk0IbF0ylst/bX+HJC/YVyzLsRKjm79YLxwNwatNugruPyKtivZWGH9cnJjaGFavXEaVU4u7mysolCzWD60VEPEah98pxzbcss6ZNZunKNSxZsQq70qVZPG82ri4ZJ6ZO/PAT46dk3Cc6aqx6ffTt1YP+vXtS0LAgv10IY2voDp4+jcfK0pIK5fzYvG5NlrcB5bRPavoTE/eUJVv3EhUTRxknO9ZMGaHpfv8oMlprPZTzdGXuyL4s3rKHhcG7sbctztJxg3FzyDgB/VHVikz8ohtrdh1kxuqtONrasDhoIBW8dHebzg2N6lQjOu4pSzeFEhUTi4ezA6tnjtV013/0JArFK99j5bw8mBM0mCUbQ1m0IQR7WxuWTh6F6zs+JWNE787o6ysYM2spz5OSKOvhyoZ5kzAz1X27U3bo1q07iYmJTJs6hfj4ePzKlWP5ihVaJ/3v3btP7Cu3IzRo0JCYmBhWrlyBMioKd3d3lq9YodVtecSIkSj0FIwYPpykpCSqVq1KYFDGvfZGRobs3buXefPmkZycRPHixalbrx6fd/9cq3zx8fEcP36ckSNHkZ26duvG88REZkybqs7brxxLlmvnff/ePWJjM26r+7hBA2JiYli1ciVKZRRu7u4sXa6d97ARI1Ao9Bg1Qp13lapVGR0YlOnzv9y/jzp162YapC+ndeuuru+pU9T1Xa5cOVa8Xt/37xMTG6v5u0HD9PpesYKo9Ppe8Xp9jxyJnkLB8Ffq+9WxFb49doyYmBi+/vprvv76a810m5IlOXRI/ajJNJWKJUuW8ODBAwoUKECpUqUYPGQIn32W/b9pOnZR1/+cGdNISIjHx9eP+UuWa62HBw/uEfvKeqj3cQNiY2NYt3ol0eld++cvWa4ZhPL69WuEX1b36GnboqnW5+068DU26U+FmDVtChd+y3iCSPdO7TLF5FsK6UCem/TS8tPoVSJbJf28M6+LkDfcc+65xB+ytMsn87oIeULftfw/B+VDA0r9+3sc/58tjsveZy7/vzB4kjf3uOe1NMN/HpMmP3phnT1Xvf/fpP5Hf9IWUPw3B2xNSFLldRHyRNEihfO6CP9KStjRvC5Clgr4/n8P0q2LnFIRQgghhBBCCCHyCemuL4QQQgghhBAix+jpy+j6uUmu5AshhBBCCCGEEPmENPKFEEIIIYQQQoh8QrrrCyGEEEIIIYTIOQrprp+b5Eq+EEIIIYQQQgiRT0gjXwghhBBCCCGEyCeku74QQgghhBBCiJwj3fVzlVzJF0IIIYQQQggh8glp5AshhBBCCCGEEPmEdNcXQgghhBBCCJFj9BRybTk3ydoWQgghhBBCCCHyCWnkCyGEEEIIIYQQ+YR01xdCCCGEEEIIkXNkdP1cJVfyhRBCCCGEEEKIfEIa+UIIIYQQQgghRD4h3fWFEEIIIYQQQuQcPbm2nJtkbQshhBBCCCGEEPmENPKFEEIIIYQQQoh8QrrrCyGEEEIIIYTIOdJdP1fJ2hZCCCGEEEIIIfIJaeQLIYQQQgghhBD5hHTXF0IIIYQQQgiRY9Kku36ukrUthBBCCCGEEELkE9LIF0IIIYQQQggh8gnpri+EEEIIIYQQIudId/1cJWtbCCGEEEIIIYTIJ/TS0tLS8roQ4sMUEfcsr4uQJ6ySlHldBJGLVIUt8roIeSM1Oa9LkCcGm5XP6yLkiSXKX/K6CHnjP3rlSD8hMq+LkCdSLB3yugh5QpEQlddFyBMvTEvkdRHyhEnhQnldhH8l9c6FvC5ClvQd/PK6CNlOuusLIYQQQgghhMg5enp5XYL/lP/mKW4hhBBCCCGEECIfkka+EEIIIYQQQgiRT0h3fSGEEEIIIYQQOUch15Zzk6xtIYQQQgghhBAin5BGvhBCCCGEEEIIkU9Id30hhBBCCCGEEDkm7T/6SNO8ImtbCCGEEEIIIYTIJ6SRL4QQQgghhBBC5BPSXV8IIYQQQgghRM6R7vq5Sta2EEIIIYQQQgiRT0gjXwghhBBCCCGEyCeku74QQgghhBBCiJwj3fVzlaxtIYQQQgghhBAin5BGvhBCCCGEEEIIkU9Id30hhBBCCCGEEDlHuuvnKlnbQgghhBBCCCFEPiGNfCGEEEIIIYQQIp+Q7vpCCCGEEEIIIXJMmnTXz1WytoUQQgghhBBCiHxCGvlCCCGEEEIIIUQ+Id31hRBCCCGEEELkHOmun6tkbQshhBBCCCGEEPmENPKFEEIIIYQQQoh8Qhr5eWjSpEn4+fnldTGEEEIIIYQQIufo6X24r3xI7snPJXp6euzbt4/mzZvndVFyXFpaGhvWrOLg/n0kJMTjU9aXYaODKGVn98b59u3aQejWzUQrlTi7ujF4xCjKeHkD8DQujg1rVvHrmdM8fhyBubkF1WvVpkfffpiYmGot59DBL9kZspX7d+9S2NiY2vXqM3RUYI7l+9L2PQfYuH0XUdHRuDs7EzT0C3w8PbKMP/LdSZatC+ZBRAT2pWwZ2q8nNav4A5CcksLSNRv58fRZ7j+MwMS4MAEVyzO0Xw+KWVsDcPa3MD4fNEJ3WdYuw6eMe/Ynqeuzcjnvl07+coZVG7dy49afGBYsSMVyZVkyc3KO5Rm6YyebNm8hSqnEzc2VwFEj8fH2zjL+6LfHWLZyJQ8fPsLOrjRDBw2kRvXqmvfT0tJYsWo1e/btIz4+AT9fX8YFjcH+lf2kYeMmPHz0SGu5gwcOoEf3blrLCd6ylT179/Hw0SMszM1p0/ozevfskX3JvyJ05242bd1GlDIaN1cXAkcOw8fLK8v4o8eOs2zVGh4+isCudCmGDvyCGtWqat4/9t0Jdu3dR/i1a8TFPWXn1mA83N20ljFlxixOn/2VyKhIChcqjG9ZH4YO7I+jg0OO5JidXGpU5uORvbGr4IN5yeKsbN6bsANH87pYb2377n1s2rZDvX+7OBM4bBA+XmWyjD9y/ATL1mzgYUQEdqVKMfSL3tSsGgCk79+r1/PjL2d48PARJibGBFQsz5D+vSlWNGP/HjhyLNdu/kF0TAxFTE0JqFSBoa/F5LTtu/exaWtoRt7DB/9D3t+r834UgV1pW4Z+0VeTN8Cx739g574DhF+7QdzTp+zavA4PN1etZdy7/4B5S1fwe9glkpKSqValMoHDBmNtZZljeb4u5MAhNuz8kqjoWNyd7Rk7oAdlPVyzjD988heWbgrlQUQk9rY2DOvViVr+5XXGTlq0mp0Hv2VMv250afWp1nsnT59nxdZd3PjzLoYFDahY1pNlU0Zna26v+lCP50eOfsu6DRv56+5fWJhb0K5tG7p37ZJ9ib9m+94v2Ri6m6joGNydnQga3B8fz6x/Oxz5/geWrd/Mg4jH2NvaMrTv59SsUlnz/vINWzj83UkinkRiUMAAT3cXBvXqRtn03wQPHkWwKjiEs7+FERUdQ1FrKz79uC59OrfDwMAgx/JMS0tj1cqV7Nu3l4T4eHx9/QgMCsLO3v6N8+3cEcrm4GCUSiWubm6MGj0ab28fzfsvXrxg4YL5HD1yhKSkJKpUqcqYoCCsrKy0lvPllwfYtnUrd//6C2NjY+p/9BFjAoM0y5gxfRpXr17lzu3bVK9RgwULF2X7OhD/PXIlX2S77ZuD2btjO8PHBLFqQzBGhQoxYtAXvHjxIst5vvv2CMsXLaBrz96s3RyCs6srIwZ9QUx0NABRUZEooyLpN3gIm7bvJHDCJM6e+oU506ZoLWfHtq2sW7mcDl26syl0FwuWraRyQFVdH5mtDh0/wZxlq+nXvRO71q/E3cWJPsMCUcbE6Iz//dIVRk2eQYtPG7Jrw0rq1qjGoMBJ3PzzNgDPn78g/MYf9OnaiZ0bVrBo+kTu3L3PgNETNMso5+PJiQM7tF6tmjSilE0JvD3cdH5ufsgb4NsTPxI4dTbNG3/Mnk2r2bJyEZ/Ur5tjeR4+cpS5CxbSt3cvdoRsxd3Vjb5fDESZvn2+7kJYGKODxtKiWTN2hmyjbu3aDB42gpt//KGJ2RgcTMj2UMYHBbIteBOFChnR94uBmfaTL/r15bujhzWv9u3aar0/e+489u7fz7ChgzmwdzdLFi7AxzvrRvf7OHz0GHMXLaFvzx7s2LIJd1dX+g4c+ob1cJHR4ybSolkTdm4Npm6tmgweMZqbf9zSxCQ+T6Scb1mGDPgiy8/19PBgyoSx7N8Zysqli0hLS6PPgCGkpqZme47ZzdC4MPfDrhL6xYR/Dv7AHD72HXOXrKRvj67s3LQGN1dn+gwdhTJa9/594eJlRk+cSssmn7AreC11a1Zn8Ojx3Lz1cv9+ztXrN+nTvTM7Nq1m4cwp3Ll7j4Gjxmotp1J5P+ZNm8hXoZtZOGMy9+4/ZFjQpJxOV+Pwt98xd/Fy+vbsys7gteq8h4x4c94TXs27BoNHjeXmrT81Mert3IehX/TRuYy/ExPpPXgEeuixbtlCNq9ZRnJyCgNHBqJSqXIkz9cd+v5nZq8Kpn/n1uxeNQcPJwd6j5mGMiZOZ/zvV64xcvoiWjasx55Vc6lXrRIDJ87h5u27mWKP/XSGsKs3KabjhMXRH04zevZSWjSow74189i6eBqN69bI9vxe+lCP5z/+/DOB48bR+rOW7N25g7GBY9i6LYTtoTtyZD0cOn6SOcvX0q9bJ3atW6b+/h4xFmVMrM743y+FM2rKLFo0bsCudcupW6MKg8ZO4eafdzQxDqVLETSkP3s3rWLz8nmULFGc3sODiI5VL/P23fukpaUxYcQg9m9ezegBvdl54GsWrdmUIzm+FLxpE6HbQwgKGkvw5i0UKlSIAV/0f+Pv0qNHjrBg/nx69+nDtpDtuLm5MaB/f6Jf2U7mz5vHDz/8wKw5c1m7bj2RkZGMHD5Mazlbt2xhxbJldOvenZ2797By1WqqVMn4XapSqTA0NKJd+/ZU9vfP/uTFf5Y08t/B4cOHqV69Oubm5lhZWfHpp59y65b6x2pSUhIDBgzAxsYGIyMj7O3tmTlzJgAO6VebWrRogZ6enubvl7Zs2YKDgwNmZma0a9eO+Ph4zXu1a9dm4MCBDBkyBAsLC4oXL87atWt59uwZ3bt3x9TUFBcXFw4dOqSZJzU1lR49euDo6EihQoVwd3dn8eLFObty0qWlpbErNITOn/ekeq3aOLu6ETRpCsqoSH46eSLL+XaGbOPT5i34pEkzHJycGD5mLEZGRnzz1QEAnJxdmDp7HtVq1MK2VGnKV6pMz35f8MuPP5CSkgJA/NOnrF+1gqCJU/ioYSNsS5XG2dWNajVr5Xjem0P38FmTRrRo3BBnR3smjByMkZEh+w4e0Rm/ddc+qvlX4vMObXB2sGdgr254urkQskedr6mJMesWzaZhvVo42pXG19uToGEDCL9+k0cRTwAwMDDA2spS8zIzK8L3P56ieeMG6OVS16O8yDslJZVZi1cw/ItetG3eBAe7Ujg72tOwXs7V8+Zt22jVojnNmzXF2cmJ8WMDKWRkxP4DX+qM3xYSSrUqVejetQtOTo4M6N+PMh4ehO7YCaj3k60h2+nVswd1atfGzc2V6VOmEBkZyXcnTmgtq3DhwlhbW2tehQsV0rz355+32bl7N4sXzKdOrVqUsrXF07MMVQICyAmbQ7bTqnlTmjf9FGcnR8YHjqKQkSH7vzyoez2E7qRaFX+6d+6Ek6MDA/r1oYyHO6G7dmtimnzSiL69ehBQuVKWn/tZy+ZULF8O25I2eHq4M7BfHyIeP850VexDdOXwCb4cP58L+3XvEx+yzdt30appY1p82ghnRwcmjBpGIUMj9h08pDN+6849VPOvTPdO7XBysGdgn8/xdHdl++59AJiamLB2yTwa1q+Do72dev8ePpjwazd4FPFYs5wu7Vvj6+1JSZsS+JX1pkeX9ly8Ek5y+rE+5/PeSatmn9Li00/UeY8eTiEjI/Yd/EZ33jt2Uy2gMt07tcfJ0YGBfXrg6e6myRugSaMG9OvRjYBKFXQu48LFyzx8FMG0CYG4uTjj5uLM9AmBXLl6nTO//pYjeb5u056vaP1JfVo2rIuLfWkmDumNkaEhew9/pzN+y95vqF7Jjx5tm+FsX4pB3dvj6eLItgPa28fjKCXTl61nTuBgChTQ13ovJTWVmSs2MLJ3Z9o1aYBDqZK42JemUe2cOzn/oR7PD379DXVq16bNZ59RqlQpataoTo/Pu7EheDNpaWnZvx527uWzTxvS4pOPcXawZ8Lwgerv76+z+P7evZ9qlSvyefvWODvYMbBnV/X3996M9db4ozpUqVie0iVtcHF0YNSA3iQ8+5sb6Sf6qvtXZFrgcKpVrkDpkjbUqV6Fbu1acfyHn7M9v5fS0tIICdlGj169qF2nDq5ubkyeOpXIyEhOfP99lvNt3bqFFi1b0rRZc5ycnQkaOw4jIyMO7N8PQHx8PAf272PYsOFUrlyZMp6eTJw8mbCwMC5dvAjA06dPWbFiOVOmTqNRo08oXbo0rm5u1KpdW/M5hQoVImjsWFq2bJWpB0C+o6f4cF/5UP7MKoc8e/aMYcOG8euvv3L8+HEUCgUtWrRApVKxZMkSvvzyS3bu3Mn169fZtm2bpjF/7tw5ADZu3MijR480fwPcunWL/fv3c/DgQQ4ePMjJkyeZNWuW1ucGBwdjbW3N2bNnGThwIP369aN169ZUrVqV3377jY8//pjOnTvz999/A+qzgqVKlWLXrl2Eh4czYcIEgoKC2LlzZ46vo0cPHxCtjKJC5YyzkSYmppTx8ubKpYs650lOTubGtatUqJQxj0KhoEIl/yznAXiWkEBhY2MKFFDfdXLuzGnS0lRERkbSuU1LPvu0IRMDR/PkcUQ2ZadbcnIy4TduEFAxo4uiQqEgoGJ5wq6E65wn7HI4VV6JB6jqX5Gwy1ez/JyEhGfo6elhamqs8/0TP50i9ulTmn/S4F9k8e7yKu+rN27yODIKhZ4en3XvS+1mbek7PEjTGyC7JScnc/XqNQL8tbdPf//KhF3UvX2GXbqIv39lrWlVq1Qh7OIlAB48eEBUlJKAV2JMTU3w8fbWxLy0YVMwNerUo037DmwM3qw5qQVw4ocfsLW15Ycff6Lhp01p2LgJE6dMJS5O95W395GcnMzVa9e1GuMKhQL/ypUIu3RZ5zxhly7jX0m78V41wD/L+Lfxd2Ii+786iG3JkpQoXvxfL0e8WXJyMuHXb2g1ShUKBQGVyhN2+YrOecIuh2dqxFb1r5RlPEC8Zv820fl+XNxTvj5yDD8fLwwK5PwdhlnnXYGwS1nlfSVz3gGVsozXJSkpCT09PQq+0mXZsGBBFAoFv4ddesOc2SMpOZnwG38SUL6sZppCoaBKeR8uhF/XOc+F8BtUeSUeoFolP8LCb2j+VqlUjJm1lM/bNMPVoXSmZYTf/JPHUdHo6enRss8IarbpSe/AaTp7A2SHD/l4npSUhGHBglrxhoZGPM6BE5rq7++bBFQsp5mmUCgIqFCOsCu6v4/DrlylSoVyWtOqVq6QZXxycjK7vjyEqYkx7s5OWZYlIeEZRYqYZvn++3rw4AHKqCj8X6lzU1NTvL19uHgxTOc8ycnJXLt6VevKukKhoLK/v6YBf/XqVVJSUvAPyIhxdHSkRAkbzXJPnz5FmkrFkydPaNWyBY0afMzoUSOJiMjZ36VCgDTy30mrVq1o2bIlLi4u+Pn5sWHDBi5dukR4eDh3797F1dWV6tWrY29vT/Xq1Wnfvj0ARYsWBcDc3JwSJUpo/gb1F+CmTZvw9vamRo0adO7cmePHj2t9rq+vL+PGjcPV1ZXAwECMjIywtramV69euLq6MmHCBJRKJRfTDzwGBgZMnjyZihUr4ujoSMeOHenevXuuNPKjlUoALC21u+RZWFoRrYzSOU9cbCypqalYZJrHUrO818XGxrB5w1qaNG+pmfbo4QNUKhXbNm1g4NARTJ45h/incQwf0J/k5OT3SeuNYuLiSE1VYWVpoTXdytKCKKXu7p1R0TFYWZhrTbO2sCAqi+6CL14ksXDlOj6pXwcTY92N/L0HD1GtcgVKFCuq8/3slld533uo/rGzYsMW+nTtyPLZUyliakL3gSOIe/r0PbPKLCZ9+7R6bfu0srQkKovtMypKidVr3VKtrDLiX/5rZWmVKUYZlbHMDu3bMmfmdNavXsVnrVqybsNGFi5eonn/wYMHPHoUwdFvjzF9ymSmTp7I1atXGTYy++9l/VfrQaljPbwh/k1Cd+3Bv2ZdAmrW5adfTrFm+eIcvYfzvy4mNuv9W6nUvb9GKaPf6Xjw4kUSC1esptFHdTMd1xYsX03lOo2o3rAZjx4/Ycmcae+RzdtT552aOQ+Ld8zbwoKoLOJ1KevtRSEjIxYuX03i8+f8nZjIvCUrSE1NJfJf7C/vKjYunlSVCmsLM63pVhbmRGXRfTsqJjbz8dzcjKjojPh1ofvR11fQqcUnOpdx/5G6B8fyzTvp2/EzVk4LxMzEhK7DJxL7NF7nPO/jQz6eV6tShWPffc/pM2dRqVTc+esvNm/Zqv6MSN2/n/6tmLin6v37tfqzsjQnKovbUqKiY7Cy1I63tsgcf+KXM1Rq0Jzy9ZuyZdc+1syfgYW59nb10t37DwnZ+yVtmurePrKDMkq97ixfqx9LK0uUWf3GjIlJ305er1MrotJ/yyqVURgYGGBqWuS1mIzlPriv/l26YcN6ho8YyZy583ga95T+/frm6O9SIUAa+e/k5s2btG/fHicnJ4oUKaK5Un/37l26devGhQsXcHd3Z9CgQRw9+nYDKzk4OGBqmnEG08bGhidPnmjFlC2bcaZcX18fKysrfHwyBv4onn4169X5li9fToUKFShatCgmJiasWbOGu3ezPjP+4sULnj59qvV6071KL317+Bsa1qqmeaXkQnfKZwkJjBk6GHtHJ7r3zri/UaVSkZKSwqDhI6lcpSpePmWZMG0m9+/d5fdfz71hiR+25JQUhk+YShppjB8xSGdMxJNIfj57npafNsrl0uWcrPJOU6m7Lfbu0oGPatfAy8ONaUEj0NPT48h3P+RVcXNEl06dqFSxIm5urrT57DNGDB3C9h07SEpKAkClSiMpKYnpUydToXw5KlWsyKQJEzj366/cvnMnbwufzRo3asDOrcFsWL0Cezs7RgSOe6tjlPgwJaekMGLcZEiD8aOGZnq/e8d27Axew+rFc9FXKAiaMjNHuix/KCwtzJk/YzInfvoF/zoNqVq/MfEJCZRxd0Pxfzry85Ubt9iy7xtmjByQ5S1kqvTjeZ8Orfi4ZgBebs5MH/mF+nj+w6ncLG6O+6fjeauWLWjftg0Dhwylgn8VOnXtTsMGHwOgp/j/+bleuZwve9avYOuKBVSrXIERE2fovM//cWQUfUaO5ePaNfisSfb9dvnmm6+pXrWK5pUbv0uzkpam/l06ctQoqlatik/ZssyYOZN7d+9q9er9r0jTU3ywr/xIRtd/B02aNMHe3p61a9dSsmRJVCoV3t7eJCUlUb58eW7fvs2hQ4c4duwYbdq0oX79+uzevfuNy3z9SpSenl6mQXZ0xbw67eWX58v5QkNDGTFiBPPnz6dKlSqYmpoyd+5czpw5k2U5Zs6cyeTJ2iOTDx8dyIjAsVnMoVatRi3NCPgAyUnqM5PR0dFYWWdcUY6JVuLipnvEVjNzc/T19TWD7GXME43la/cn/f3sGSMHD6Bw4cJMmzOfAgUy1oNV+ujr9o4Z3cLMLSwwMzfncQ522bcwM0NfX5FpUCZldAzWVhY657G2tMj0pRcVE4P1a1cXklNSGD5+Gg8jnrBhydwsr+Lv/+YI5kWKULt6lX+fyDvKq7yLWqtjnR0yRsUtWLAgpWxsePRY+wRZdrBI3z5fH5RJGR2NdRb3z1lbW2W66qdUZsS//FcZraToKyOGK5XRuLtnPWiij483KSmpPHj4EEcHB6ytrSlQQB+HV0YIdnJ0ACAiIiJbR5//V+vBSsd6eEP8m5iamGBqYoK9XWl8fbypVvdjjp84ySfpP4JF9rIwz3r/fv2q5kvWVpZvdTxITklhxNjJPIyIYP2yBTqPaxbmZliYm+FgVxonB3s+ataGsMvh+PnkzKCSr36uejt/LY+Yd8w7JuadR8Wv6l+JQ3u2ExMbi76+PkVMTan9SQtK2ZZ8tyT+BXMzU/QVCqJeG2RPGROL9WtXe1+ytjDPfDyPjcM6/Wrv+UtXiY6No16Hvpr3U1Uq5qzezOa9X3Ns20qKpm8bzvalNDEFCxpQyqYYj55k79Vr+LCP53p6egwdPIhBA74gSqnE0sKC02fPAlCqlO27J/sGFmZF1Pv3a/WnjI7F2vIN39/R2vFRMZnjCxcywq5USexKlcTXqwyftP+cvV8fplendpqYJ1FKPh88Gj9vTyaNHJwtOb1Uq1ZtfF4ZAT8pWX0SJTpaqdWTNloZjVsW9WNuYZG+nWhf6VcqlVhbqevYysqa5ORk4uOfal3NVyqjNffWW6f/LnVycta8b2Fpibm5ORERH/6YMuL/W/48dZEDlEol169fZ9y4cdSrV48yZcoQ89oI4kWKFKFt27asXbuWHTt2sGfPHs0onAYGBrk2EvTPP/9M1apV6d+/P+XKlcPFxUUzQGBWAgMDiYuL03oNHKb78WyvKmxsTKnSdpqXg5MTllbW/HburCbmWUICV69cxsunrM5lGBgY4OZRhvOvzKNSqfjt17Na8zxLSGD4wP4YGBgwY/5CDA0NtZbjU9YPgHt/3dFMexoXR1xsLCVK2PxjLv+WgYEBnm5unDn/u1b5z5z/HV8vT53z+Hp7cvrX37WmnTr3G77eGY9oetnQvXv/AesWzcbcrMjriwHUg8rs//oITRrWz5V7Vl/Kq7w93V0pWNCA2/fuac3zICKCkiWy/x5tAwMDypTx4MxZ7e3zzNlz+JbVvU37+pTlzFnts/Snz5zBt6z6h4etrS3W1lZaMQkJCVy6fFkTo8v16zdQKBSarqbl/HxJSUnl3r37mpi/0nvs2Nhk7zZvYGBAGQ93zpz7VTNNpVJx5tyv+ProfvSUr4+3VjzA6TNns4x/W2lpaZCWpjmpKLKfgYEBnu5uWoO+qVQqTv/6G75ZPL3B19sz0yBxp86e14p/2cC/e/8+a5fMx9xMdzfeV6Wln8DOje6tmrzPnddMU6lUnD73G75ZnGDw9fbSigc4dfbXLOP/iYW5OUVMTTnz629Ex8RQu0a1f7Wcd1HQwABPNydO/5ZxD7lKpeL075fwy+KRan6ebpz+Xfue81Pnw/D1VDecmtavxf4189m7ep7mVczKks9bN2XtrHEAeLk6UdDAgDv3H2qWkZySwsOISErmwK1nH/Lx/CV9fX2KFyuGgYEBhw4fwbdsWSwtdDe8/y3197crZ85f0ExTqVSc+e0Cvlk8KtLXqwynf7ugNe3Uud+yjNcsNy2NpFeO1Y8jo+g+aBSe7i5MGzMMRTb3UjA2Nqa0nZ3m5eTkjJW1NWfPZNR5QkICly9fomxZX53LMDAwwKNMGc6d0d5Ozp09i0/6dlKmTBkKFCigtdw7d+4QEfFIs1xfP/UYBn+90rMuLi6O2NjYbP+OFuJ1ciX/LVlYWGBlZcWaNWuwsbHh7t27jBkzRvP+ggULsLGxoVy5cigUCnbt2kWJEiUwNzcH1N3yjx8/TrVq1TA0NMQimw/Yr3J1dWXz5s0cOXIER0dHtmzZwrlz53B0dMxyHkNDw0yN5r/Tnr3zZ+vp6dG6XQc2b1hHqdJ2lChZkg2rVmJlXZTqtWpr4ob270ON2nVo2UZ9ZrdNh47MnDwRjzKeeHh5sTs0hMTERBp92hRQN/BHDOrP8+fPGTdlGs8SnvEsQV2+l2dcS9vbU71mbZYumMeIoHEUNjZmzfKl2Nk7UK5ixXfO5V10adeKsdPn4OXhhncZd7bu3Edi4nOaN1YPghc4dTbFiloztK/62eWdWreg+4DhbNq+i5pV/Tl07ARXrt1g0qghgPpHzrBxUwi/8QfLZ09FpVJp7u80K2Kq1ZPjzPnfuf8oglbZ2N3tbeVF3ibGxrRp9ikr1m+mRLGilCxRnI0h6vEmPq5TM2fy7NiRcRMn4enpiY+XF1tD1Ntn86ZNAAgaP4HixYoxeOAAADp2aMfnvXoTvGUrNatX59CRI1wJD2fCOPVzcfX09OjUoT1r1q3Hzq40tiVtWb5yJUWLFqVu+qi7YWEXuXj5MpUrVcS4cGHCLl5izvwFNP6kEUWKqE98BPhXpoyHBxMmT2HUiGGkqdKYPms2VQL8ta7uZ9t66NCecZOn4lnGQ70etoeq67uJ+pnXQRMnU7xoUQYP6K9eD+3a8Hmf/gRvDaFm9aocOnqMK1evMSEo49gZFxfHo4jHRKbfN3nnL/VJCmsrK6ytrbh//wGHvz1G1QB/LCzMefz4CeuDt2BoZEj1arnXc+XfMjQuTFEXB83f1o6lKeXrybPoWGLuPcx6xg9Al/atGTt1Fl4ebvh4lWFL6G4Snz+n+acNAQiaPINiRYsypH8vADq1aUX3/kMIDtlJjaoBHD72HVeuXWfimOFA+v4dNJGr12+yfN4Mnfv3xSvhXA6/TnlfH4qYmnDvwUOWrdlAaduS+HrrPnmY/Xm3YezUmXiV8cDH04MtO3aT+DyR5o0bpec9PT3v3uq8235G936DCN62gxrVAjj87XdcuXqdiWMyTpTHxT3l0ePHPEm/R/vOX+qTlOqno6iv+u07+A1ODvZYmptz4dIVZi9cSud2rXG0tyM3dGvVhMA5y/B2d8bH3YXNe78m8fkLWjSsA8CYWUsoZm3FsJ4dAejc8hO6DpvIxl1fUsu/At98/xOXb/zJ5KHqK/fmZqaYm2kPqFaggD7WluY4llZfmTYxLkzbJh+zLHgHJYpaUbJ4UTbsVI/W3qBWzuzfH+rxPCYmlm+PH6NShYq8SHrB/i+/4ttjx9mwdnXOrIc2LRk7cx5e7q7q7+9d6d/fn6h7RwVOn0sxayuG9vkcgE6fNaf7oJFsCt1DzSqVOXT8BFeu39Rcif878TlrtmynTrUAilpZEhP3lO37vuJJVBQN6qgfifiygV+yRDFG9O9FTGxGz5F37fnytvT09OjQoSPr163Fzs6Okra2rFyxnKJFi1K7Th1NXN8+valTpy5t26l/l3bq1JmJE8ZTxtMTb29vQkK2kZiYSNNmzQD14H3Nmrdgwfz5FDEzw8TYmDmzZ1G2bFnNiQB7e3tq1a7NvLlzGDtuPMYmJixbugQHBwcqVswYlPbPW7dITknmadxTnv39jOvXrwHg7u6RI+skz/wf3XaSH0gj/y0pFApCQ0MZNGgQ3t7euLu7s2TJEmqnH8BNTU2ZM2cON2/eRF9fn0qVKvHNN99ozlDOnz+fYcOGsXbtWmxtbbmTg/fL9unTh99//522bduip6dH+/bt6d+/v9Zj9nJS+y5dSXyeyLwZ00hIiMfH14+5i5dpnUR4+OA+cenPTQWo+1EDYmNi2LBmJdFKddf+uYuXabrr37h+jfDL6hG5O7RspvV5ofsPYlNS3Z0xaNIUli2cz+ihg1DoKfAtX565S5ZpdevPCY3q1SYmNpZl64KJio7Bw8WZVfNnaLqxPXr8BIUi457Ecj5ezJ4YyNK1m1i8ZiP2pWxZMnMSrk7qEzFPIqP4/if1/Yifde+r9VkblsyjcvmMs897Dx7Gz8cTp1z6IfiqvMp7+Be90dfXJ3DqbF68SMLH04MNi+dilkMj9DZs8DExMTGsWLmKKKUSd3c3Vi5bqumSFxERoXU1ws/Xl1nTp7N0xQqWLFuOnV1pFi+Yh6uLiyame9euJCY+Z8q0GcTHx1POz4+Vy5Zo9hODggU5fOQoq1avISk5GduSJencsQNdOnXULEOhULB08UJmzp5D9569KVSoENWrVmXEsCE5sx4+rk9MbAwrVq9Trwc3V1YuWajpxhwR8RiF3qvroSyzpk1m6co1LFmxCrvSpVk8bzauLhldF0/88BPjp2QMqjZq7HgA+vbqQf/ePSloWJDfLoSxNXQHT5/GY2VpSYVyfmxetybTFbAPkX3Fsgw7Ear5u/VCdX6nNu0muPs/95bKSw3r1yU6Jo7l6zYRpYzGw9WZVQtna26vefT4ida9wn5lvZk1eRzL1mxg8ap12Je2ZfHsqbg6Z+zfJ378BYDPuvTS+qwNyxdSqbwfRoZGHD/5IyvWbSLxeSJFrayoFlCZ3t06UfC1kcdzLO+P6hIdG8vytRvS83Zh1cK5mkbIo4gn6Om9lveU8SxbvZ7Fq9ZiX7oUi+dMx/WVEcW///Fnxk/LeHLOyPHq2+P69ehG/17dAXXDf/GKtcQ9fYqtTQl6detEl/ZtciNlABrVqUZ03FOWbgolKiYWD2cHVs8cq+mu/+hJlNZxrpyXB3OCBrNkYyiLNoRgb2vD0smjcHV8t++iEb07o6+vYMyspTxPSqKshysb5k3CLIsnLryvD/V4DvDlV18zf+Fi0tLS8C1blvVrVuPj/X49n7LSqF4tYmLjWLZhS/r3txOr5k3T/v7We/X725PZE0azdF0wi9duwr5USZZMn4CrkwMA+goFt/+6x5eHjxET9xTzIqZ4e7gRvHQeLum3kZ369TfuPnjI3QcPqdeqk1Z5Lv9wOEfyBOjarRuJiYlMnzaV+Ph4/PzKsXT5Cq3fpffv3SM2NqOH7scNGhATE8OqlStRKqNwc3dn6fIVWo+5Gz5iBAqFHqNGDCcpKYkqVasyJjBI67OnTJ3GgnnzGDxoIAqFgvIVKrB0+QqtizWDBg7g0StPUOiQfqLh/O8XsntViP8QvbT8PJKNeC8Rce9+JT8/sErK+ZGMxYdDVTjnetV80FL/m13dB5uV/+egfGiJ8pe8LkLeyKcDKv0T/YTIvC5CnkixdMjrIuQJRUL2j1/w/+CFaYm8LkKeMClcKK+L8K8kRX+4vdcKWub82Ce5Ta7kCyGEEEIIIYTIOf/Rk655Rda2EEIIIYQQQgiRT0gjXwghhBBCCCGEyCeku74QQgghhBBCiJwj3fVzlaxtIYQQQgghhBAin5BGvhBCCCGEEEIIkU9Id30hhBBCCCGEEDlHuuvnKlnbQgghhBBCCCFEPiGNfCGEEEIIIYQQIp+Q7vpCCCGEEEIIIXJMmnTXz1WytoUQQgghhBBCiHxCGvlCCCGEEEIIIUQ+Id31hRBCCCGEEELkHOmun6tkbQshhBBCCCGEEPmENPKFEEIIIYQQQoh8QrrrCyGEEEIIIYTIOXp6eV2C/xS5ki+EEEIIIYQQQuQT0sgXQgghhBBCCCHyCemuL4QQQgghhBAi58jo+rlK1rYQQgghhBBCCJFPSCNfCCGEEEIIIYTIJ6S7vhBCCCGEEEKIHJMm3fVzlaxtIYQQQgghhBAin5BGvhBCCCGEEEII8RaWL1+Og4MDRkZG+Pv7c/bs2TfG79q1Cw8PD4yMjPDx8eGbb77J8TJKI18IIYQQQgghRM7RU3y4r3ewY8cOhg0bxsSJE/ntt9/w9fWlQYMGPHnyRGf8L7/8Qvv27enRowe///47zZs3p3nz5ly+fDk71mqW9NLS0tJy9BPE/62IuGd5XYQ8YZWkzOsiiFykKmyR10XIG6nJeV2CPDHYrHxeFyFPLFH+ktdFyBv/0XtA9RMi87oIeSLF0iGvi5AnFAlReV2EPPHCtEReFyFPmBQulNdF+FeeJybmdRGyZFTo7depv78/lSpVYtmyZQCoVCpKly7NwIEDGTNmTKb4tm3b8uzZMw4ePKiZFhAQgJ+fH6tWrXr/wmfhv/ntJ4QQQgghhBDiP+/Fixc8ffpU6/XixYtMcUlJSZw/f5769etrpikUCurXr8+pU6d0LvvUqVNa8QANGjTIMj67yOj6IktFY27mdRHyhr5+XpcgT6TpF8zrIuQJ/aeZD+L/BYpn/80eK//VK9qDrKrmdRHyxJLYX/O6CHki1bR4XhchT/xXR+9WGVvmdRHyREKyKq+LkCdM8roA/1Kanl5eFyFLs2bOZPLkyVrTJk6cyKRJk7SmRUVFkZqaSvHi2sfY4sWLc+3aNZ3LjoiI0BkfERHx/gV/A2nkCyGEEEIIIYT4TwoMDGTYsGFa0wwNDfOoNNlDGvlCCCGEEEIIIf6TDA0N36pRb21tjb6+Po8fP9aa/vjxY0qU0D1GRIkSJd4pPrv8N/s1CSGEEEIIIYTIFWlpH+7rbRUsWJAKFSpw/PhxzTSVSsXx48epUqWKznmqVKmiFQ/w7bffZhmfXeRKvhBCCCGEEEII8Q+GDRtG165dqVixIpUrV2bRokU8e/aM7t27A9ClSxdsbW2ZOXMmAIMHD6ZWrVrMnz+fxo0bExoayq+//sqaNWtytJzSyBdCCCGEEEIIIf5B27ZtiYyMZMKECURERODn58fhw4c1g+vdvXsXhSKjs3zVqlUJCQlh3LhxBAUF4erqyv79+/H29s7Rcuqlpb1LJwXxX5J650JeFyFvyOj6/y3/0dGY/6uj66dY2uV1EfKEjK7/H5P23xx1XFXQOK+LkCf0VCl5XYQ8EZP637xWWcLs/3M7T/g7Ma+LkCWTwoXyugjZ7r/561YIIYQQQgghhMiHpJEvhBBCCCGEEELkE//Nfi5CCCGEEEIIIXKF3B+eu+RKvhBCCCGEEEIIkU9II18IIYQQQgghhMgnpLu+EEIIIYQQQogco5L++rlKruQLIYQQQgghhBD5hDTyhRBCCCGEEEKIfEK66wshhBBCCCGEyDFpadJfPzfJlXwhhBBCCCGEECKfkEa+EEIIIYQQQgiRT0h3fSGEEEIIIYQQOUZG189dciVfCCGEEEIIIYTIJ6SRL4QQQgghhBBC5BPSXV8IIYQQQgghRI6R3vq5S67kCyGEEEIIIYQQ+YQ08oUQQgghhBBCiHxCuusLIYQQQgghhMgxMrp+7pIr+UIIIYQQQgghRD4hjfz/iNq1azNkyJC8LoYQQgghhBBCiBwk3fVFjgv58ggbdn9FVHQs7k72jO3fnbIeLlnGH/7hFEuDd/LgcST2tiUY1qMjtSqX07wfNG8F+789qTVP9Qq+rJkRlGM5vI2QA4fYsPNLdZ7O9owd0IOyHq5Zxh8++QtLN4XyICISe1sbhvXqRC3/8jpjJy1azc6D3zKmXze6tPpU672Tp8+zYusubvx5F8OCBlQs68myKaOzNbc3Cdn3NRt37CMqOgZ3Z0eCBvWmbBm3LOOPnPiJpRu28SDiCfalSjKsd1dqBlTUvL98UwiHvvuRiMgoDAoUwNPNhcE9OlHW010Tc+feA+at2sjvl6+SnJKCm5MDAz/viH+5sjma66tC9h1kY+hedd4ujgQN6kPZMu5Zxh858RNL12/lQcRjdd59ulEzoJLm/eUbt6XnHZmRd88uWnkDnDx1jpWbt3Pj1h11ffv6sHT6uBzL859sO3iMDXsOERUTh4djacb27URZd+cs4w//eJYlW/fy4HEU9iWLM7x7G2pV8tWKuXX3IfM37uDc5eukpqbibGfL4qCBlCxmldPpZGn77n1s2raDqOho3F2cCRw2CB+vMlnGHzl+gmVrNvAwIgK7UqUY+kVvalYNACA5JYWlq9fz4y9nePDwESYmxgRULM+Q/r0pVtRas4yBI8dy7eYfRMfEUMTUlIBKFRj6WsyHyqVGZT4e2Ru7Cj6YlyzOyua9CTtwNK+L9da279rDpq0hRCmjcXd1IXDEUHy8PLOMP3LsO5atXsvDRxHYlS7F0AH9qFmtqub9Y9+fYOfe/YRfvU7c06fs2roRDzfdx8m0tDT6DRnBz6dOs2jOTOrVrpnt+WVl+669bNq2PT1vZwKHD3lz3se/Z9nqdRl5f9GXmtWqaN4/9v1Jdu49QPi19Ly3bMDDLeN78cHDRzRs0UbnsufNmEKDenWyL7lXhO7YQXDwZqKUStzc3BgzehQ+3t5Zxh/99luWr1jJw4cPsbOzY8igQdSoUV3zflpaGitWrmLvvn3Ex8fj5+vL2KAg7O3tMi0rKSmJTp27cP3GDXaEbsfDXX2Mf/HiBdOmzyD86lVu375NzRo1WLRwQfbmvXMXmzZvVeft6krgqBH4eHu9Ie9jLFu5moePHmFXujRDBw2gRvVq2nmvWsOeffuJT0jAz7cs4wJHY2+Xkfedv/5iweKlXLgQpv6+dnHhi359qFxJ/b0fGxvLmHETuHnzD2Lj4rC0tKBOrVoM+qIfJiYm2Zr/q+XesGYVB/fvIyEhHp+yvgwbHUQpu8z19ap9u3YQunUz0Uolzq5uDB4xijJe6u3maVwcG9as4tczp3n8OAJzcwuq16pNj779MDEx1SyjVuXMv/MmTJtJvY8bZG+SH6C0NOmvn5vkSr7IUYdO/MLsNZvp37EVu5fPwsPJnt5jZ6CMjdMZ//uV64ycuYSWDeuwZ8Us6lWtxMDJc7l5565WXPWKfpzcvlrzmhs4KDfSydKh739m9qpg+nduze5Vc/BwcqD3mGkoY7LK8xojpy+iZcN67Fk1l3rVKjFw4hxu3r6bKfbYT2cIu3qTYlaWmd47+sNpRs9eSosGddi3Zh5bF0+jcd0a2Z5fVg599yNzVq6nf9d27FqzEHdnB/qMmogyJlZn/O+XrzJy6jxafvIRu9cuom51fwaOn8HN239pYuxL2TJ2cB/2rV/KliWzsS1RjF6jJhL9yjbTP2gqqakqNiyYxq7VC3F3duSLoKlERsfkdMoAHPruB+asWEf/bu3ZtXYx7s6O9Bk54c15T5lDy8YfsXvdEupWD2DguOnc/POOJsa+tC1jB/dl34blbFk6B9sSxek1crxW3kdP/syYGfNp0bA+e9cvZcuyuTSuXyuHs83aNz+cYfba7XzRoRl7lkzG3bE0vcbPQxn7VGf87+E3GTFnJa0+rsneJVOoV6U8A6ct5sad+5qYu48e03HUNBxLlyR4ViD7l0+jX7umGBY0yK20Mjl87DvmLllJ3x5d2blpDW6uzvQZOgplFtvbhYuXGT1xKi2bfMKu4LXUrVmdwaPHc/PWbQCeP3/O1es36dO9Mzs2rWbhzCncuXuPgaPGai2nUnk/5k2byFehm1k4YzL37j9kWNCknE43WxgaF+Z+2FVCv5iQ10V5Z4e/PcbcRUvp2/Nzdm7egJurC30GDXtDfV9i9PhJtGz6Kbu2bKRurRoMHhnIzVt/amISE59TzrcsQwf0+8fP37J9B3p62ZbOWzv87XHmLl5G3x7d2Bm8DjcXF/oMHv4PeU+mZZPG7Nq8nro1azB4VNBreSdSzteHoQP66lxGieLF+P6b/Vqv/r0+p3DhQtSo4p8zeR45wrz5C+jTpzehISG4u7nSr/8XKKOjded5IYwxgUG0aN6MHdtDqFO7NkOGDePmH39oYjZuCmb79u2MCwpi6+ZgChUqRL8vvuDFixeZlrdw0WKKFi2aaXqqSoWhoSEd2rfD379y9iWc7vDRb5m7YBF9e/dkx7bNuLu50nfAoKzzDrvI6LHjadG8KTtDtlC3di0GDx/JzT9uaWI2Bm8mJHQH44PGsC14A4UKFaLvgEFaeQ8cMozUlFTWrV5B6NZg3NxcGTBkGFFRUQAoFArq1KrJkoXz+GrfbqZOmsDpM2eZOmNWtq+Dl7ZvDmbvju0MHxPEqg3BGBUqxIhBuuvrpe++PcLyRQvo2rM3azeH4OzqyohBXxCTvv6ioiJRRkXSb/AQNm3fSeCESZw99Qtzpk3JtKwxEyax95ujmlf1WrVzKlXxHyaN/DygUqmYM2cOLi4uGBoaYmdnx/Tp0wG4dOkSdevWpVChQlhZWdG7d28SEhI083br1o3mzZszefJkihYtSpEiRejbty9JSUmamGfPntGlSxdMTEywsbFh/vz5uZ7jS5v2fk3rhvVo2aAOLvalmDioJ0aGBdl75Hud8Vv2H6J6RT96tG6Ks10pBnVti6eLI9sOHNGKK2hQgKKW5pqXmWnOnO19W5v2fEXrT+rTsmFdXOxLM3FIb4wMDdl7+Dud8Vv2fkP1Sn70aNsMZ/tSDOrePj3PQ1pxj6OUTF+2njmBgylQQF/rvZTUVGau2MDI3p1p16QBDqVK4mJfmka1q5Jbgncd4LPGH9OiUX1cHOyYOKw/RkaG7D10TGf81j1fUb1yeT5v1xJn+9IM+rwTnq5OhOz7WhPzaf1aVKngR+mSJXBxtGNU/x4kPPubG7fuABAT95S/7j+kZ4dWuDs7pvcG6ELi8xf88crJgpwUvGs/nzVuQItGH6Xn/YU672++1Rm/dc+XVK9cgc/btVLn3aMznq7OhOw7qIn5tH5tqlR8mbc9o77omZ63umGYkpLKrKVrGNH3c9o2+wSH0ra4ONjRsE7undR5XfC+w7RuWIuWH9XExc6WSQO6YWRUkL1Hf9AZv/nLo1Sv4EOPVp/gbFeSwZ1bUcbZgZCDGdvLos17qFnRl5Gft8XT2R47m+LUDSiPlXmR3Eorc7m376JV08a0+LQRzo4OTBg1jEKGRuw7eEhn/Nade6jmX5nundrh5GDPwD6f4+nuyvbd+wAwNTFh7ZJ5NKxfB0d7O3y9PQkaPpjwazd4FPFYs5wu7Vvj6+1JSZsS+JX1pkeX9ly8Ek5ySkqu5P0+rhw+wZfj53Nh/5F/Dv7AbA7ZQavmTWjRpDHOTo5MGDOSQkaG7PvqoM74raE7qRbgT/fOHXFydGBg3954erixfeduTUyTTxrSr+fnBFSupHMZL127cYPgkFCmjsv9nmmbt++gVbNX8x5BISMj9n31tc74rTt2Uy2gMt07d0jPuyee7m5s37VXE6POuzsBlSrqXIa+vj7WVlZar+9O/kiDenUpXLhwjuS5Zes2WrZsQfNmzXB2dmLc2LEYGRmxf/8BnfHbtodQtWoVunXtipOTEwO+6E+ZMh6Ehu4A1Fcnt4WE0KtXT+rUqY2bmxvTpk4hMjKS774/obWsn376mVOnTzFs6NBMlEzF7wABAABJREFUn1O4UCHGjQ2iVcuWWFtlf2+dzVtDaNWiOc2bNsHZyYnxQWMoZGTE/gNf6Yzftj2UalUC6N6lM06Ojgzo35cyHh6E7twJqPPeGhJKrx6fU6d2LdxcXZk+eRKRkVF8d0Ld2zImJpa/7t7j8+5dcHN1xd7OjiEDv+D58+f8kX4yqEiRIrRt/Rlenp6UtLEhoHJl2rb+jN8uXMj2dfCy3LtCQ+j8eU+q16qNs6sbQZOmoIyK5KeTJ7Kcb2fINj5t3oJPmjTDwcmJ4WPU2803X6m3GydnF6bOnke1GrWwLVWa8pUq07PfF/zy4w+kvHbMNjExxcraWvMyNDTMkVzFf5s08vNAYGAgs2bNYvz48YSHhxMSEkLx4sV59uwZDRo0wMLCgnPnzrFr1y6OHTvGgAEDtOY/fvw4V69e5cSJE2zfvp29e/cyefJkzfsjR47k5MmTHDhwgKNHj3LixAl+++233E6TpOQUwm/+SUB5H800hUJBlXI+XAi/qXOeC1dvUKWcdpe5ahV8Cbt6Q2vauYvhVG/Ti096DGHyknXEPo3P/gTeUlJyMuE3/iSgfEZXcYVCQZXyPlwIv65zngvhN6hSXrtrebVKfoSFZ+SpUqkYM2spn7dphqtD6UzLCL/5J4+jotHT06NlnxHUbNOT3oHTdPYGyAnqvP+gSgU/zTSFQkFAeV/CrlzTOc+F8GsEVNDuml2tUnkuZBGflJzMroNHMDU2xt3FEQDzIqY4lrblwNHv+TvxOSmpqez86ghWFmZ4umV9G0h2SUpOJvy6jrwr+BEWnkXeV64R8Eo8QLXK5bmQRXxScjK7vjqszttZnXf4zT94HKVEodCjVc9B1GrZmT6jJmr1BshNSckpXPnjDlX8Mrp6KhQKqvh5ceHaHzrnCbv2h1Y8QPXy3pp4lUrFyXNhONiWoOf4uVTrMIC2Qydz7NT5nEvkHyQnJxN+/QYBlSpopikUCgIqlSfs8hWd84RdDteKB6jqXynLeID4hGfo6elhmsUJy7i4p3x95Bh+Pl4YFJA77XJKcnIy4deuE1ApozGuru+KhF26rHOesEtXCKis3YitGuBP2KWs61uXxOfPGT1+MmNHDsfaOndvTVHnfYOAyq9v5xWzzCPs0uVMjfeqAZWzXE9v48rV61y7cZOWTRv/62W8SXJyMlevXiXAP6OXgEKhIMDfn4sXL+qc5+LFS1rxAFWrVNHEP3jwgKioKPxfiTE1NcXH21trmUqlkslTpzJ96jSMChllZ1r/KDk5mavXrmmdZFIoFPhXrkTYpUs65wm7eClTj4KqVQIIu6iOf/DgIVFKJQGvxJiamuDj7aWJMTc3w8Henq8OfsPfiYmkpKSwa88+LC0t8SzjofNzn0RGcvz776lYXvfti+/r0cMHRCujqFA5o75MTEwp4+XNlUu6t4Hk5GRuXLtKhUra202FSv5ZzgPwLCGBwsbGFHjtmL1o7iyaflSXPt068/WX+/8z3dhVH/ArP5JfCrksPj6exYsXs2zZMrp27QqAs7Mz1atXZ+3atTx//pzNmzdjbGwMwLJly2jSpAmzZ8+mePHiABQsWJANGzZQuHBhvLy8mDJlCiNHjmTq1Kn8/fffrF+/nq1bt1KvXj0AgoODKVWq1BvL9eLFi0zdlAq8SMLQsOC/zjX26VNSVSqszc20pltZmPHnvYc654mKicXKwlxrmrWFGVGvdHuvXtGX+tUqU6pEMe4+esyijdvpM3YmIYumoa+f++etYuPi1XlavJ6nOX/ee6BzHp15mpsRFR2r+Xtd6H709RV0avGJzmXcf6S+4rd8805G9+2GbYmibNr1FV2HT+SbTUswL2Kqc77sEhunrt/X87CyMOf23Szyjs6ct5WFOcoY7e6gJ06dY8SUuTx/8YKiVhasnTcFCzP1lVw9PT3WzZ/KoHEzqNy4LQo9PSwtzFk9e1Ku9OjQ5G2ZOY/bd+/rnCcqOkZnvPKV+gY48ctZRkyZk5H3/KlYpO8/9x9GAOoxC0b174ltieJs2rmPbkOC+Hrr6hyv79fFPlVv91av79/mZty+90jnPFExcVi/dkXeyjxj/1bGPuXvxOes23WQQZ1bMbxbG346f4lB05eyaeYYKvvo/lGYk2Ji40hNVWFlaaFdbksLbv+l+4RalDJaZ3yUUne35xcvkli4YjWNPqqLSfqx/6UFy1cTuns/ic+fU9bbk+XzZrxHNuKfxMTGkpqaipWl9u1RVpaWb6hvpc74qGjlO332nIVL8PPxpm6t3O+do97OdeVtwe2/dPeQUm/nOvJW6u7+/Tb2fXUQJwd7/Mr6/HPwvxATk0X9Wlly+84dnfNERUVhZWn1WrwVUUpl+vvqfzMv04oopbpLelpaGuMnTKT1Z5/h5eXJg4e6fwPlFM12baUr76zqN4vtOr1+X+avK0aZ/p6enh5rVi5jyPCRVKlRG4VCgaWFBSuXLqZIEe3vglFB4zhx4iTPX7ygVs0aTBqvfftSdolOL5vla+W2sLQiOr2+XheXvv4sMs1jyd2/7uicJzY2hs0b1tKkeUut6Z/36Uf5ipUwNDLi19OnWTRnFomJiXzWtv2/zEgI3eRKfi67evUqL1680DTAX3/P19dX08AHqFatGiqViuvXM64I+/r6anVjq1KlCgkJCdy7d49bt26RlJSkdUbZ0tISd/esBwQDmDlzJmZmZlqvWSs3vE+qOeaT2tWoW6Uibo521P8fe/cdFcXVBnD4B4iKinR7pYM0ExXEBvbeO3bF3ksUEXvvFWvsIHZjorHEEtPEkoi9JiZ2ZQEVBUWX74+FhYUFRUH88H3OmaPM3pm579zp984dz4osnzyaC9dvcep8xmpNPmeXrt9i0+79TB81EJ00Xs5UJnxwtE/HVtSt7kE5WyumjRqAjo4OB0/88Smzm+kquTmzc81CgpbOomrFrxgxaZb6fff4+HimLlyBqYkRGxfNIGT5PGpWcWfA2Kk8+YiLy89BpfIu7FyzmKClc6ha6WtGTEyKW5nwpL93p3bUrVGFcnbWTBs9FB0dOHT812zMdeZJrM2o6fEV3VrUx8GqNL5tG+NV0ZWt+7W/+vL/Lu7NG0aOmwTxEPBN6ia83X3as23DKlYumoOeri5jJ8/4Ymp9viTHTvzCqTNnGT18SHZnJdvExr5i/8GfaNm08bsT/58J3hLCi5cv6dmje3Zn5ZOKj49n+qw5mJqasn7NKoI2rMPbqwaDho3gyRPNG+pvhg9la9AmFs2fy927d5kzf2Gm5OHwgf3Ur1FFPaRsOp8VXkRHM2bYEEqXtaR77z4av3Xt6Yuzqxu2dvZ07NqN9p27ErJpY5bnSXx5pCb/EzMwMMjuLGjl5+fH8OHDNcbleqC9KfH7Mi5YED1dXcJTdLKniHyKeYra3ETmJsapOi8Lj3yaqpY8uZJFC2NiZMh/9x9SuXzWPP1Pj7GRoSrOyJRxRmUszqinmCfU9p69cIWIqKfU6pjUWdFbpZLZKzeycdc+fgpajoWZqqbQqnRSK43cufUpUbQQDx5rfxqdmYyNVOWbMg5FZJQ6jpTMTVPHrYiMwsxEs9Yzn0FeShcvRunixXB1tKdBpz7s2n8YX582hP55np9PnuGPvcEUyK962DXeth9/nD3HnoNH8e3YOrNC1Eodd4paeFXcJlqnMTc10Zo+Ze1+PoO8lC5RjNIliuFazp4GPr7s2n8IX5+2WCTUwFiVTnp1I3dufUoUK8KDx08+Oq6MMi6o2u5TdqKpiEp7fzU3MSI8Rad8ydMbFzQkl54eVqWKaaSxLFmMPy9rvrLzqZgYG6Gnp5uq8zFFRGSqWrFE5mamWtObm2luH3Fv3jDSfxL3Hz7k26XzU9XiJy7fxNiIMqVKYlmmNHWatSXs4mXcnNPuEVt8OBNjY/T09FJ1RqaIiEinvM20pjc3ff8m96fOnOXO3Xt41qqvMX74GH++cnNl3Yql7z2vD6HazrXFHZmqFjuRajvXEnca6+ldDh89RkxsLE0aZl0v4yYmaZSvIgJzszTiNDdHkaJVhkKhUKdPfLVCERGh0aGeQqFQV7CcPn2a8+fPU9HdQ2M+HX060bBBA6ZOSd05W2ZSb9cKLXGn8WpImtt1Qvkmxq+K21wjjV3ClyNCT5/mxC+/8uuxn9Q95Ts62HMy9BR7f9hHz+5dk5Znbo65uTlly5bBqGBBuvXqTZ9ePTXm/SGqVKuh7gEfIO51HAARERGYmSeVV2SEAmtb7RViRgnrLzLF+oiMiMA0xXbz8sULRg0ZSL58+Zg6ex65cqXfaaxjOSc2frua169fkzv3h7ee/X8gz6c/LanJ/8RsbGwwMDDgyJEjqX5zcHAgLCyMFy9eqMf99ttv6OrqatTEh4WFERMTo/775MmTFChQgJIlS2JlZYW+vj6hoaHq3yMjI7l+Pf0L5Dx58lCwYEGN4WOa6oOqczxHG0tO/pX0vpdSqeTkuYu4OWr/tJybgy0nz2m+z/fHnxdwTeeTbA+fKIh6Fo1FGjdYWS23vj6Otpac/DNFnH9dwM1R+wnDzdFWY70A/HE2DFdHVZxNa9dgz6p57Fo5Vz0UMjOlR5umrJ6p+lxaORtLcuvrc/tuUrO/uDdvuP/wCcUKpe65N7Op4rbm5J9h6nFKpZLQP8/jWk57s2o3R3tO/qn5/tofZ8/hlkb6RPHx8byOU52YYxJeK9HR1WzhoKurS7wy69+syq2vj6OdlrjPhuHqmEbc5ew5+ec5jXF/nPkLtzTSJ4qPj+d1wgVJOVtrVXknewVEVd6PKVq40AdG8+Fy6+einHUZTp67rB6n2r8v45bGJzJd7a05GXZZY9zvf11Sp8+tnwsnm7L8c/ehRprb9x9SrFD2fDZOX18fRztbQs8k9WuiVCo5eeZPXNP49JSrk6NGeoA/Tp3VSJ94g//f3busXjwPY6O0H2QmSty+4xL2BZH59PX1cbS3I/T0GfU4VXmfxdVZ+yfWXJ3LEXpas9+IP0JP45qBBzE9u3RmZ/BGtm9erx4Avhk2mCkBWd8JnypuW404lEolJ0+fTTMOV2cnQs+kiPvUmTTX07vs+n4f3tWqYGqSdedyfX19HBwcCA09pR6nVCoJPXUKFxftn2B1cXEm9NQpjXEnT4aq0xcvXhxzc3ONeUZHR3Ph4kV1mtHfjGLb1hC2hmxha8gWli5ZDMDsmTMZNHBApsaojb6+Pg729oSePq0ep1QqCT19Bldn7ZUjri7OhJ46rTHuZGgorgmvUhQvXgxzMzONNKq4L6nTxMaqzte6upq3Gzq6Oijj0z5fJ/72Ou51mmneV778+SlRspR6KGNpiamZOX+eTiqvF9HRXLl0kXLO2rcBfX19bO0dOHtac7v588wpjWleREczYlB/9PX1mT5vwXt1qHfz+jUMCxbM8Tf44tOTmvxPLG/evIwePZpvvvmG3LlzU6VKFZ48ecKlS5fw8fFhwoQJdO3alYkTJ/LkyRMGDRpE586d1e/jg+obqz179mTcuHHcvn2bCRMmMHDgQHR1dSlQoAA9e/Zk1KhRmJmZUahQIfz9/VMdYD+Vbi0b4Tc3ECdbK5ztrNi4ez8xsa9oUdcLgDGzl1LI3JThPToC0Ll5A7qOmsS6Hd9To9JX7P/5dy7euMWkob4AvIiJJXDzDupWrYS5iTH/PXjEvDVBlCpWhKopOnT7lLq1aoLf7KU42VnhbGfNxl37VHHWV33jd8zMxRQyN2N4Lx9VnC0b0nX4BNZt30sN96/Zf+xXLl7/m0nDVDX3xkaGGBtpvmOdK5ce5qbGlC1ZHIAC+fPRrkldlm7YShELM4oVtmDttr0A1KtRmU+ha5tmjJ25kHK21jg72LJpx15iYmNpUV/1Oorf9AUUsjBlmK/qaX2nVk3oNnQs67ftprpHRX48eoKL124ycYTqIudlTCyrNm/Du0olLExNiXz6jC179vHoiYJ6NVTfJHYrZ0/BAvkZO2Mh/bq0J2+e3OzYd4i7Dx5pfHc+a+NuztgZCyhnZ5MQ93equBvUToh7HoXMzRjWu1tC3E3pNmQM67fuShH3wGRxb8Xb0x0Ls8S4f1DF7aWKu0D+fLRt2oBl64IoUsicYoULsS5E1Yt1YppPrWuL+vjNX42TTVmcbS3Z+N1B1XZfR/VO8eh5KylsZsLwbqrvYHdpWpcuY2awbteP1Kjoyv4ToVy6+Q+TBiU1Ye3RqgEjZgVSwckOdxcHfj17nuOh59gw0y9bYgRVL/f+U2ZSzt4W53IObArZQUxsLM0bq2pdx06aTiELC4b2Vx2nOrVtRff+Q9kQvI1qnh4c+Okol65eY8KYEYDqBn/42AlcuXaDZXOno1Qq1e+5GhU0RF9fn/OXLnPx8jW+cnWmoGEB7ty7z9JVaylZvBiuTml/t/xzkSd/Piysy6j/Ni9bkhKujryIiCIyjT5ZPhddOrbDf9I0yjnY41zOkU0h24iJiaV5Y1VncGMnTKFQIXOGDlB9Dq9T+7Z07zOADUFbqFbFkwOHfuLSlatMGDtaPc+nT5/x4NFDHic0Ub6d8H6/uakZ5uZJQ0pFChemRPFiqcZnhS4d2uE/eboqbkcHNoVsJyY2huaNVf3CjJ04lUIW5gwdoDpPdWrXmu59B7EhKIRqVSpz4PARVdx+o9TzVMX9KHXcZqYaNef/3bnL2b/CCFwwJ8vj7NzJh4DxEyjn6IiTUzk2BwcTExND82ZNAfAfF0ChQoUYMngQAD4dOtLT15cNGzdRvVpVDhw8yKXLlwkIUD1w19HRwadjR1avWUPpUqUoXrwYywKXY2FhQU1vLwCKFi2qkYfEVy5LlCyhcX1369bfxL2J4+nTp7x4+ZKrCa9q2r/jlcv30aVTR8ZNmISjgwPOTuXYHByiijvh9Yix4ydQ2KIQQwYNSIi7PT18+7BhUxDVq1bhx0OHuHT5CuP9x6rj7tSxPau+XUupUiUpXqwYy5avwMLCnJpeqk+7ujo7U9DQEP8Jk+jr25M8efKwc/d33Lt3n+pVqwDwy6+/oYiIoJyjI/nyGXDr1t/MX7SE8q6uFC+W+du+jo4Obdp3ZOPaNZQoWYoixYqxdsVyzMwtND5lN6x/H6p5edOybXsA2nb0YcakCdg7OGJfrhw7QlTbTYPGqu3mRXQ0Iwf3JzY2lnGTp/Ii+gUvolWVdsYmJujp6fHbLz8TqYjA0dmZ3LlzcyY0lM3r19KuU+dMj1MIucnPBgEBAeTKlYvx48dz//59ihYtSt++fcmXLx8HDx5kyJAhVKxYkXz58tGqVSvmz5+vMX2tWrWwsbGhevXqvHr1ig4dOjBx4kT173PmzCE6OpomTZpgaGjIiBEjePpU+/fas1oDL08inj5jycZthEdGYW9ZhpXT/NTN2B88UWg8gChfzo7ZYwaxeMNWFq4PoXSxIiyZMAqbMqUA0NPV5fo///Ld4Z959uIFhcxMqfKVC4O6tiV3Nn5Hu4F3FVWc60NUcVqVYeUM/6Q4H4eniNOe2WOHsHhdCAvXBlO6eFGWTPoGm7KlMrTckb07o6eny5iZS4h9/RoXexvWzv00HdABNKhZjYinT1m6PpjwiEjsrSxZOWuiutn6g8dPNGrcyzs5MHvcCBavDWLhmk2ULl6MJVPGYlO2NAB6err8c+cu3004SuTTZxgXLIiTnTUbF8/EOmHdmBgVZOXsiSxas5keI8bx5s0brMuUYulUf+wTeuDP+rirExH1lKXrNqvitrZk5ezJSXE/eoKOTrLydnJgdsAoFn+7iYVrNqrinuqPjWUZVdy6uvzz312+O3gkKW57GzYumYV1wroBGNmvB7n09PCbPp/YV69wcbBj7fxp2fYJyYbV3Yl8+ozFm3cRHvkUB8tSrJo8Ut38/sGTCHSTrwdHG+aM6suiTTtZsGEHpYsXZsm4IdiWSXrlpI5nBSYM6Maq7T8wfeVmyhYvyqKxg/i6XNqtebJa/do1iYh8yrI16wlXRGBvY8WKBbMwT+iE6cGjx+gk27/dXJyYOWkcS1etZdGKNZQuWZxFs6Zgk/ClhMdPwjn+y+8AtO7iq7GstcsWUPErN/LmycuRn38hcM16YmJjsDAzo4pHJXp36/R/UeNTuoILw4+HqP9usyAAgD/W72BD95HZla33Ur9ObSIio1i2ao2qvG1tWLFonrqZ8oNHjzSOa24uzsycMpGlK1axKHAlpUuWYNGcGdhYWarTHPvlFwImJ3WaOMp/AgD9evWgf++enyiy9NWvU4uIqCiWrfo2IW5rViyc+464J7B0xWoWLV+linv29BRx/0rAlBnqv0eNmwhAv17d6e/bQz1+9/f7KFzIAk/3rH9QW79ePSIjIwlcvpzwhCb1gcuWYpbw0OHhw4ca52s3N1dmTJ/G0mWBLFm6lFKlSrFw/nxsrJNaLHXv1pWYmBgmT53K8+fPKe/mRuCypRn+NNrAQYO4/yCp49J27VWdsYX99fFfSKpft44q7hWrVHHb2rJ8yaJkcT/SOF67ubowc9oUlixfweJlgZQqVZJF8+ZgY22lTtO9axdiYmKZPG06z59HU97NleVLFqnjNjExZvnSRSxZtpxeffvz5s1brCzLsmj+XHWTftWN/x7mzFvA67g4ihQuRC1vb3oka8qf2Tp06UpMbAxzp08lOvo5zq5uzFmkWV73793laVSU+u+adeoRFRnJ2lXLiVComvbPWbRU3Vz/+rWrXL6oaonasWUzjeWF7PmBosWKkStXLnbv2MbShfMgPp7iJUoyYOhwGqfonC+nUkpz/U9KJ1568Pm/0q1bN6KiotizZ0+WL+vt7XNZvozPkp7eu9PkQPF6n/+NQ5bQ+TLfWtJ9kbGev3OKN6YZe5CWUww288zuLGSLxVFn3p0oJ0qnKXROpsydul+LL4GOMus7k/scRb79Musqixj9f27n9yJfvDtRNilu8v+5TtPzZV7dCiGEEEIIIYQQOdCX+QhMCCGEEEIIIcQnIY3HPy25yf8/s379+uzOghBCCCGEEEKIz5Q01xdCCCGEEEIIIXIIqckXQgghhBBCCJFlvszuQLOP1OQLIYQQQgghhBA5hNzkCyGEEEIIIYQQOYQ01xdCCCGEEEIIkWWkc/1PS2ryhRBCCCGEEEKIHEJu8oUQQgghhBBCiBxCmusLIYQQQgghhMgySmmv/0lJTb4QQgghhBBCCJFDyE2+EEIIIYQQQgiRQ0hzfSGEEEIIIYQQWUYa639aUpMvhBBCCCGEEELkEHKTL4QQQgghhBBC5BDSXF8IIYQQQgghRJZRSnv9T0pq8oUQQgghhBBCiBxCbvKFEEIIIYQQQogcQprrCyGEEEIIIYTIMvHSXP+Tkpp8IYQQQgghhBAih5CbfCGEEEIIIYQQIoeQ5vpCCCGEEEIIIbKMEmmv/ylJTb4QQgghhBBCCJFDyE2+EEIIIYQQQgiRQ0hzfSGEEEIIIYQQWUZ61/+05CZfpEmZ3zS7syA+obcFLLI7C9lCN/ZpdmchW+i8ic3uLGQPnS+zAdviqDPZnYVsMdi4QnZnIVssfHEpu7OQPb7Q/Tte98u8nM+LTnZnQYjP1pd5NBRCCCGEEEIIIXKgL/PRnxBCCCGEEEKIT0IpzfU/KanJF0IIIYQQQgghcgi5yRdCCCGEEEIIIXIIaa4vhBBCCCGEECLLSO/6n5bU5AshhBBCCCGEEDmE3OQLIYQQQgghhBA5hDTXF0IIIYQQQgiRZZRIe/1PSWryhRBCCCGEEEKIHEJu8oUQQgghhBBCiBxCmusLIYQQQgghhMgy0rv+pyU1+UIIIYQQQgghRA4hN/lCCCGEEEIIIUQOIc31hRBCCCGEEEJkGaW01/+kpCZfCCGEEEIIIYTIIeQmXwghhBBCCCGEyCGkub4QQgghhBBCiCzzVpndOfiySE2+EEIIIYQQQgiRQ8hNvhBCCCGEEEIIkUNIc30hhBBCCCGEEFlGetf/tKQmXwghhBBCCCGEyCHkJl8IIYQQQgghhMghpLm+EEIIIYQQQogs81aa639SUpMvhBBCCCGEEELkEHKTL4QQQgghhBBC5BD/Nzf569evx9jYOLuz8VmZOHEibm5u6r+7detG8+bNsy0/QgghhBBCCJGSMj7+sx1yok9+k/+hN+vt2rXj+vXrmZ+hHGTRokWsX78+u7PBlp3fUbd1J76q2ZAOvoO4cPlquukPHv2ZJh178FXNhrTo4suJP0LVv8W9ecP8wNW06OJLxdpN8G7WDr8ps3gcHp5qPj//HkoH30F8XbMRnvVbMNhvQqbHlp4vJe6QkBAaNGhAxUqV8OnUiQsXLqSb/tChQzRr3pyKlSrRqnVrfvnlF43f4+PjWRYYSK3atank7k7vPn34999/NdKsXr2aLl264O7hQdWqVbUu5+LFi/j27k3VqlWpWq0affv149q1ax8XbDq27NhNvebt+Lp6HTr26MuFS1fSTX/wyDGatOvM19Xr0MKnGyd+P6nx+0/HTtB78Aiq1m2Cs0cNrl6/kWoed+7eY8hof6rXb4pHzQaM8J9AuCIiU+N6l+DvfqS2Tz/cGnSg3cAxnL+aOp/JHfj5dxp1H4xbgw406zWcn0P/TDPtxIUrcazdmo07f0j1288nz9Ju4BjKN+yIR/OuDBw/66NjyYgvtby3bN9JvWat+LqqNx27+3Lh0uV00x/86ShN2nTg66retOjQmRO//a7x+0/HjtN70FCq1m6Ac6UqXE3nvB4fH0/fISNwrlSFI8dPZEo8Wc26WiX6713DzHuhrIi/jWuzutmdpXSFbN1Kg4aNqOjugU/nLly4eDHd9IcOH6ZZi5ZUdPegVZu2/PLLrxq/q47ny6lVpy6VPCrTu09f/v33P/Xv9+7fZ8LESTRo1JhKHpVp1KQpgcuXExcXpzGf337/nU5dulC5SlW8vGsyfMRI7t2/n3lxf+Lz2L1795gwcSINGjakkrs7jRo3JjAwUCPu06dPM2ToUGrVro27hwdt27Zl3759mRYzfL7lHR8fz4aNG2nSrDkVKrlTu249Vq9Zk3mBpxAfH8/K5YE0rFuH6p4eDOzXh//++/ed023ftpXmjRtSrbI7Pbp05lKK9bd710769e6Fd/WquH9dnufPn6eax8hhQ2jasAHVKrvTsG4dJgSM48mTx5kWmxCJ/m9q8g0MDChUqFB2Z+OzZmRklO2tHX48cpzZS1fSr3sntn+7HDtrS/oM90MRGak1/V8XLvHNpOm0aFyf7WuXU7NaFQb7TeTG3/8AEBv7isvXb9Knaye2rQ1k4bQJ3P7vLgNHj9eYz+Hjv+A3ZRbNG9Vl5/qVbFq+kIa1a2Z5vIm+lLgPHDzI3Hnz6NOnDyFbtmBna0u//v1RRGi/8Th37hxj/Pxo0bw5W0NC8Pb2ZuiwYdy4eVOdZt369WwJDmacvz+bN23CwMCAfv378+rVK3WauLg46tSpQ5s2bbQu5+XLl/QfMIAiRYqwefNm1q9bR/78+enXv3+qi4nMcODwUeYsWkbfXl3ZtmE1tjZW9Bk6EkWE9vI+d/4io8dPoWWThmzfsJqa1asx5Bt/btz6W50mJjaG8q7ODBvQR3uMMTH0HjISHXRYs3QBG1ctJS7uDYNG+aFUKjM9Rm1+PPYbs1ZsoH/nNuxYMRt7yzL0HjMVReRTren/unSVUdMW0rJ+LXaumEOtKhUZNGE2N/75L1Xan34NJezKDQqZmab67dCJk4yetYQW9bzZvWoumxdNpVHNapkeX1q+1PI+cPgn5ixcQt9ePdi2cS22Ntb0GTw8nbgvMDpgIi2bNmb7pnXUrFGNIaP8NOOOiaW8qwvDBvZ75/I3bdmKjk6mhfNJ5Mmfj7thVwgZMP7dibOZ6ng+nz59ehMSHIydrQ39+g9I53gexhi/sbRo3oytW4Lx9vJi6PDhKY7nG9iyZQvjxo5l88YNquP5gAHq4/ntf/5BGa8kYJw/u3ZsZ9SIEWzfsZPFS5aq53H33j2GDhtOpYoV2RayheWBy4iKimL4iJGZGPenPY/dvn0bpVJJwLhx7Nq5k1EjR7J9xw4WL1minkdYWBg2NjbMmzuXHdu306xZM8YFBPDzicx5wPW5ljfArNlz2LV7DyOGDWPP7l0sXrgAJyenTIlbm00b1rMtZAujx47l2w0byWtgwJCBAzSuO1I6fOggi+bPo2fvPmwICsba1pYhA/sTkWz9xcbG4lHZk27de6Q5n68rVGTarFls27WbmXPmcO/uHfy+GZWp8QkBH3CTf+DAAapWrYqxsTFmZmY0btyYW7duAXD8+HF0dHSIiopSpz937hw6Ojrcvn2b48eP0717d54+fYqOjg46OjpMnDgRgMjISLp06YKJiQn58uWjQYMG3LiRVLORsgVAYlP1tWvXUqpUKQoUKED//v15+/Yts2fPpkiRIhQqVIhp06Zp5F9HR4eVK1fSuHFj8uXLh4ODA3/88Qc3b97Ey8uL/Pnz4+npqY4JtDeDHzp0KF5eXuq/vby8GDx4MN988w2mpqYUKVJEHVuiqKgoevXqhYWFBQULFqRmzZqEhYW997qfOXMmhQsXxtDQkJ49exIbG6vxe8p87tixA2dnZwwMDDAzM6N27dq8ePHivZf3ITaG7KR1kwa0aFQfq7KlGT9qCHnz5mH3Dwe1pt+8fTdV3CvSo2NbrMqUZpBvNxxtrQne+R0AhgXys2bhLOrXqkHZUiVxdXJk7PCBXL52gwcPVU8+37x5y8xFgYwY4Eu75k0oU6oEVmVLU79WjSyN9UuMe9OmTbRs2ZLmzZtjZWXFuHHjyJs3L3v27NGaPig4GE9PT7p164alpSUDBwzAwcGBkJAQQPU0PSgoCF9fX7y9vbG1tWXqlCk8efKEo8eOqefTv39/OnfujI21tdbl/PPPPzx9+pQB/ftTpkwZrK2t6dunDwqFggcPHmT6eti4ZRutmjWmReOGWJUtw/jRIzDIm5fdP+zXmn7z1h1U8ahE904dsCxbhkF9euJoZ8uWHbvVaZo0qEe/nt3wqPi11nmcO3+R+w8eMnW8H7bWVthaWzFtvB+Xrlwj9EzateOZaf3O72nTsDYt69fEunRJJgztTd48edh14KjW9Jt27adqRTd6tmuGVekSDO7eAUfrsgR996NGukfhCqYt/ZbZfkPIlUtP47c3b98yI3Ato3p3pn2TepQpUQzr0iVp4OWZZXGm9KWW98bgrbRq3oQWTRphZVmW8WNGYZA3D7u/T93SAmBzyDaqeLjTvbOPKu6+vXG0t2XLth3qNE0a1qdfrx54VKqY7rKvXr/OhuAQpowbm6kxZbVLB46zN2Ae5/ZoP/Z/TjZtDqJlyxY0b9YMKytLxvn7JxzPv9OaPmhLMJ6elenWtWvC8bw/Dg72hIRsBRKO58HB+Pr2wtvbK+F4PjnheH4cgCpVqjBl0iQ8K1emRIkSeHnVoGuXzhw5mnQMuXL5CkqlkoEDBlCyZEkcHBzo0qUz165dy5SHttlxHqtSpQpTJk/G09MzIW4vunbpwpEjR9TL6dWrFwMHDMDNzY2SJUvi4+NDFU9PjTQfFfdnWt5///0323fsYNGC+Xh51aBE8eI4OjpS2cMjU+JOKT4+npDgYLr39KWGlzc2NrZMnDSF8CdP+Pn4sTSn27J5M81atKRJ02ZYWloxZqxq/X3/3R51mg4dfejavQdOzi5pzqeDTyecnV0oWrQYLq5udOnWnYsXLvAmCyokPjdvlZ/vkBNl+Cb/xYsXDB8+nDNnznDkyBF0dXVp0aLFe9UseHp6snDhQgoWLMiDBw948OABI0eqnsx269aNM2fOsHfvXv744w/i4+Np2LBhugf0W7du8eOPP3LgwAG2bNnCt99+S6NGjbh79y4///wzs2bNYty4cYSGhmpMN2XKFLp06cK5c+ewt7enY8eO9OnTBz8/P86cOUN8fDwDBw7M6Kphw4YN5M+fn9DQUGbPns3kyZM5fPiw+vc2bdrw+PFjfvzxR86ePctXX31FrVq1NJ4CpmXbtm1MnDiR6dOnc+bMGYoWLUpgYGCa6R88eECHDh3o0aMHV65c4fjx47Rs2ZL4LHzvJC4ujsvXr+NR4Sv1OF1dXTwqfEVYGk08wy5epnKy9ACe7hUIu5h2U9jo6Bfo6OhgaJgfgCvXb/DoSTi6Ojq07t4Xr2bt6DtirLpWPKt9KXHHxcVx5coVPNzd1eN0dXXxcHfn/PnzWqc5f/68RnoAz8qV1env3btHeHg47snSGBoa4uzszPkMPAArU6YMxsbG7N69m7i4OGJjY9m9ezeWlpYUK1YsI2G+U1xcHJevXde4OdPV1cWj4teEXbikdZqwi5dS3cx5elRMM702r1+/RkdHh9z6+upxeXLnRldXl7/C0m9qmhlex8Vx+frfeHyVdPGiq6tL5a+cOXdZ+2sR5y5fp3Ky9ABVKroRdjmpibZSqWTMzCX0aNsMmzIlU83j8o2/eRQegY6ODi37jKR621709puqtTVAVvhSyzsuLo7LV6/hUTHpZlwVdwXCLmhv4ht24RIelSpojPP0cM9Q3AAxsbGMDpiE/6gRmJubZTzz4p0+7Hh+4cOO505Oac4TIDo6GqOCBdV/Ozg6oKOjw57v9vL27VueP3/Ovn37cXd3Rz/Z/vAhPqfzWHR0NEZGRunm9/l7pHkfn3N5/3ziBMWLF+fnE7/QoFFjGjRsxMRJk3n6VHsLsY91/949FIpwKiXLdwFDQ8o5OXEhjXzHxcVx9eoVKlXSXH8VK7lz4ULasb7L06dPOfjjjzi7uJLrI7dtIVLK8E1+q1ataNmyJdbW1uqa9AsXLnD5cvrv6QHkzp0bIyMjdHR0KFKkCEWKFKFAgQLcuHGDvXv3smbNGqpVq4arqytBQUHcu3cvzSeroLo4XLt2LY6OjjRp0gRvb2+uXbvGwoULsbOzo3v37tjZ2XHsmOaTue7du9O2bVtsbW0ZPXo0t2/fxsfHh3r16uHg4MCQIUM4fvx4RlcNLi4uTJgwARsbG7p06UKFChXUT2B//fVXTp06xfbt26lQoQI2NjbMnTsXY2NjduzY8Y45w8KFC+nZsyc9e/bEzs6OqVOn4ujomGb6Bw8e8ObNG1q2bEmZMmVwdnamf//+FChQQGv6V69e8ezZM40hvWZL2kQ+fcrbt0rMTE00xpuZmhCu0N68MzwiEjMTY41x5iYmhKfx4OPVq9csWL6GhrW9KZBfdbN7576qpjZw7Sb6dPVh2awpFDQsQPdBI3n67FmGYvgQX0rckZGRvH37FjMzzYtuMzMzwrX0FQAQHh6ebvrEf1OlMTUlXKF477zlz5+fNWvWsG//fiq5u1PZ05Pffv+dZUuXkitXrveez/uIjHqqWg8py9vEBEUa70uHKyK0ps/I+9UuTuUwyJuXBctWEhMby8uYGOYuDuTt27c8ycC6+lBRT5/zVqnE3ETzgtPMxJjwyCit04RHRqXezo2NCI9ISr8mZA96erp0atFQ6zzuPngEwLKN2+jr05rlU/0wKlCAriMmEPUs9fuOme1LLe/IqKiEuDVfnzAzNU0nboXW9OERGcvv7AWLcXN2omaNT/dKxpcmMjKN8jVL+9gbHh6OmamW43lC+vBw1b+p52lGuEL7OeK///5jS8hWWrdupR5XonhxVgQGsmTpUiq6e1C1eg0ePXrEnNkf3w/H53IeU8UdQutWrbT+DnDw4EEuXbpEs6ZN0w/qPXzO5X337j0ePHjA4Z8OM23KZCZPnsTlK1cYMSprmrArEvJmmiLfpqZmRKSxLqKiVNuNaYrXyUzNzIgIz/jxeOniRdSoUpm6Nb14+PABc+cvyPA8hHiXDN/k37hxgw4dOmBpaUnBggUpU6YMoNpxP9SVK1fIlSuXxtNAMzMz7OzsuHIl7ZrNMmXKYGhoqP67cOHCODo6oqurqzHu8WPNDi1cXFw0fgdwdnbWGBcbG8uzDN4oJZ8vQNGiRdXLDgsLIzo6GjMzMwoUKKAe/vnnH41XA9Jy5coVjfUDULly5TTTu7q6UqtWLZydnWnTpg2rV68mMo33wwFmzJiBkZGRxjBrUdotBbJD3Js3jBg/hXjiCRg5WD0+XqlqndC7S0fqeFWjnL0tU8eOREdHh4NH/z86a0rPlxp3RsTGxqpe4XF1ZdPGjWxYvx5ra2sGDhqU6rWW/1emJsbMmz6J47/+jrt3fTxrN+J5dDQOdrbo/r+9uJzg0vVbbNq9n+mjBqKTRgzKhO28T8dW1K3uQTlbK6aNGqDazk/88Smz+0nlxPJ+H8dO/MKpM2cZPXxIdmdFZLFHjx/Tf+BA6tSuTauWLdXjw8PDmTRlCk2bNCZo8ybWrlmNvr4+I0eOytLWiJ/Ko0eP6D9gAHXq1KFVGjf5p06fZvyECUwYPx7rNF5T+3+TVnnHxyt5/fo1U6dM4auvvqJihQpMmjCe06fPcPv27Y9e7oH9+/Gq6qke3rx589Hz/FidOndhU3AIi5ctR1dXj4njA3LEtv0u2d2D/pfWu36Gq7iaNGlC6dKlWb16NcWKFUOpVOLk5MTr16/VtcTJN9Ss6PQqUcpmWzo6OlrHpXyVIHmaxAtLbeMSp9PV1U2182mLK71lR0dHU7RoUa0tBLKiszw9PT0OHz7M77//zqFDh1iyZAn+/v6EhoZStmzZVOn9/PwYPny4xjjdZ48ytEwTIyP09HRTdcqkiIjE3MxE6zTmpiYoUtQChkdGYp7iCWvcmzeMCJjK/YePWbt4jro2G8DCXJXWqkxp9bjcuXNTomhRHjzK+h5Lv5S4TUxM0NPTQ5HiSbdCocDc3FzrNObm5ummT/xXoVBgYWGRlCYiAjtb2/fO2/4ff+T+/fts2rhR/ZBv5owZVK1WjWPHj9Ogfv33nte7mBgbqdZDyvKOjMRMS6dxAOZmplrTm6eRPi2e7hX5cecWIqOi0NPTo6ChIV4NW1CieOa+kqCNsZEherq6hKfoZE8RGYV5itr6ROYmxqm386inmJuq0p+9cIWIqKfU6thX/ftbpZLZKzeycdc+fgpajkXCPmRVuoQ6Te7c+pQoWogHj7XXFmWmL7W8TYyNE+LWrLVXRESkE7eZ1vTmpu/f5P7UmbPcuXsPz1qa++zwMf585ebKuhVL05hSZISJSRrlq4jA3Ex7eZmbm6OI0HI8T0if+GqFIiJC83iuUGBnZ6cx3ePHT+jl2xtXF1fGB4zT+C1k6zYMCxRg2NCh6nHTp02lbv0GXLhwIVWFSkZk93ns8ePH9PL1xdXVlfEBAVqXd+bMGQYPHsyokSNp0qRJxgJMw+dc3ubm5uTKlYsypZOuZRKvUx88fKiuTPxQ1WrUoJxzUid+ca9V1+8RERGYJ8t3RIQCG1u7VNMDGBurtpuIFK2YIhQKTD/glSJjExOMTUwoVbo0ZcqWpWnD+ly8cB5nF9cMz0uItGSoJl+hUHDt2jXGjRtHrVq1cHBw0KgdTtzJk3d0de7cOY155M6dm7dv32qMc3Bw4M2bNxrvzicuK70m6Z+KhYVFqs67Usb1Ll999RUPHz4kV65cWFtbawxpnViSc3BwSNW3wMmTJ9NIraKjo0OVKlWYNGkSf/31F7lz52b37t1a0+bJk4eCBQtqDHny5Hn/AFE95HC0tSX07F/qcUqlktCzf+FaTns5ujo5cvLMXxrj/jj9J65ODuq/E290/7t7jzULZ2FsVFAjvaOdDblz6/PPnTsa09x7+JBiRQpnKIYP8aXEra+vr9oOT51Sj1MqlYSeOpXmRZeLi4tGelBtt4npixcvjrm5uUaa6Oho1YWc6/uf7GJjY9HV1dWoDU7s3DM+k3si19fXx9HOltDTZ9XjlEolJ0//iatzOa3TuDqV00gP8MepM2mmfxcTY2MKGhoSeuZPIiIj8apW5YPmkxG59fVxtLXk5J9J74MrlUpO/nUBN0ftF0Zujrac/Evz/fE/zobh6qi68G1auwZ7Vs1j18q56qGQmSk92jRl9UzVhWA5G0ty6+tz+27S57Pi3rzh/sMnFCtkQVb7UstbX18fR3s7Qk+fUY9TKpWcPHMWV2ftvV67OmuJO/R0huLu2aUzO4M3sn3zevUA8M2wwUwJ+P/qhO9zpj6eh2bkeO6s5Xgemvp4HprieH7xosY8Hz1+TE9fXxwdHJg8aaJG60tQHc91UoxLTJPYsudDZed57NGjR/Ts1QtHR0cmT5qUKm5QfUZv4KBBDB0yhNatW39UrMl9zuXt5ubGmzdvuJPsWibxM3xFixb9wIiT5M+fn5IlS6mHspaWmJmZc/pU0jV1dHQ0ly5exDmNdaGvr4+9vQOnTydNo1QqOX36FM7pdLL3PhKvUV6/zvkd74lPK0M1+SYmJpiZmbFq1SqKFi3Kf//9x5gxY9S/W1tbU7JkSSZOnMi0adO4fv068+bN05hHmTJliI6O5siRI7i6upIvXz5sbGxo1qwZvr6+rFy5EkNDQ8aMGUPx4sVp1qxZ5kT6EWrWrMmcOXPYuHEjlStXZvPmzVy8eJHy5cu/9zxq165N5cqVad68ObNnz8bW1pb79++zb98+WrRoQYUKFdKdfsiQIXTr1o0KFSpQpUoVgoKCuHTpEpaWllrTh4aGcuTIEerWrUuhQoUIDQ3lyZMnODg4aE2fWbq0b4X/tNmUs7fFycGOzdt2ExMTS/NG9QDwmzKLQhbmDOvbE4BObVrQfeAI1m/ZTnVPd3786TiXrl5n4jdDAdXF/PBxk7l8/SbLZk1BqVSq32s1KmiIvr4+BfLnp22zxgR+u5EihSwoVqQw64K3AVDXu3qWxvulxd25c2cCAgIo5+iIk5MTm4OCiImJoXnCfuo/bhyFChViyGDVawU+HTvSs1cvNmzcSPVq1Thw4ACXLl8mYLzq81I6Ojr4+PiwevVqSpcqRfHixVm2bBkWFhbU9PZWL/fBgwc8ffqUBw8f8lap5OrVqwCUKlWKfPnyUdnDgwULFjB9+nQ6dOig6q9j3Tpy6elRsWL6vXh/iC4d2uI/ZQblHOxxdrRn09YdxMTG0LxRAwDGTppGIQsLhvbvDUCndq3p3m8wG4K2Uq2KBwcOH+XSlWtMGJP0SainT5/x4NEjHie833f7X9UFj7mZqbrmZPcP+7EsUxpTY2POXbjErAVL6Ny+DWVLl8r0GLXp1qoJfrOX4mRnhbOdNRt37SMm9hUt6qvKaszMxRQyN2N4Lx8AOrdsSNfhE1i3fS813L9m/7FfuXj9byYNU9XcGxsZYmxkqLGMXLn0MDc1pmzJ4gAUyJ+Pdk3qsnTDVopYmFGssAVrt+0FoF6NtF9Zykxfanl36dgO/0nTVHGXc2RTyDbVca1xI1XcE6ZQqJA5QweoPofXqX1buvcZwIagLVSr4smBQz9x6cpVJowdnSLuhzx+Ep4Qt+pi3tzUDHPzpCGlIoULf5IWDB8rT/58WFiXUf9tXrYkJVwdeRERReSdzPvOe2bo3MmHgPETEo7n5dgcHJxwPFe9A+4/LiDheD4IAJ8OHenp68uGjZuoXq0qBw4eVB3PE2pmdXR08OnYkdVr1iQcz4uxLHB5wvHcC1Dd8PXq5UvRokUZPnyYRkVRYoVHtWpV2RwUxIqVq2hQvz4vX75g8dKlFCtaFHt77Q8UMxR3NpzHHj16RK9evSharBjDh2mP+9Tp0wwaNAifjh2pXbu2+l1/fX39TOl873Mtbw93dxwc7JkwcRKjRo0kXqlk+syZeHh4aNTuZxYdHR3ad+zIum/XULJUKYoVK87K5YGYW1hQwyvpumNA3z54eXvTpl17ADp06sTkCeNxcHDE0cmJkOBgYmNiaNw06T5FER6OQqHg7h3Vce3mzRvkz5efwkWKYGRkxMULF7hy+RKubuUxLGjIvTt3WbkikBIlSqb5gCEneZtDm8V/rjJ0k6+rq0tISAiDBw/GyckJOzs7Fi9erP6UnL6+Plu2bKFfv364uLhQsWJFpk6dqvFta09PT/r27Uu7du1QKBRMmDCBiRMnsm7dOoYMGULjxo15/fo11atXZ//+/R/dk2pmqFevHgEBAXzzzTfExsbSo0cPunTpwoUL79/DsY6ODvv378ff35/u3bvz5MkTihQpQvXq1dX9AqSnXbt23Lp1S52HVq1a0a9fPw4e1P6ZnoIFC3LixAkWLlzIs2fPKF26NPPmzaNBgwbvnecP0aCWF5FRUSxds4HwiEjsra1YMW865gmdUD149Bhd3aTa1vLO5Zg1wY8lq9ezaNU6SpcozuIZE7GxVDXVevwknGO/qt67bd29r8ay1i6eS6WvVE/JRwzojZ6eHn5TZvHq1WucHe1Zu2gORgU1byCyypcSd/169YiMjCRw+XLCw8Oxs7MjMDBQ3eHQwwcPNN4XdnNzY8b06SxdtowlS5ZQqlQpFi5YoPEpvO7duhETE8PkKVN4/vw55cuXJzAwUKMlSWBgIHu//179d7v2qpPumtWrqVixImXLlmXxokWsWLmSLl26oKOri729PYGBgRrNCDNtPdSpSURUFMtWryVcEYG9jTUrFsxRN8d+8PAxOjpJtRVuLk7MnBzA0pXfsmjFakqXLMGi2dOwsUp6SHfsl98ImDpT/feogEkA9OvZjf6+3QHVjeCiwNU8ffaM4kWL4NutE106tM30+NLSwLsKEU+fsWR9COGRUdhblWHlDH91c/0Hj8M1amnKl7Nn9tghLF4XwsK1wZQuXpQlk77BpmzGblJH9u6Mnp4uY2YuIfb1a1zsbVg7dyJGhto7Es1sX2p5169Tm4jIKJatWqOK29aGFYvmJcX96BE6yY5rbi7OzJwykaUrVrEocKUq7jkzUsT9CwGTp6v/HuU/AYB+vXrQv3fPTxRZ1ildwYXhx0PUf7dZoGqS/cf6HWzonjnfec8sGsfzhCbWgcuWJh3PHz7U2J/d3FyZMX0aS5epOsUrVaoUC+fPT3E876o6nk+dqjqeu7kRuGyp+nh+8uRJ/rtzh//u3KFuPc1XMsL+Un0a0r1SJWZMn876DRtYv2EDefPmxdXFhcBlS8mbN2/mxv2JzmOacdfTjDuhZej3e/cSGxvLt2vX8u3aterfK3z9Nd9++23mxv0Zlbeuri6LFy5i5qxZ9OjZCwMDA6pU8WRkildIM1PnrqrymjFtKtHPn+Pq5saiJcs0rjvu3b2j8UnwOnXrERUZyaoVy1EoFNja2rFwyTKNDhd37dzBmlUr1X/37aU6pgVMmETjpk3Jmzcvx44eZdXKFcTGxGBmbk7lyp50n+lL7ty5syxe8WXSif8SenoQHyTuyaf5RJX4PLwtkPVNnz9HurFZ85mez51e9JPszkK2+FK3c3Qz9ysT/y8GG6ffSi6nWvgiY58tzDF0MvQWas4Rn0M/9P0Oscqc2wlpeowL5MvuLHyQozc/3+uOmtY579rgyzzrCyGEEEIIIYT4JD6ySw2RQV/oI8/PT7ly5TQ+rZd8CAoKyu7sCSGEEEIIIYT4PyA1+Z+J/fv3p/m5wfd5Z18IIYQQQgghhJCb/M9E6SzoQVQIIYQQQgghsttbaa//SUlzfSGEEEIIIYQQIoeQm3whhBBCCCGEECKHkOb6QgghhBBCCCGyjFK+2v5JSU2+EEIIIYQQQgiRQ8hNvhBCCCGEEEIIkUNIc30hhBBCCCGEEFnmrbTW/6SkJl8IIYQQQgghhMgh5CZfCCGEEEIIIYTIIaS5vhBCCCGEEEKILCO9639aUpMvhBBCCCGEEELkEHKTL4QQQgghhBBC5BDSXF8IIYQQQgghRJZ5q5Tm+p+S1OQLIYQQQgghhBA5hNzkCyGEEEIIIYQQOYQ01xdCCCGEEEIIkWWkd/1PS2ryhRBCCCGEEEKIHEJu8oUQQgghhBBCiBxCmusLIYQQQgghhMgyb6W1/iclNflCCCGEEEIIIUQmioiIwMfHh4IFC2JsbEzPnj2Jjo5Od5pVq1bh5eVFwYIF0dHRISoq6oOWLTf5QgghhBBCCCFEJvLx8eHSpUscPnyYH374gRMnTtC7d+90p3n58iX169dn7NixH7Vsaa4vhBBCCCGEECLLfGm961+5coUDBw5w+vRpKlSoAMCSJUto2LAhc+fOpVixYlqnGzp0KADHjx//qOVLTb4QQgghhBBCiC/Sq1evePbsmcbw6tWrj5rnH3/8gbGxsfoGH6B27dro6uoSGhr6sVl+J6nJF2k6H1swu7OQLZwLvsnuLGSLeB2d7M5Ctnie68vczg3MjbM7C9kiT/iN7M5CtnhrWDi7s5AtFr64lN1ZyBZD85fL7ixki0XPzmV3FrKFzpvY7M5CttDJbZTdWRA5xIwZM5g0aZLGuAkTJjBx4sQPnufDhw8pVKiQxrhcuXJhamrKw4cPP3i+70tu8oUQQgghhBBCZBml8vNtru/n58fw4cM1xuXJk0dr2jFjxjBr1qx053flypVMy9uHkpt8IYQQQgghhBBfpDx58qR5U5/SiBEj6NatW7ppLC0tKVKkCI8fP9YY/+bNGyIiIihSpMiHZvW9yU2+EEIIIYQQQgjxDhYWFlhYWLwzXeXKlYmKiuLs2bN8/fXXABw9ehSlUom7u3tWZ1M63hNCCCGEEEIIkXXexn++Q1ZwcHCgfv36+Pr6curUKX777TcGDhxI+/bt1T3r37t3D3t7e06dOqWe7uHDh5w7d46bN28CcOHCBc6dO0dERESGli83+UIIIYQQQgghRCYKCgrC3t6eWrVq0bBhQ6pWrcqqVavUv8fFxXHt2jVevnypHrdixQrKly+Pr68vANWrV6d8+fLs3bs3Q8vWiY//wj5aKN7b2TtR2Z2FbPGl9q7/Nk+B7M5CtngZp8zuLGQLg1xf5jNe6V3/y6LMnT+7s5AtpHf9L8uX2rt+zBfau75RfoPszsIH2fTn3ezOQpo6f1Uiu7OQ6b7MqzwhhBBCCCGEECIHko73hBBCCCGEEEJkGaU0Hv+kpCZfCCGEEEIIIYTIIeQmXwghhBBCCCGEyCGkub4QQgghhBBCiCzzVprrf1JSky+EEEIIIYQQQuQQcpMvhBBCCCGEEELkENJcXwghhBBCCCFEllEqpbn+pyQ1+UIIIYQQQgghRA4hN/lCCCGEEEIIIUQOIc31hRBCCCGEEEJkmbfSWv+Tkpp8IYQQQgghhBAih5CbfCGEEEIIIYQQIoeQ5vpCCCGEEEIIIbKMMl7a639KUpMvhBBCCCGEEELkEHKTL4QQQgghhBBC5BDSXF8IIYQQQgghRJZ5K831PympyRdCCCGEEEIIIXIIuckXQgghhBBCCCFyCGmu/5nr1q0bUVFR7NmzJ7uzIoQQQgghhBAZ9lYpzfU/JanJF5kuPj6e7etX0r9tQ7o2rM60UQN5cPe/d0536LvtDPZpTtcG1QgY2IObVy+lSnP98gWmjuxP98Y16NnUm8nD+vD6VWyqdHGvX+PXpxMda7tz++b1TInrXbZs30m9Zq34uqo3Hbv7cuHS5XTTH/zpKE3adODrqt606NCZE7/9rvH7T8eO03vQUKrWboBzpSpcvZ46ju59B+JcqYrGMHnG7EyNKz4+nsBly6hdqxbulSrRp3dv/v3333dOFxISQoMGDahUsSKdfHy4cOGCxu+vXr1i+vTp1KhencoeHowYPhyFQqGR5sGDBwwcOBAPd3e8vbyYP38+b968Uf/+159/0rVrV2pUr457pUo0b9aMTZs2pcrLo0ePGOvnp07XulUrLl1KvX1lRHx8PKtXBNKkXh28qngwuH8f7vz37vWyc9tWWjZpiJenO726dubyxYsav+/ZtZMBvXtRu0ZVPCuU5/nz5xq//3nmDJ4VymsdLn9kTNrEx8cTGLiMOrVr4eFeiT593q/8t4aE0LBBA9wrVaRzJx8uain/GdOn41WjOp6VPRgxQrP8o6KiGNC/H3Xq1KZSxQrUr1eXmTOmEx0drU4zPiCA8m6uqYZWLVtk3gpIEPzdj9T26Ydbgw60GziG81dvpJv+wM+/06j7YNwadKBZr+H8HPpnmmknLlyJY+3WbNz5Q6rffj55lnYDx1C+YUc8mndl4PhZHx1LRmzZvot6zdvwdbVadOzR+93HtSPHaNLWh6+r1aJFx66c+O0Pjd9/OvYzvQcNp2qdRji7V+Pqdc31eO/+A5zdq2kdDh45lunxJQrZupUGDRtR0d0Dn85duJBiv0zp0OHDNGvRkoruHrRq05ZffvlV4/f4+HiWBS6nVp26VPKoTO8+ffn336Tz4L3795kwcRINGjWmkkdlGjVpSuDy5cTFxWnM57fff6dTly5UrlIVL++aDB8xknv372de4JnEulol+u9dw8x7oayIv41rs7rZnaV0hWzbTv0mzangWY2OXXtw4WL6x85DPx2haau2VPCsRst2Hfnl1980fo+Pj2fZipXUrNeQilWq49t/IP/+p3ndc/nqVXr3H0QVr1pUq1WHSdOm8/LlS63Li4p6Su2GjXGp4M6zFOeAzLRlx27qNW/H19Xr0LFHXy5cupJu+oNHjtGkXWe+rl6HFj7dOPH7SY3ffzp2gt6DR1C1bhOcPWqk2r8B7ty9x5DR/lSv3xSPmg0Y4T+BcEVEpsb1IeLj41m5PJAGdWtTrbI7A/r24b/3OKdv3xpCs0YNqOpRie5dOnHpoua5bvfOHfT17Yl3tSpU+sqN58+fZVUIQmiQm/wvzOvXr7N8Gd9v3cTB3dvoMWQ0U5Z+S968eZk5ZgivX79Kc5o/jh1m84pFtOzck2krNlDK0pqZY4bwNDLpwH/98gVmjRmCy9fuTFm6jinL1lO3WRt0dFJvxsGrl2BsZp4l8Wlz4PBPzFm4hL69erBt41psbazpM3g4iohIrenPnb/A6ICJtGzamO2b1lGzRjWGjPLjxq2/1WliYmIp7+rCsIH90l12q+ZNObZ/r3oYPmhApsa2ft06grdswX/cODZt3oyBgQH9+/Xj1au0y/PggQPMmzuXPn36sCUkBFs7O/r360dEspu4uXPmcOLnn5kzZw7frl3LkydPGD58uPr3t2/fMmjgQOLi4li/YQNTpk7l+717CQwMVKcxMDCgffv2fLt2Lbt278bX15dlS5eyY8cOdZpnz57RrVs3cuXKxdJly9i1axfDR4ygYMGCH7VeNm9Yz/aQLYzyG8ua9RvJm9eAYYMGpLtefjp0kMUL5tHDtw/rNgdjbWvLsEH9iYhI2s5fxcbi7ulJl+49tM7D2dWV7w8c1hiaNG9BseLFcXB0/KiYtFm/fh1bgrcw1n8cGzepyn9A/3eU/8EDzJunKv/gLSHY2trRv38/IiKSlf/cOZw48TOz58xhzbeq8h+RrPx1dXWp4eXNwoWL2PPdXiZNnkJoaCjTpk5Vpxn1zTcc/umIejhw8BBGRkbUqZO5Nxg/HvuNWSs20L9zG3asmI29ZRl6j5mKIvKp1vR/XbrKqGkLaVm/FjtXzKFWlYoMmjCbG/+kftj506+hhF25QSEz01S/HTpxktGzltCinje7V81l86KpNKpZLVNjS8+Bw0eYs2gpfXt2Y9uGNdhaW9NnyIh3HNcm0bJJI7Zv/Jaa1asx5JuxKY5rMZR3dWbYwL5a51GkcCGO7d+jMfT37UG+fAZUq+yeNXEePMjcefPp06c3IcHB2Nna0K//ABQR2m88zp0LY4zfWFo0b8bWLcF4e3kxdPhwbty8qU6zbv0GtmzZwrixY9m8cQMGBgb0G5B0fLj9zz8o45UEjPNn147tjBoxgu07drJ4yVL1PO7eu8fQYcOpVLEi20K2sDxwGVFRUQwfMTJL1sPHyJM/H3fDrhAyYHx2Z+WdDhw6zJwFi+jr25OtmzdgZ2tN30FD0i7vsPOM9g+gRbMmbAvaSE2v6gwZ+Q03bt5Sp1m3YRPBIdsI8BtN0PpvMcibl76DhqjL+/GTJ/TuP4iSJUuwef1ali9exK1b/zBu4mSty5wwZSq21taZH3wyBw4fZc6iZfTt1ZVtG1Zja2NFn6Ej09m/LzJ6/BRaNmnI9g2rE/Zvf839OzZh/x7QR+s8XsbE0HvISHTQYc3SBWxctZS4uDcMGuWHUqnMkjjf18YN69m6JZgxY/1Zu2ETBgYGDB7QP91z3eGDB1k4fx69evdhY/AWbGxsGTxA85weGxtLZc8qdOvR81OEIYSa3ORn0I4dO3B2dsbAwAAzMzNq167Nixcv6NatG82bN2f69OkULlwYY2NjJk+ezJs3bxg1ahSmpqaUKFGCdevWaczvwoUL1KxZUz2/3r17a9RUpXT69GksLCyYNUtVmxMVFUWvXr2wsLCgYMGC1KxZk7CwMHX6iRMn4ubmxpo1ayhbtix58+bNmhWTID4+ngO7Qmju050KVWpQytKGfqMnEqUI58xvP6c53f6dW/Bu2Ayv+k0oUdqSnkPHkCdPXn4+8L06zebABdRr0ZamHbpSoowlxUqWxsOrNvq5c2vM69yp37lw9hQ+fQZnWZwpbQzeSqvmTWjRpBFWlmUZP2YUBnnzsPv71DVzAJtDtlHFw53unX2wLFuGQX1742hvy5ZtSTenTRrWp1+vHnhUqpjusg3y5sHc3Ew9FCiQP9Piio+PJygoCF9fX7y9vbG1tWXK1Kk8efKEY0ePpjndpk2baNmyJc2bN8fKyopx48aRN29e9Wsnz58/Z/fu3YwYOZJK7u44OjoyafJkws6d4/z58wD88ccf/P3330yfPh17e3uqVq1K//792bZ1q7q2y97BgQYNGmBtbU3x4sVp1Lgxnp6e/PVnUq3purVrKVK4MJOnTMHZ2ZniJUrg6elJyZIlP2q9bNsSTLeevlT38sbaxpbxk6cQ/uQJJ46nXdsYErSZps1b0rhpM8paWvGNnz958ublh7171GnadfShS7ceODm5aJ2Hvr4+Zubm6sHI2Ihffj5OoyZN0dHR+eCY0oozOGX5T0ko/2Npl//mhPJvllD+/lrKf8/u3QwfMZJKlRLKf9JkwsKSyr9gwYK0bduWcuXKUaxYMdzd3WnTti1//ZVUtoaGhpibm6uHy5cu8ezZM5o2a5ap62H9zu9p07A2LevXxLp0SSYM7U3ePHnYdUD7Oti0az9VK7rRs10zrEqXYHD3DjhalyXoux810j0KVzBt6bfM9htCrlx6Gr+9efuWGYFrGdW7M+2b1KNMiWJYly5JAy/PTI0tPRu3bKVVs+THtZEY5M3L7u/3aU2/eesOqnhUonvnjgnHtV442tmyZfsudRrVca07HhUraJ2Hnp4e5mZmGsPRn3+hXq2a5MuXL0vi3LQ5iJYtW9C8WTOsrCwZ5++fsL1+pzV90JZgPD0r061rVywtLRk4oD8ODvaEhGwFEo6bwcH4+vbC29sLW1tbpk6ZzJMnTzh67DgAVapUYcqkSXhWrkyJEiXw8qpB1y6dOZLsuHrl8hWUSiUDBwygZMmSODg40KVLZ65du5aqxj+7XTpwnL0B8zi352B2Z+WdNgZtoVXzZjRv2gQrS0sC/MZgkDcve/Z+rzV9UMhWqlT2oHuXzliWLcvAfn1xsLcjZNt2QFXem7eE4NuzO95eNbC1sWHa5Ik8eRLO0eOq654Tv/xKrlx6+I8eRdkypXEq58i4saP56egx/rtzR2N5W3fs5PnzaLp27pS162HLNlo1a0yLxg2xKluG8aNHqPbvH/ZrTa/evzt1UO3ffXqq9u8du9VpmjSoR7+e3fCo+LXWeZw7f5H7Dx4ydbwfttZW2FpbMW28H5euXCP0TNqtnbJafHw8IcFB9OjlSw0vb2xsbZmYcE7/OZ1zenDQJpq3aEmTZs2xtLRijL/qXPf9d3vUaTr4dKJr9x44OTt/gkg+b2+V8Z/tkBPJTX4GPHjwgA4dOtCjRw+uXLnC8ePHadmyJfEJn4Q4evQo9+/f58SJE8yfP58JEybQuHFjTExMCA0NpW/fvvTp04e7d+8C8OLFC+rVq4eJiQmnT59m+/bt/PTTTwwcOFDr8o8ePUqdOnWYNm0ao0ePBqBNmzY8fvyYH3/8kbNnz/LVV19Rq1YtjaeIN2/eZOfOnezatYtz585l6Tp6/OA+UREKnL6qpB6Xr0ABrBzKcePyBa3TvImL45/rVzWm0dXVxemriuppnkZGcPPqJYyMTZkwuBd9W9dn8vC+XL2gGc/TSAVr5k+n/+iJ5MmTtQ80EsXFxXH56jU8KibdjOvq6uJRsQJhF7Q3+Qy7cAmPSpoXuZ4e7oRdyHhz630HDlOtTkNatO/EwmXLiYlN/frCh7p37x7h4eG4uyfVoBkaGuLs7ExYws1YSnFxcVy5cgV3Dw/1OF1dXdw9PNQ3cFcuX+bNmzca8y1btixFixZVP6Q6HxaGtY0NZmZm6jSenp5ER0dzK1mNWXJXr1whLCyMryskrduff/4Zx3LlGDlyJN5eXrRr25adO3d+wNpIcv/ePRSKcCpUSsp/gQKGODo5cfFC2uvl2tUrVEgWs66uLhUruXMxjXX5Pn75+WeePX1KoyaZe2MLaZe/k7Mz58PeUf7uKcrfPVn5X1GVv0eK8i9StCjnkz2kTO7x48ccPXKUr7/WfvEIsGfPbtzd3SlWrFiG4kzP67g4Ll//G4+vkh666OrqUvkrZ85dvqZ1mnOXr1P5K82HNFUquhF2OemVG6VSyZiZS+jRthk2ZVI/cLp8428ehUego6NDyz4jqd62F739pmptDZAVVMe163hUSlrfScc17cepsAsXU928e3pUSvM4+D4uXbnG1es3aNm00QfPIz2J26tHiv3Sw91dvb2mdP78BY30AJ6VK6vTp3ncdHJKc54A0dHRGCVrYeTg6ICOjg57vtvL27dvef78Ofv27cfd3R19ff0PivdLFxcXx5WrV/Fw17zecK9UkbDz2q9Rws5fwD3Fw3bPyh6EJbyCdO/efcIVCjwqJc3TsEABnJ3KqdO8fh2Hvr4+urpJl9158+QB4K9zSce8W3//zcrV3zJt8gR0M/mhbXJxcXFcvnZd42ZctX9/nfb+ffFSqpt3T4+KGbpuef36NTo6OuROtv3myZ0bXV1d/grTvv4/hfv37qEID6dSsn22gKEh5ZycuXBe+zkpLi6Oq1euUDHlOd3dnQsfcU4XIrPITX4GPHjwgDdv3tCyZUvKlCmDs7Mz/fv3p0CBAgCYmpqyePFi7Ozs6NGjB3Z2drx8+ZKxY8diY2ODn58fuXPn5tdfVe/uBQcHExsby8aNG3FycqJmzZosXbqUTZs28ejRI41l7969m2bNmrFy5Up69+4NwK+//sqpU6fYvn07FSpUwMbGhrlz52JsbKzRXPn169ds3LiR8uXL4+KivXYwszyNVDXHNTLRbHpqZGzK0zSawj1/GoVS+Tb1NCamRCU013/84B4AOzeuxrthM8bMWERZazumf5P0vn98fDwrZk+hVuOWWNo5ZGpc6YmMiuLt27eYmWrm38zUFEUa75mFKxRa04dHKLSmT0vDenWYMWk83y5fQs9unfn+x4P4jZ+UsQDSER4erspbshttAFMzMxQJv6UUGRmpWh8ppjEzM1PPL1yhQF9fP1WTeVNTU/V8ta0j04R5hqd4d79unTpUrFCBjh070q5dO1q2bKn+7e7du2zfto1SpUqxfPly2rRty+xZs9i7d+97rQNtIhThCflJkT9TM41XEpKLilKtF9OUMaUzzfv44bs9uHtUplDhwh88j7QklpdpyrI0NUOhSL/8U02TbJtRhKvK3zBF+av2Gc35jhkzmsoe7tSrW4f8BfIzfsJErct9/Pgxv/32Gy1atNT6+4eKevqct0ol5iZGmnk1MSY8MkrrNOGRUZiZGGuMMzc2IjwiKf2akD3o6enSqUVDrfO4+0B1Dli2cRt9fVqzfKofRgUK0HXEBKKeZd07uokio56mcVwzQZHGcSpcEaH9uPYR79vu/v4HLMuUxs0la2rBIiPTOH6bmaY6ziQKDw/HzFTL8S0hfXi46t/U8zQjPI395r///mNLyFZat26lHleieHFWBAayZOlSKrp7ULV6DR49esSc2Z+2X4acJL3zdVrbaZrn68TyTvjXzCzta4BKFSugCFewbuMm4uLiePbsGQuXLAPgScJx8fXr14z2D2D4kEEULVLkIyNNX9L+baKZZxOTdK5bIrSmz8j+7eJUDoO8eVmwbCUxsbG8jIlh7uJA3r59y5OPOA9+rMTzjqlpymsdUxTh7zqnp5gmnfOjEJ+S3ORngKurK7Vq1cLZ2Zk2bdqwevVqIiOT3l0qV66cxlPawoUL45yseY6enh5mZmY8fvwYgCtXruDq6kr+/EnNq6tUqYJSqeTataQaotDQUNq0acOmTZto166denxYWBjR0dGYmZlRoEAB9fDPP/9w61bSu2KlS5fGwsIi3dhevXrFs2fPNIbX6byHlOjXIwfo3thLPbxN1ilaZkpsLVGzcQu86jehjI0dnfsPo2iJ0uom/Qf3bCPm5QuadeiaJXn4HLVp0Ywqld2xtbaicf16TJ8QwJHjJ7iT0Foko/bt20dlDw/18CaLyjOzrUvWb0BQUBA//pjULFqpVGLv4MDgwYOxd3CgdevWtGzZkh3bt7/3/A/+uJ9a1TzVw+eyXh4/ekToyT9o3Kx5psxv/759eFb2UA+fQ5wjR44ieEsICxYu4u6dO8ybO1druu+//x5DQ0O8a9b8xDnMuEvXb7Fp936mjxqY5isWyoTmg306tqJudQ/K2VoxbdQAdHR0OHjiD63T5DSxsa/Yf/AnWjZtnN1ZyVKPHj+m/8CB1Kldm1bJHlCGh4czacoUmjZpTNDmTaxdsxp9fX1GjhylPieK/w/WVpZMmTSBjUHBVKpaA+96DSlevBhmZqboJvQrtGhpIJZlytC4YYNszm3WMTUxZt70SRz/9XfcvevjWbsRz6OjcbCzzdKWCykd2L+PGlUqq4fP4Vz3JcjuJvlfWnN9+YReBujp6XH48GF+//13Dh06xJIlS/D39yc0NBQgVfM5HR0dreMy2rmIlZUVZmZmrF27lkaNGqnnGR0dTdGiRTl+/HiqaYyNjdX/T/4QIS0zZsxg0iTNGmDfoaPpM3xMutN9Xbka1vbl1H+/SXhP8GlkBCbJOr57GhVBaSsbrfMwNDJGV1dPo5O9xHkYJ9TuG5uq5lWidFmNNMVLlSH8sarG69JfZ7hx5SJdGmh2TDWufzeq1KpHv9ET0o3lQ5kYG6Onp5eq0x5FRESqJ/uJzM3MtKY3T/FEOKOcnVQdr/135x4lS5TI8PReXl4aD6YSO2pUKBQaD4oiFAps7ey0zsPExES1PlI8lVcoFJibq8rR3MxMXZuRvDY/IiICs2RpLqbo4Tqxxts8RS1x8YRYbWxsiFAoWLF8OQ0aqC6ULCwssLK01Ehf1tKSn376Kb1VoaFq9RqUc3JS//36dVxCfiIwN0+2XiIU2NhqXy/Gxqr1EpGi3CMiFKlqvd/Xvu+/o6CREdVq1Pig6VOq4eWl8d5gXEL5R6Qof0WEArs04kws/5StExQKhbpszcxV5f/82TON2nzVPqPZYWbi+/Zly5bFyKggPbp3x7d3b438xMfH892ePTRq1DjTmzEbGxmip6tLeIpO9hSRUZinqK1X59nEGEWKWv7wqKeYm6rSn71whYiop9TqmNT53FulktkrN7Jx1z5+ClqOhZmqxsyqdNJ+nDu3PiWKFuLB46yvJTIxNkrjuBaZqhY7kbmZqfbjWhrHwXc5fPQYMbGxNGlY74Omfx8mJmkcvxURqY4ziczNzVO1ZlAoFOr05uaqfxUREZr7jUKBXYrj5uPHT+jl2xtXF1fGB4zT+C1k6zYMCxRg2NCh6nHTp02lbv0GXLhwIctb5uVE6Z2v09pO0zxfJ5Z3wr8KRQQW5uYaaexsk657GtWvR6P69VAoFBgYGICODpuCtlCiRHEATp05w42btzjsrup3I/FBTo3a9ejVoxsD+vT+mNA1JO3fmp3sKSIj07luMdWaPqP7t6d7RX7cuYXIqCj09PQoaGiIV8MWlCieea9ZvUu1Gl6Uc0p2rROXcK6LUGCuca0Tga2drdZ5JJ3TNY8FERGKVOcxIbKD1ORnkI6ODlWqVGHSpEn89ddf5M6dm927d797Qi0cHBwICwvjxYsX6nG//fYburq6GhcC5ubmHD16lJs3b9K2bVt1hztfffUVDx8+JFeuXFhbW2sM5uYZO8D4+fnx9OlTjaH7gGHvnM4gX36KFC+pHoqXLouxqRmX/jqtTvPyRTS3rlzCxlF7c8tc+vqUtbXn0p9J0yiVSi79dVo9jUWRopiYWXD/jubnTB7c/Q/zwqpmbV0HjGDmys3MWLmJGSs38c30+QAMHjeVtj209+ScGfT19XG0tyP09BmN/J88cxZXZyet07g6lyP09FmNcX+EnsbVuZzW9O/rWsLnahIvMjMqf/78lCpVSj1YWVlhbm7OqYQHWaB6uHThwgVc07jA1NfXx8HBQWMapVLJqdBQ9UWpg6MjuXLl4tSpU+o0t2/f5sGDB7i6ugLg4urKzRs3NG4W/zh5kgIFCmBpZZVmDEqlktfJOqVydXPj9u3bGmn+/fdfimbgve38+fNTomQp9VDW0hIzM3POnE6K8UV0NJcvXsTJOe31YmfvwNlTmuvlzOlTOH3AxXp8fDz7vt9Lg0aNyZUrc25sU5a/ZUL5h57SLP+LFy7g4pp++YemiPPUqWTl76Aq/9AU5f/wwQNcEspfm8Ta7bgUXwk5e+YMd+78R/MWzTMc87vk1tfH0daSk38mvS+qVCo5+dcF3By1P+hwc7Tl5F+a75f+cTYMV0fVxWLT2jXYs2oeu1bOVQ+FzEzp0aYpq2eqbvTK2ViSW1+f23eTPpcW9+YN9x8+oVih9FtmZQbVcc1W4zilVCo5efpsmscpV2cnQs+kOK6dOpPmcfBddn2/D+9qVTA1MXl34g+k3l5Dk7ZFpVJJ6KlTad5Eu7g4a2y7ACdPJm3fxYsXV+03yeYZHR3NhYsXNeb56PFjevr64ujgwORJEzVaAoKqV26dFOMS0yhzaM1TVtPX18fB3p7QU5rXG6GnT+Oaxishri7OGud3gJOhp3BNeCBavHgxzM3MCD2dNE9VeV9Sp0nOzMyMfPnycfDQYXLnzq3uH2D+7JlsD97MtqBNbAvaxMRxYwFYv3ol7du0/rjAU9DX18fRTtv+/Wfa+7eTluuWU2c++LrFxNiYgoaGhJ75k4jISLyqVfmg+XyI/PnzU7JUKfVgaWmFmbk5p09p7rOXLl7A2UX7OUlfXx97BweNaZRKJWdOncJZHsCJz4DU5GdAaGgoR44coW7duhQqVIjQ0FCePHmCg4NDup3ppMXHx4cJEybQtWtXJk6cyJMnTxg0aBCdO3emcIr3awsVKsTRo0fx9vamQ4cOhISEULt2bSpXrkzz5s2ZPXs2tra23L9/n3379tGiRQsqVNDee7E2efLkIU9CJzCJcj/N+OdMdHR0qN+yPbuD1lGkeEksihRj+/qVGJuZU6FKUm3jtFEDqFDFi3rN2wDQsFUHVsyejKWdA1Z2jvy4K4TY2Fhq1G+snm/jtj7s2LCa0lY2lLay5cShfdy/8y9DJ8wAUN/sJ8prYKBad8VKYGaR+e8rJ9elYzv8J02jnIM9zuUc2RSyjZiYWJo3VnUWNXbCFAoVMmfoANXn8Dq1b0v3PgPYELSFalU8OXDoJy5ducqEsaPV83z69BkPHj3k8RNVrd3thG8sm5uqetG/c/cu+w4epppnZYyNjLh+8yazFyzm6/Ju2Nlkzqd3dHR08PHxYfXq1ZQqXZrixYuzbNkyLCwsNJpF9/b1pWbNmrTv0AGAzp07ExAQgGO5cjg5ORG0eTMxMTE0a94cUHVC1aJFC+bNnYtRwYLkL1CAmTNn4uLqqr4Irly5MpaWlvj7+zN02DAU4eEsW7qUtu3akTvhiwohISEULVKEMmVVLTz+PHuWjRs30qFjR3XeOnXqRLeuXVmzZg1169bl4sWL7Nyxg4DxH/6pJx0dHdp26MiGb9dQsmQpihUvzqrlgZhbWFDdy1udblC/PtTw8qZ1u/YAtPfpxNSJ47F3dMSxnBNbg4OJjYmhcbJO8xTh4SgUCu4m9DVx6+YN8uXLT5EiRSholPRe+NnTp7h/7x5Nmmf+N+GTx9nRx4c1q1dTqpSq/AMTy987qfz79PbFu2ZN2rdXlX+nzp0ZHxCAo6Oq/IODEso/4bUCQ0NDmrdowbx5czEyKkj+/AWYNXMmLi5J5f/LL78QoVBQzqkc+QzycevWLRYsXICbmxvFihfXyOeePbtxdnbG2lp7a6GP1a1VE/xmL8XJzgpnO2s27tpHTOwrWtRXlfWYmYspZG7G8F4+AHRu2ZCuwyewbvtearh/zf5jv3Lx+t9MGqZ62GhsZIixkaHGMnLl0sPc1JiyJVWxFcifj3ZN6rJ0w1aKWJhRrLAFa7ep+pGoV6NylsSZUpcO7fCfPF11XHN0YFPIdmJiY2jeWNWPwNiJUylkYc7QAaq4OrVrTfe+g9gQFEK1KpU5cPiI6rjmN0o9T9Vx7VHq45qZqUbN+X937nL2rzACF8zJ8jg7d/IhYPwEyjk64uRUjs3BwcTExNC8WVMA/McFUKhQIYYMHgSAT4eO9PT1ZcPGTVSvVpUDBw9y6fJlAhJq4nV0dPDp2JHVa9ZQulQpihcvxrLA5VhYWFDT2wtQ3eD36uVL0aJFGT58mMarf4kP6atVq8rmoCBWrFxFg/r1efnyBYuXLqVY0aLY22t/wJRd8uTPh4V1GfXf5mVLUsLVkRcRUUTeuZ/2hNmgi08Hxk2cjKOjA87lHNkcHKI6XzdRXW+MHT+RwoUsGDJQ9Tlan/bt6NG7Lxs2B1G9ahV+PHiYS5evMH6sH6Aq704d2rPq23WUKllSVd7LV2JhYU5Nr6Trni1bt+Pq6kw+g3ycDA1l/qIlDBk0gIKGqmNBytZ3UVFRAJQtW0adJlPXQ4e2+E+ZkbB/27Np6w7V/t1I1Qpu7KRpFLKwYGh/VQuCTu1a073fYDYEbaVaFQ8OHD7KpSvXmDAm6ZOO6v074T322/+qvhyQfP/e/cN+LMuUxtTYmHMXLjFrwRI6t29D2dKlMj3G96Wjo0P7jj6sXbOakqVKUaxYcVYsX4a5hQU1kp3T+/fpjZd3Tdq2V53TO/p0ZtKEABwcHSlXzomQ4CBiYmJo3DTpnB4eHk6EIpw7CV9RuHnjJvnz56NwkaIYGWn29ZLT5dRm8Z8rucnPgIIFC3LixAkWLlzIs2fPKF26NPPmzaNBgwZs3bo1w/PLly8fBw8eZMiQIVSsWJF8+fLRqlUr5s+frzV9kSJFOHr0KF5eXvj4+BAcHMz+/fvx9/ene/fuPHnyhCJFilC9evVUDwk+pSbtOvMqNoY1C2bwMjoaWydXxsxcRO7cSQ8RHt2/x/OnUeq/K3vX4dnTKHasX0VUpILSVraMmbEQI5Oki74GrToQ9/o1m5Yv5MXzZ5SytMFv1mIKF8t4s/TMVr9ObSIio1i2ag3higjsbW1YsWieuhnbg0eP0NFNet/MzcWZmVMmsnTFKhYFrqR0yRIsmjMDG6ukZuXHfvmFgMnT1X+P8le9btCvVw/69+6Jvr4+J0+dYfOWbcTExlKkcCHqeHvRu0e3TI2tW/fuxMTEMGXyZJ4/f0758uUJDAzUeCh05+5dIhMuSADq1a9PZGQkywMDCQ8Px87OjsDAQI3O+EaOGoWOri4jRozg9evXeHp6MtbfX/27np4ei5csYdq0aXTt0gUDAwOaNGlC//791WnilUoWL17MvXv3yJUrFyVKlGDI0KG0bp1U6+Hk5MT8+fNZvHgxq1aupHjx4oz65hsaNfq43ro7de1GbGwMs6ZPJfr5c1zc3Ji/eJnGerl39476Qg2gdt16REVGsnrFciIUqqb985cs02iuv3vnDtauXqn+u7+v6tu6/hMm0ahJU/X477/bg7OLK2XKaL7Cktm6dVOV/9QpqvJ3K1+eZSnL/85dopI1T69XL6H8lweiSCj/ZSnLf+QodHV0GZms/P3GJpV/3rx52LVrF3PnziUu7jWFCxemZq1a9OjeQyN/z58/58iRI4wa9U2WrYMG3lWIePqMJetDCI+Mwt6qDCtn+Kub6z94HK5RC1u+nD2zxw5h8boQFq4NpnTxoiyZ9A02ZTN2ETuyd2f09HQZM3MJsa9f42Jvw9q5EzEyLJCZ4aWpfp1aRERFsWzVtwnHNWtWLJz7juPaBJauWM2i5atUx7XZ01Mc134lYMoM9d+jxk0EoF+v7vT3TSrb3d/vo3AhCzzd0/+EaGaoX68ekZGRBC5fTnhCk/rAZUvV2+vDhw81ytfNzZUZ06exdJmqU7xSpUqxcP58bJJ917x7t67ExMQweepU1XHTzY3AZUvV+83Jkyf5784d/rtzh7r16mvkJyzhM5HulSoxY/p01m/YwPoNG8ibNy+uLi4ELlua5Z/DzajSFVwYfjxE/XebBQEA/LF+Bxu6j0xrsmxRv24dIiOjCFyxSlXetrYsX7IwWXk/0ixvVxdmTpvCksAVLF62nFIlS7Jo7mxsrJNalHXv2pmY2BgmT5/B8+fRlHdzZfniRRrHyQuXLhG4ahUvX8ZQtkxpAsaOoUkj7R1vfgr169RU7d+r16r2bxtrViyYk7R/P3yMjk6y9eDixMzJASxd+S2LVqxO2L+npdi/fyNg6kz136MCVK+B9uvZjf6+3QHVjf+iwNU8ffaM4kWL4NutE106tP0UIaerS9duxMbEMH3qFKKfP8fVrTyLlgZqOacnPZCrk3DsWLV8OQpFOLZ2dixaqnmu27VjO2tWJZ3T+/RSHefGT5yk8TBAiMymEy+9t4g0nL0Tld1ZyBbOBb/MDlje5vk0Nw6fm5dxGW+xkhMY5Poy39bKE34ju7OQLd4aZt+D3+ykzP3uPmlyoqH5P+7Vr/9Xi56dy+4sZAudN5n36dz/JzG5v6ya8ERG+Q2yOwsfZOaxz/f8O8Y7a1oCZiepyRdCCCGEEEIIkWWkuf6n9WVW5QghhBBCCCGEEDmQ3OQLIYQQQgghhBA5hDTXF0IIIYQQQgiRZaS5/qclNflCCCGEEEIIIUQOITf5QgghhBBCCCFEDiHN9YUQQgghhBBCZBlprv9pSU2+EEIIIYQQQgiRQ8hNvhBCCCGEEEIIkUNIc30hhBBCCCGEEFlGmut/WlKTL4QQQgghhBBC5BByky+EEEIIIYQQQuQQ0lxfCCGEEEIIIUSWkeb6n5bU5AshhBBCCCGEEDmE3OQLIYQQQgghhBA5hDTXF0IIIYQQQgiRZaS5/qclNflCCCGEEEIIIUQOITf5QgghhBBCCCFEDiHN9YUQQgghhBBCZJk30lz/k5KafCGEEEIIIYQQIoeQm3whhBBCCCGEECKHkOb6QgghhBBCCCGyjPSu/2lJTb4QQgghhBBCCJFDyE2+EEIIIYQQQgiRQ0hzfSGEEEIIIYQQWUaa639aUpMvhBBCCCGEEELkEHKTL4QQQgghhBBC5BDSXF+kKfr1m+zOQrZ4k7tAdmchW3ypzah0sjsD2eRt/JdZ3m9My2R3FrJFvM4X+kz/C4170bNz2Z2FbDGkoFt2ZyFbLDo8IbuzkC30q3TI7iyIDPhSrzuyy5d59hNCCCGEEEIIIXIguckXQgghhBBCCCFyCGmuL4QQQgghhBAiy3ypr4VmF6nJF0IIIYQQQgghcgi5yRdCCCGEEEIIIXIIaa4vhBBCCCGEECLLSHP9T0tq8oUQQgghhBBCiBxCbvKFEEIIIYQQQogcQprrCyGEEEIIIYTIMtJc/9OSmnwhhBBCCCGEECKHkJt8IYQQQgghhBAih5Dm+kIIIYQQQgghssxbpTK7s/BFkZp8IYQQQgghhBAih5CbfCGEEEIIIYQQIoeQ5vpCCCGEEEIIIbKM9K7/aUlNvhBCCCGEEEIIkUPITb4QQgghhBBCCJFDSHN9IYQQQgghhBBZRprrf1pSky+EEEIIIYQQQuQQcpMvhBBCCCGEEELkENJcXwghhBBCCCFElnkjzfU/KanJF0IIIYQQQgghcgi5yRdCCCGEEEIIIXIIaa4vhBBCCCGEECLLSO/6n5bU5AshhBBCCCGEEDnEZ12T7+XlhZubGwsXLszurGSpiRMnsmfPHs6dO5fdWckU8fHx7N28hl8OfE/Mi+dYObrgM2AkhYuXTHe6Y9/v5NDOYJ5GRlCirDUd+g2jrJ0jAOGPHjC2e2ut0/X2m0KFajVV/29YJdXvvUZPolKN2h8ZVWrx8fEsXx7I7l27eP78Oa5ubowd60/p0qXTnW5rSAgbNmxAoQjH1taW0aPH4OTsrP791atXzJ83j4MHD/D69Wsqe3oydqw/ZmZmAERFReE/1o/rN27wNCoKU1NTvLy8GDhoMAUKFABgfEAA33+/N9WyLS0t2blr90fHvXL5cnbv3kX08+e4uroxZuxYSr0j7m1bQ9i0YQMKhQIbW1tGjR6Nk5Nm3Avnz+PQwYO8fv0aj8qejBk7Vh3393u/Y9KECVrnfejIUUxNTZk4PoAfvv8+1e+WlpZs27nrI6JOLT4+ntUrl7N3926eRz/HxdWVb8aMpWSp9NfDjm1bCdq0gQiFAmsbW4aPGk05Jyf173t27eTQgR+5du0qL1+84NCxExgaGmrMo0WThjx88EBjXL+Bg+jSrUfmBZjgcy7v5M6d+4s+vXphZWVF8NZtHxk1hGzdxvqNmwhXKLC1tcHvm1E4JyunVHk6/BNLly/n/v0HlCpVkmGDB1GtalX17/Hx8QSuWMnO3bt5/jwaN1dXxo0dQ+lSpdRp6jdqwv0U5Tpk0EB6du+m/vvgocOsWbuOf//7FxNjE9q3a0v3rl0+Ot6kuLeyYcPGhLhtGTP6m3fEfZhlgcu5f/8+pUqVYujgwVSrliLu5SvYtXs3z58/x83VFf+xYyldulSqeb1+/ZpOnbtw7fp1toZswd7ODlBtK1OnTefylSv8888/VK9WjYUL5mdazAAhCcflpLhH45zsuJwq7kOHWBYYmBT3kCFUq1YtRdzL2ZVwfnBzc0uIW7Xf3Lt3j1WrV3Pq1CkUCgUWFhY0atgQX19f9PX1ATh9+jSbg4K4ePEi0dHRlC5Viq5du9KoUaPMi3vbdtZvClLFbWOD36gRODuVSzvun46wdPlK7j94QKmSJRk2aADVqiadd+Pj4wlcuYqdu7/jeXQ0bq4ujBvzjcZ2fvnqVRYuXsaly5fR1dOldk1vRg0bSr58+VItLyrqKa07+vD48RN+PfYTBVMcC7ObdbVK1B3Vm1JfO2NcrDDLm/cm7LtD2Z2t9xby81nW/xRK+LMX2BYvhF/bOjiXKZZm+kN/XmXpDye4r3hKqUKmDGvmRTUnK/XvimcvWLDnGH9cvc3zl7F8ZV0Sv7Z1KF3INNW84uPj6R+4nd8u/83C3i2p6WqbJTEmLis7rteuXbvGunVrOffXX0RFRVGsWDFat25DRx8frcs799df9OrVEysra7Zu+/jzmPiySU1+Fnr9+vUnXV58fDxv3rz5pMvU5uCOII7u3UGngaPwW7CaPHnzsihgOHGvX6U5zemff2L76iU07tiDcUvWUtLSmkUBw3kWFQmAqXkh5mzeqzE07dSTPAYGOFXw0JhXt2FjNdKVr1xN2yI/2vr169gSvIWx/uPYuGkzBgYGDOjfj1ev0o7z4MEDzJs3lz59+hC8JQRbWzv69+9HRIRCnWbu3DmcOPEzs+fMYc23a3ny5Akjhg9X/66rq0sNL28WLlzEnu/2MmnyFEJDQ5k2dao6zahvvuHwT0fUw4GDhzAyMqJOnbofHfeG9esJ2RKM31h/1m/cRF4DAwYN6J9u3IcOHmTBvHn49unD5uAt2NraMqh/fyIiItRp5s+dy4kTJ5g5ew6r1nxL+JMnjBqRFHeduvU4cPgnjaGypydfff21+oZv5KhvNH7fd+AgRkZG1KpT56PjTmnzhvVsD9nCN35j+Xb9RgzyGjB00IB018NPhw6yeME8evr2Yf3mYGxsbRk2SHM9xMbG4uHpSdfu6d+w+/btxw8HDquHNu06ZFpsyX3O5Z3o+fNnTAgIoGKlSpkS84GDh5gzfwF9e/uyNXgzdja29B0wCEWy/Cd3LiyM0WP9adGsGduCg6jp5cWQ4SO5cfOmOs26DRsI3hJCwFg/gjasx8AgL30HDEq1Hgf068vRQwfUQ4f27dS//fLbb/iNG0eb1i3ZtW0r/n5j2BwUzJaQrZkU90HmzptPnz69CQkOxs7Whn79B6Qd97kwxviNpUXzZmzdEoy3lxdDhw/XjHv9BrZs2cK4sWPZvHEDBgYG9BugfT9ZsHARFhYWqca/VSrJkycPHTu0x909c8o4OVXc8+jTpw8hW7ZgZ2tLv/7904n7HGP8/GjRvDlbQ0Lw9vZm6LBhKeJez5bgYMb5+7N50yZV3P2T9pvbt2+jVCoJGDeOXTt3MmrkSLbv2MHiJUvU8wgLC8PGxoZ5c+eyY/t2mjVrxriAAH4+cSJz4j50mDkLFtHXtydbN2/AztaavoOGpLOdn2e0fwAtmjVhW9BGanpVZ8jIb7hx81ZS3Bs2ERyyjQC/0QSt/xaDvHnpO2iIOu7HT57Qu/8gSpYsweb1a1m+eBG3bv3DuImTtS5zwpSp2FpbZ0q8WSFP/nzcDbtCyIDx2Z2VDDtw9gpzdh2lb8OqbB3THbsShei7dCuK5y+0pj/3911Gr/uOFpVd2ebXnZouNgxZtZMb958AqmvQIat2cjc8ikV9WrHVrzvFTI3ovTiEl69SXw9vPnYanSyNMEl2Xa9duXIZUxNTpk6bzo6du+jZqxdLliwmJGRLquU9f/aMgIBxVMqk89jn6K0y/rMdcqLP9ia/W7du/PzzzyxatAgdHR10dHS4ffs2Fy9epEGDBhQoUIDChQvTuXNnwsPD1dN5eXkxaNAghg4diomJCYULF2b16tW8ePGC7t27Y2hoiLW1NT/++KN6muPHj6Ojo8O+fftwcXEhb968eHh4cPHiRY08/frrr1SrVg0DAwNKlizJ4MGDefEi6WBYpkwZpkyZQpcuXShYsCC9e/cGYPTo0dja2pIvXz4sLS0JCAggLi4OgPXr1zNp0iTCwsLUca5fv57bt2+jo6OjUbsfFRWFjo4Ox48f18j3jz/+yNdff02ePHn49ddfUSqVzJgxg7Jly2JgYICrqys7duzI7CLSKj4+np/2bKNR+664Va5GibLWdB8RQJQinL/++CXN6Q7v3krV+k2oUrcRxUqVxWfgKHLnycNvh34AQFdPDyNTM43hr99PUKFaLfIaaD79N8hvqJFOP3eeLIkzOCgIX19fvL29sbW1ZcqUqTx58oRjx46mOd3mTZto2bIlzZo3x8rKCv9x48ibNy979uwB4Pnz5+zZvZvhI0ZSqZI7jo6OTJo0mbCwc5w/fx6AggUL0rZtW8qVK0exYsVwd3enTdu2/PXXn+rlGBoaYm5urh4uX7rEs2fPaNqs2UfHvSU4iJ6+vnh5e2Nja8vkKVN48uQJx48dS3O6oM2baN6yJU2bNcfSygo/f1XcexPijn7+nO/27GbY8BFUrFQJB0dHJkyaxPmwMC4kxJ03b16NmPR0dTl96hTNmrdQL6dAirivXE6Iu+nHxa1tPWzdEky3nr5U9/LG2saW8ZOnEP7kCSeOp70etgRtpmnzljRu2oyyllZ84+dPnrx5+WHvHnWa9h196NKtB05OLunmIV++/JiZm6sHAwODzApP7XMv70TTp06jfv0GOLukv87e18agIFq1aE7zZk2xsrQkwN8Pg7x52fNd6tYxAEHBIVSpXJnuXbtgaVmWgf374WBvT0hCi4L4+Hg2B2/Bt1dPvL28sLW1YdrkyTx58oSjCcfzRPny5dOIO1+ycv1h3368vbxo27o1JUqUoHq1qvTs0Y21GzYSH//xFymbNgfRsmULmjdrhpWVJeP8/ROOT99pj3tLMJ6elenWtSuWlpYMHNAfBwd7QhIeOsTHxxMUHIyvby+8vb2wtbVl6pSEuI9pxv3rr7/xx8k/GD5sWKrl5DMwYJz/WFq1bIm5mflHx5nSpoTjcvOE4/K4FMfllIKCg/H09KRbt24JcQ/AwcGBkJAQICHuFOeHqQn7zdGE/aZKlSpMmTwZT09PSpQogZeXF127dOHIkSPq5fTq1YuBAwbg5uZGyZIl8fHxoYqnp0aaj7ExaAutmjejedMmqu3cb4xqO9+bujUUQFDIVqpU9qB7l85Yli3LwH59cbC3I2TbdnXcm7eE4NuzO95eNbC1sWHa5Ik8eRLO0eM/A3Dil1/JlUsP/9GjKFumNE7lHBk3djQ/HT3Gf3fuaCxv646dPH8eTdfOnTIl3qxw6cBx9gbM49yeg9mdlQzbeOQUrTxdaV7ZBaui5gS0r49Bbn32/HFea/qgY2eo4mhJ9zruWBYxZ2CT6jiULELIz2cB+PdxJOf/uc+49vVwKl2UsoXNGNe+HrFxb/jxzBWNeV2984gNR04zuVPDLI8zO6/XmjdvwTejR1OhQgVKlChBo0aNadq0GUe17MNTp02lfoMGuLi4Zsl6EF+ez/Ymf9GiRVSuXBlfX18ePHjAgwcPMDQ0pGbNmpQvX54zZ85w4MABHj16RNu2bTWm3bBhA+bm5pw6dYpBgwbRr18/2rRpg6enJ3/++Sd169alc+fOvHz5UmO6UaNGMW/ePE6fPo2FhQVNmjRR34zfunWL+vXr06pVK86fP8/WrVv59ddfGThwoMY85s6di6urK3/99RcBAQGA6oZr/fr1XL58mUWLFrF69WoWLFgAQLt27RgxYgTlypVTx9muXTsyYsyYMcycOZMrV67g4uLCjBkz2LhxIytWrODSpUsMGzaMTp068fPPP2dovh8i/OF9nkUqcHCroB6XL38Byto58veVi1qneRMXx383r+HgVlE9TldXFwe3Cvx9Vfs0/964yp2/b1C1buNUv21ZPo9h7RsyfWgvfj30Q6Zc/KZ07949wsPDcXd3V48zNDTEydmZ82HaT5BxcXFcuXIFd/eklge6urq4u3uoTwhXrlzmzZs3eCSbb9myZSlStCjnw8K0zvfx48ccPXKUr7/+Os387tmzG3d3d4oVS7sZ3vu4d+8eivBwKiXLXwFDQ5ycnLlwXnv+4uLiuHrlisa60tXVpZK7e7K4r/DmzRvcPZLSlClbliJFinI+jfnu++EH8ubNS63aab+K8d2ePVRyd6foR8ad0v1791AowqlYKdl6KGCIo5MTFy+kXf7Xrl6hYor1ULGSOxfPa58mPZs2rKNeLS+6dGzP5o0bsqQVz/9Dee/9bg/37t3Ft0+fD44zZf6vXLmqsQ+q9tNKhKVRTmEXzqeqYfasXJmw8xeAxOOFAo9kaQwNC+Ds5KROk2jt+g1U865F2w4dWbdho0a5vn79mjy5c2ukz5MnL48ePUrVzD+jEo9PKeP2SFZuKZ0/f0EjPajiTkyf1nHS2clJY54KhYJJU6YwbcpU8hrk/ag4MurD4j7/YXE7O6d5HAeIjo7GyMgo3fw+f4807yMuLo4rV69qbJO6urq4V6qYaptMFHb+Au6VKmqM86zsQdiFxO38PuEKBR7JaiINCxTA2amcOs3r13Ho6+ujq5t0+Zk3j+pB/F/nktbNrb//ZuXqb5k2eQK6Op+qvvfLEffmLVfuPMTDvox6nK6uDu72ZQj7+57WacL+uY+7XRmNcZ4OZQn7R5X+dcKxKo9+0pvAuro65M6lx1+3kh7gxLyOY8z6vfi3rYO5UYFMiihtn9P1GkB09HMKptiHv9uzh3t379KnT98PilEIbT7bm3wjIyNy585Nvnz5KFKkCEWKFGH58uWUL1+e6dOnY29vT/ny5Vm7di3Hjh3j+vXr6mldXV0ZN24cNjY2+Pn5qWuEfH19sbGxYfz48SgUilQn8AkTJlCnTh2cnZ3ZsGEDjx49Yvdu1fvLM2bMwMfHh6FDh2JjY4OnpyeLFy9m48aNxMbGqudRs2ZNRowYgZWVFVZWqveUxo0bh6enJ2XKlKFJkyaMHDmSbQnv2hgYGFCgQAFy5cqljjOjNXKTJ0+mTp06WFlZkT9/fqZPn87atWupV68elpaWdOvWjU6dOrFy5coPKouMeBapauZnaKLZnLagsSnPIhXaJiH6WRRK5VsKppjG0NiUp2k0G/z10A8ULVkGK0fNdyabdupF7zFTGDZtIV9V8SJ42TyO7s38VgyJrUdME967SmRmaoZCEa5tEiIjI3n79m3qaczMUCTMTxGuQF9fH8OCBVPM1zTVfMeMGU1lD3fq1a1D/gL5GT9hotblPn78mN9++40WLVq+d3xpScynmalmDKZmpigU2ss3KjHuVNMkrSuFIlwVt2HBFGnSnu93e/ZQv0ED8ubVflPw5PFjfv/tN5q3SF3z+7ES821qprnNmpqapb0eohLXw/tPk5a27TowZdpMlq1YRfOWrdi47luWLV6YoXm8j8+9vP/791+WLl7MlGnTyZUrc7qYiYyK4u3bt5ilKCczU1PC08hbeLgCsxTbgplZUvrEf1OuRzMzUxThSfPs2KEds2dM49uVK2jdqiVr1q5jwaLF6t+rVK7MT0ePcTL0FEqlktv//svGTZtVy3ii/bjzviIj04jbLL24w7XEZJYUd3hi3CnnaUZ4wrYQHx9PwPgJtGndmnLlHD8qhg+ReFw203JcTt5KMLnw8PB00yf+mypNOtvQf//9x5aQEFq3apVmXg8ePMilS5do1rRp+kG9h/S3c+3n3XCFIt39Qr2dp9wXTE1RJMyzUsUKKMIVrNu4ibi4OJ49e8bCJcsAeJKw3l6/fs1o/wCGDxlE0SJFPjJSoU1k9EveKuMxM8yvMd7MMD/hz7Q31w9/Fo1ZwRTpCyalL1vEjKImBVn03c88exlL3Ju3rD10kkdRzzXmOWfHEVwti+Odhe/ga+T7M7heS3Tu3DkOHTpEq5ZJ+/m///7L4sWLmDY9885jn6vsbpL/pTXX/7/amsLCwjh27Ji6c7Hkbt26ha2t6oDhkqzJpp6eHmZmZhod6BQuXBhQ3fwkV7lyZfX/TU1NsbOz48qVK+plnz9/nqCgIHWa+Ph4lEol//zzDw4ODgBUqFCBlLZu3crixYu5desW0dHRvHnzhoIpDgofI/kyb968ycuXL6mT4h3k169fU758+TTn8erVq1TvJr1+9YrcedJv6h567CCbl8xR/z1w0px0UmeO169ecer4YRp16Jbqt8Ydu6v/X8rKllexMRzaGUytZm0+apn79+1j6tQp6r8XL1n6UfPLDCNHjqJPn778+++/LFm8iHlz5zLW3z9Vuu+//x5DQ0O8a9bM8DJ+3L+P6cne9V+4eEk6qT+d82Fh/PPP30xOlreUfvj+ewoYGuLlnfG4Uzr4435mTU9a1tyFi9NJnfU6dOqs/r+1jS36+vrMmj6NfgMHkztFTW9G/D+V99u3bxk31o/effu9s/Ok/xddOiU1S7a1tUE/lz5Tpk9nyKCB5M6dm1YtW3Dn7l0GDR3GmzdvyJ8/Pz4d2rN85Sp0dD/bZ/bpCt4SwouXL+nZo/u7E+dQjx49ov+AAdSpU4dWadzknzp9mvETJjBh/HisP+N31N/F2sqSKZMmMHfBQhYvW46uri4d27fFzMwUXR3VNrxoaSCWZcrQuGGDbM6tyAh9PT0W9G7JhM37qTpqIXq6OrjblaGqoyWJt1DHzt/g1PV/2TYm6/b3z/F6DeDmzRsMGzaU3n36UNnTE1Cdx8b6+dG3Xz9Kly6TvRkUOc7/1U1+dHQ0TZo0YdasWal+K1q0qPr/iT3TJtLR0dEYp5PQ9EupVGZo2X369GHw4MGpfiuVrNfY/Pk1n3L+8ccf+Pj4MGnSJOrVq4eRkREhISHMmzcv3eUlNmVL3tQ88dWBlJIvMzo6GoB9+/ZRvHhxjXR50rlhnzFjBpMmTdIY13XQKLoP+SbdfLq6V6WsXVJPvG/iVJ2rPI+MwNg06d3JZ1ERlLS00TqPAgWN0dXVU7cCSPQ8KgKjFLUGAGd/PcbrV7FUrlU/3bwBlLUrx74t64mLe42+/off/NTw8tLoUTUuoVPFiIRekRMpIhTY2dppnYeJiQl6enpEpKjJUSgUmJmr1pWZuRlxcXE8f/ZM4+mwIiICsxTvoia+s1u2bFmMjArSo3t3fHv31shPfHw83+3ZQ6NGjVPtF++jeg0vjR7RXyeUryJCgXmy5UQoIrC10/5U3jgx7gjNuCMUCnVMZmbmqrifP9Oo3Y1QRKSqDQPYs3s3tnZ2ODhqr/mLj49n73d7aNio0QfFnVLV6jVwTNbDeNzrOHX+zM2TrYcIBbZplL+xceJ60NzOIyIUWmPMiHJOzrx9+4YH9+9TukyZD57P/1N5v3z5gsuXL3Pt2jXmzJoJqI7p8fHxuFf4mqWByz+oIz4TY2P09PRSdT6miIjAPI1yMjc3U9dUqtMrktIn/quIUGBhYa6Rxi6N9Qjg7OzEmzdvuXf/PmXLlEFHR4dhQwYzeOAAwhUKTE1MOHnqFAAlShRPcz7vw8QkjbgV6cVtjiIi9fFMHbd5YtwRmsdJhQK7hJ7zT58+zfnz56nortmBakefTjRs0ICpU7R3yJZZEo/LKVuQKBQKzM21v/9vbm6ebvrEfxWpzg8R2Nlqlvfjx4/p5euLq6sr4xNe8UvpzJkzDB48mFEjR9KkSZOMBZiG9Lfz1OddUG3H6e0X6u1cEYFFsnWnijvp/N+ofj0a1a+HQqFQtVzU0WFT0Bb1NnzqzBlu3LzFYXfVjVDidVCN2vXo1aMbA/r0/pjQBWBSIB96ujqpOtlTPH+BeYra+kTmBQugSFHLr3immd6xVBG2j+3B85hY4t4oMTXMR8fZGyhXWnWNfur6v9wJj6TKqAUa8xm+ejdfWZdg7VDtvc5nxOd4vXbr1i369O5Nq5at8PVN2n5fvnjB5cuXuHbtKrNmap7HKnz9FYHLl1OpkuarQUK8r8/60X/u3Ll5+/at+u+vvvqKS5cuUaZMGaytrTWGlDfXH+LkyZPq/0dGRnL9+nV1Df1XX33F5cuXUy3X2to63Zqz33//ndKlS+Pv70+FChWwsbHh33//TTdOQH0gepDsPcv3+cSeo6MjefLk4b///kuVz5Il0/6EnZ+fH0+fPtUYfPoOeefy8ubLT6FiJdRD0VJlKWhixpWws+o0MS9f8M+1y1g6aP8MUy59fUpZ23E17Ix6nFKp5Mq5s1jap57mt0M/4OpeFUMjk3fm787fN8hXwPCjbvBB9SClVKlS6sHSygpzc3NCT4Wq00RHR3PxwgVcXLV3/qWvr4+Dg4PGNEqlklOnQtWtTxwcHMmVKxehCRfuoOqF+eGDB7i4pt0ZizKhqVFcii86nD1zhjt3/qN5i+YZjhlUcZcsVUo9WFpaYWZuzunQpPxFR0dz8eIFnNPoLEZfXx97BwdOJZtGqVRy+tSpZHE7kCtXLo00t2/f5uHDB6k6oXn58iU/HT6ktQO2RGfPnuHOnTvppsmI/PnzU7JkKfVQ1tISMzNzzpxOKssX0dFcvngRJ+e0y9/O3oEzKcr/zOlTOH1kh3E3rl9DV1cXEy0PxTLi/6m88+cvQMj2HQSFbFUPrVq3pnSZMgSFbNW4yMsI1X5qr7EPKpVKQk+dxjWNcnJ1diH01GmNcSdDQ3F1UeWhePHimJubaaSJjo7mwsWL6jTaXLt2HV1d3VRNpPX09ChcqBD6+vr8eOAgri4umJq8+3iYHvXxKTRl3Kc0Wscl5+LirLGeAE6eTDqeqeI215hnYtyJaUZ/M4ptW0PYGrKFrSFbWLpE1Upm9syZDBo44KNieh9Jx+WMxO2iJe6TqeM+lSLuCxc0juOPHj2iZ69eODo6MnnSJI331BOdPn2agYMGMXTIEFq31v4Z2Q+hr6+Pg729xjapVCoJPX06zW3S1cWZ0NNnNMadDD2Fq3Pidl4MczMzQk+n3M4vqdMkZ2ZmRr58+Th46DC5c+dW9w8wf/ZMtgdvZlvQJrYFbWLiuLEArF+9kvZtMm8dfMn0c+nhULIIodduq8cplfGEXvsXV0vtDwxdyxbTSA9w8uptXMumTm9okBdTw3z8+ziCy/89xNtF9ZCnZx0PdoztyTa/HuoBYFSrWkzulDmfhvzcrtdu3bxJb99eNGnSlIGDBmnmtUABtu/YQcjWreqhdes2lClThpCtW9P9jOf/o+xuki/N9T8jZcqUITQ0lNu3b1OgQAEGDBjA6tWr6dChA9988w2mpqbcvHmTkJAQ1qxZg56e3kctb/LkyZiZmVG4cGH8/f0xNzenefPmgKqHfA8PDwYOHEivXr3Inz8/ly9f5vDhwyxdmnZTIBsbG/777z9CQkKoWLEi+/btU7/nnzzOf/75h3PnzlGiRAkMDQ0xMDDAw8ODmTNnUrZsWR4/fsy4cePeGYOhoSEjR45k2LBhKJVKqlatytOnT/ntt98oWLAgXbt21Tpdnjx5UtX0586T8U8A6ujoULt5W/aHbKBQsRKYFy7Gd5tWY2xmrvEpu/l+g3HzrE7NJqoTdp0W7Vg3fxqlbewpa+vIT99t4/WrWKrU0TzoP75/lxsXzzFo0txUyw4L/ZVnkRFY2juhnzs3l/86zY9bN1K3VeZ/WkxHR4eOPj6sWb2aUqVKU7x4cQKXLcPCwgLvZM3D+/T2xbtmTdq3V+WhU+fOjA8IwNGxHE5OTgQHbSYmJoZmzZoDqvJr3qIF8+bNxcioIPnzF2DWzJm4uLiqTyy//PILEQoF5ZzKkc8gH7du3WLBwgW4ublRLEXrjT17duPs7Iy1tfZWFB8Sd4eOPny7ZjUlS5WiePHiLA9Uxe3l7a1O169Pb7y8a9KufXsAfDp1ZuL4ABwdHSnn5ERwcBAxMTE0Sejtv4ChIc2at2DBvHkYGRmRP39+5syaiYuLS6oe0w8dPMjbt29p2CjtXnm/27MHJ2fnLGvWqqOjQ7sOHVn/7RpKlixF0eLFWb08EHMLC6p7Ja2Hgf36UMPLmzbtVOuhg0+n/7F332FRXF0Ah3+gCIh0UBEpUhVB7AU11lhjjbFhjaLR2HvvLfbeG9iNUZNo7EZNNHbFhr13qQKCIOz3x+LCCpj4hWXNct7n2Sdh9s7sOTtzx71z79xh4rgxFPXyonhxbzZv3Eh8XBxfNUqd/T8sNJSwsDAeP34IwJ3bt8ib14QCBQtibm7O5UvBXL1yhTJly5I3rwlXLl9i3uyZ1K3fIEtvA3qf5+e6v/X19dPtX0srKwzz5PnX+72Dvz+jxo7Dy8sLn+LFWb9xI3FxcTRtrOxFHTF6DAXy56dvb+XEq/5tW/NtQDcC163niypV2LNvH1evXWNMSuNET0+Pdm3bsHzlKhwdHbAvZM+iJUuwtbWlZvXqAAQHX+LSlSuUL1cWk7x5Cb50memzZtOwQX3Vfo2IiOTAoYOUK1OWtwlv2fnLrxw4eIjVK7JmvpX27fwZPWYsxb288PZOk3cT5T3gI0eNJn/+/PTto/yh6t+mLV0CAggMWscXVauwNyXv0aNHqfL2b9uWFStX4uToiL19IRYtTsm7hjLvtKPwANWz0gs7FFbdWgdw585dEt8lEhUVReybN1y/cQOAop4Z98R9Ut7t2zN69OiUvL1Zv2FDSt5NUvIelZK3ciSff9u2dOnalcCgIL6oWpW9e/cq8x4zJjVvf39WrFiRkrc9i1L+faiZUm9evHhB165dsStUiAH9+xMREaGK5/1IgNNnztC7d2/827aldu3aqnuLDQwMsmTyvQ7+bRg1bgJeXsXwKe7F+o2biYuLp2kj5YS2I8aMo0B+W/qmXGzxb92Kb7t9R+D6DXxRpTJ79h3g6rUQxowYrsq7XZvWLF+1BkcHB+X+XrIMW1sbalavpvrcTVt+xNfXh7zGeTl56hSz5y2gb+/vMTM1BcChcGG1OCMjIwEoUsRZVeZzYWiSF1s3Z9XfNkUcKOzrRWx4JBGPnmovsH+gQ63yjArahZejHT7Odqw/fJa4twk0rag8B48I/JUCFqb0bVIdAP8aZfl2zkYCD57iC2839py7xtWHzxjTNnVU5f7z17HMZ4ydlTm3nrzkh20HqeHrjl+xIgDYmOfLcLI9OyszCttYaCRPbf5eu337Ft0CAvDz86NdmqeB6evrY2VllfLvmPrvMysrK/LkMcyy320i5/qsG/mDBg2iY8eOeHl5ERcXx7179zh+/DhDhw6lTp06vH37FicnJ+rVq5fhFfBPNW3aNPr27cutW7coWbIkv/76q6qXvkSJEhw9epSRI0dStWpVFAoFrq6ufzsTfuPGjenfvz+9evXi7du3NGzYkNGjRzNu3DhVma+//prt27dTo0YNIiMjWbNmDZ06dWL16tV06dKFMmXK4OnpyfTp06lT5++fcz5x4kRsbW2ZOnUqd+/excLCgtKlSzNixIh/9f38U3Vb+PM2Po71C6bzJiYGt+Il6Dthltqj7F49e0JMVJTq73LVahP9OpJf1q3kdUQ4hV3c6TNhVrrJ+I7v34WFTX68SqcfhpsrV26O7NrO1hXzQQG2hez5JqA3Vev9+0mKMtKpU2fi4uKYNHEC0dHRlCxVikWLF6tdLHn06DGREZGqv+vWrUdERARLliwmLDQUT09PFi1erDZEedCgwejr6TNo4EASEhLw8/Nj+IjUe+2NjAzZvn07M2fOJDExgQIFClCzVi2+/eC56tHR0Rw6dIjBgz9+y8Wn6tipE/FxcUyZNFGZd8lSzF+knvfjR4+IjEz90Vqnbl0iIiJYumQJYWGheHh6smCRet4DBg1CX1+PIYOUeVfy82Po8PTH7C87d1CjZs10k7a9FxMdzeFDhxg0eHAWZp1eu46diIuPY9qUScRER1OiZEnmzF+k9j08efyIqJQfqAC16yi/h5VLlxAWFoa7hydzFixSm9xnx0/bWJWm0dYjoAsAo8aOp2GjxuTJk4eD+/exavlSEhITKVSoEK3a+tPGP/U+/az0ue9vTahXtw4REREsXrKU0LAwPD09WLJwgSr+58+fq/2bU9LXl2mTJ7Ng8WLmL1yEo6MD82bPxD3NxYbOHTsSFxfPhElTiI6OplTJkixZOF/1PRrkycPefftZumw5CYmJ2BcqRHv/tnRopz589ZdfdzNrzjwUCgW+JUqwavkyfLwzHiX16XnXTcl7SUrenixetDDzvEv6MnXKZBYuWsyChQtxdHRk7uzZ6nl36khcXBwTJk1S5b140cKP3j6WkV69e6s9QaBVyg/x4DSPDv1/qeWdcl5enOa8/PzZM7UZ3kuWLMnUKVNYuGgRCxYsUOY9Z84HeXdS5j1RWW9KlSrF4jT/Ppw8eZKHjx7x8NEj6tStqxZPcMqovV9/+YX4+HhWrV7NqtWrVe+XLVOGVatW/fu863xJREQki5cuV+5vDw+WLJibZn+/+OA4L8G0yRNZsHgp8xctwdHBgXkzp+Pu5pqad8f2xMXHMWHKVKKjYyhV0pcl8+ep7e/LV6+yePly3ryJo4izE6NHDKPRRy7afs6cypZgwJHNqr+/maO85eKvtdsI7DxIW2H9I/XKFCMi+g2Ld/1BaHQsnvb5WfJ9K9Xkes8jXqsf9y6Fmda5MQt+Pcb8X4/haGvJvG5f414odQj8q6gYZvx0iLDoWGzN8tGogjfd61fO9tw+pK3fawcPHCQiIoLdu3eze/du1XI7u0L8luZR3kJogp5CE88X+485cuQINWrUICIiAgsLC22H89k4euffzdb8X1WukOYf6fI5Ssqhp4LEpJyZt0GunPlYqjyKrH/U4H+BQu+zvjtPc3Jo3nrv3v59IR3U16yktkPQinkHxmo7BK1Iqpz1IzX/C/Jm86NGs0rthX9qO4RMHexVRdshZLmc+a+fEEIIIYQQQgihg6SRL4QQQgghhBBC6IjP+p787FK9enXkrgUhhBBCCCGEyHoKHZ3F/nMlPflCCCGEEEIIIYSOkEa+EEIIIYQQQgihI2S4vhBCCCGEEEIIjUmW4frZSnryhRBCCCGEEEIIHSGNfCGEEEIIIYQQQkfIcH0hhBBCCCGEEBojTzLLXtKTL4QQQgghhBBC6Ahp5AshhBBCCCGEEDpChusLIYQQQgghhNAYhcyun62kJ18IIYQQQgghhNAR0sgXQgghhBBCCCF0hAzXF0IIIYQQQgihMckyXD9bSU++EEIIIYQQQgihI6SRL4QQQgghhBBC6AgZri+EEEIIIYQQQmMUydqOIGeRnnwhhBBCCCGEEEJHSCNfCCGEEEIIIYTQETJcXwghhBBCCCGExigUMrt+dpKefCGEEEIIIYQQQkdII18IIYQQQgghhNAR0sgXQgghhBBCCKExycmKz/alKeHh4fj7+2NmZoaFhQVdunQhJibmo+V79+6Np6cnxsbGODo60qdPH6Kioj75s6WRL4QQQgghhBBCZCF/f3+uXr3KgQMH2LVrF8eOHaNbt26Zln/69ClPnz5l5syZXLlyhbVr17J37166dOnyyZ8tE+8JIYQQQgghhBBZJCQkhL1793LmzBnKli0LwIIFC2jQoAEzZ86kUKFC6dbx9vbmp59+Uv3t6urK5MmTadeuHe/evSN37n/edJdGvhBCCCGEEEIIjVFocFj8v/X27Vvevn2rtszQ0BBDQ8P/e5t//fUXFhYWqgY+QO3atdHX1+fUqVM0a9bsH20nKioKMzOzT2rggzTyxUc8eR2v7RC0ws8083tldFlSvgLaDkEr8r0N13YIWpGUz0bbIWiFflSotkPQimQTK22HoBUK/Zz5M0fvXc7893vegbHaDkEr+n45XtshaEXdy/W0HYJWNPO203YIOmfq1KmMH69ej8aOHcu4ceP+720+f/6c/Pnzqy3LnTs3VlZWPH/+/B9tIzQ0lIkTJ350iH9m5J58IYQQQgghhBA50vDhw4mKilJ7DR8+PMOyw4YNQ09P76Ov69ev/+uYXr9+TcOGDfHy8vq/LjbkzEvcQgghhBBCCCGyxec8XP9ThuYPHDiQTp06fbSMi4sLBQsW5OXLl2rL3717R3h4OAULFvzo+tHR0dSrVw9TU1N27NiBgYHBP4otLWnkCyGEEEIIIYQQf8PW1hZbW9u/LVepUiUiIyM5d+4cZcqUAeDw4cMkJydToUKFTNd7/fo1devWxdDQkF9++QUjI6P/K04Zri+EEEIIIYQQQmSRYsWKUa9ePQICAjh9+jTHjx+nV69etG7dWjWz/pMnTyhatCinT58GlA38OnXqEBsby6pVq3j9+jXPnz/n+fPnJCUlfdLnS0++EEIIIYQQQgiNSVZ8vsP1NWXDhg306tWLWrVqoa+vz9dff838+fNV7ycmJnLjxg3evHkDwPnz5zl16hQAbm5uatu6d+8ezs7O//izpZEvhBBCCCGEEEJkISsrKzZu3Jjp+87OzijSXPyoXr262t//hgzXF0IIIYQQQgghdIT05AshhBBCCCGE0JjPeXZ9XSQ9+UIIIYQQQgghhI6QRr4QQgghhBBCCKEjZLi+EEIIIYQQQgiNkeH62Ut68oUQQgghhBBCCB0hjXwhhBBCCCGEEEJHyHB9IYQQQgghhBAakyzD9bOV9OQLIYQQQgghhBA6Qhr5QgghhBBCCCGEjpDh+kIIIYQQQgghNEahkOH62Ul68oUQQgghhBBCCB0hjXwhhBBCCCGEEEJHyHB9IYQQQgghhBAao0jWdgQ5i/TkCyGEEEIIIYQQOkIa+UIIIYQQQgghhI6Q4fpCCCGEEEIIITQmOVlm189O0pMvhBBCCCGEEELoCGnk/wfcv38fPT09Ll68qO1QhBBCCCGEEEJ8xmS4vtAKhULBkR/Xcv7wb8THxuDg6U3DLn2xtiuc6ToPQi5x4tctPL13i5iIMFoNHE/RclWyMepPs2n7L6zZtI3Q8HA8XV0Y0a8nPl5FMy2/7/djLFwZyJPnL3AqbE//77rwRaXyqvcXrV7H3kNHeP7yFQa5DfDydKNPQGdKFM98m9lBoVCwbMkSduzYTkx0NL6+JRk2YgSOTk4fXW/rls2sCwwkLCwMdw8PBg8dire3j+r9t2/fMnf2LPbv20dCQgIVK/kxbMQIrK2tVWVOnzrF0sWLuH37NsbGxjRs1Iie3/cid27Nn9o2/bSTtRu3KvevmyvD+/f++P49fJSFK9bw9PlzHAsXpn+PAL7wqwBA4rt3LFi+mj/+Os2Tp8/IZ2JCxXKl6fddV/Lb2qht59iJkyxds46bt++SxzAPZUuWYP60iRrLU6FQsGTxYrZv3050dDQlS5ZkxMiROP3N/t28eTOBgYGEhYbi4eHB0GHD8PFR37+zZs1i3969JCQk4Ofnx4iRI1X798aNG6xZvZoLFy4QGRlJoUKFaPHNN/j7+6u2ceH8eebOm8f9e/eIj4/Hzs6Or1u0oH379ln+PWza/gtrNm8jNDxCWZ/79sTHyzPT8vt+P8bCVUHK+mxvT//vvk1fnw8f/aA+d6JEyjH05NlzlgZu5PT5YELDI7C1searOjXp3r41BgYGWZ7fe5u3/sjaoPWEhoXh4e7O8CGD8PEunmn5/QcOsnDJMp4+e4ajgwP9+/SiapXKqvcVCgWLly7npx07iY6JoaRvCUYNH4qTo6OqzP0HD5g9bwEXLwaT+O4dHm5ufN+jO+XLlQUgMjKSYaPGcOvWbSKjorCysqRGtWr0+b4H+fLly5q8t2whMDBImbeHB8OGDsHH2/sjeR9g0eIlPH36FEdHR/r16UPVqqn/HikUChYvWcr2HTuU9cbXl5EjRuDkpMz7ydOnLF++gtNnzhAWFoatrS0NG9QnoGtXtf2rUCgIWreObT9t59mzZ1hYWNCq5TcEdO2aJXl/aNO2Haxdvzn1vDawLz7Fi2Vaft+h31m4fDVPnz3H0cGe/t9/xxd+FVXvH/z9GFt3/My16zeJev2aH4NWUtTDXW0bjx4/YeaCxVwIvkxCQiKVK5Vn+IC+2FhbaSTHjGw+eo61B08R+joWD/v8DG/5JT7OhTItv//8dRbuOsbTsCgc81vRv0l1qnq7qt4Pex3LnJ2/89f1+0S/iae0mwPDW36JU/70OSkUCnou/pHj1+4yt1tzavp6aCTHrORWtTx1BnfDsYwPFoUKsKRpN4J/3q/tsP4xhULBgc1rOHNwF3FvYnD29KZptwHYFMr8NyjAX3t2cPTnzcREhmPn7EbjLn1wcE+tH2HPn7A7cAkPrl/mXWIiHiXL07hrH0wtUvd74NQRPL1/m9ioCIxNTHErUYb67btjZmWT0UfqFIUM189W0pMvtOL4L5s5tXcHDbv2o+ukheQxNGL91GG8S0jIdJ2E+DgKOLnSoHOfbIz0/7Pn0BGmL1xOj07+/LhyEZ5uLnQfOJKwiMgMy1+4fJUh46fSrGE9fly1mJpV/egzYjy37t5XlXF2sGdE/+/ZHriMoMWzKFSwIN0GDic8k21ml8C1a9m8aSPDR4xkbdA6jIyN6f19T96+fZvpOvv37WPOrFkEdO/O+o2b8PDwoHfPnoSHh6vKzJ45k2PHjjFt+gyWr1xF6KtXDB44QPX+zRs36Nu7F5X8KrNh02amTPuBY0ePsnD+fI3mC7D34O/MWLCU777twNbVS/Fwc6X7gKGERURkWP7i5asMHTeJ5l/V58c1y6hZtTJ9h4/h1t17AMTHxxNy4xbdO7Vjy+qlzJkyjvsPH9F76Gi17Rz4/RjDJ0yjaYN6bAtczrol82jwZS2N5rp2zRo2btrEyFGjWLd+PcbGxvTs0eOj+3ff3r3MmjmT7t27s2nzZjw8PenZowfhYWGqMjNnzODY0aPMmDGDVatX8+rVKwYMSN2/IdeuYWllxeQpU/hp+3a6du3Kgvnz2bxpk6qMsbExrVu3ZtXq1WzfsYOAgAAWLVzItm3bsvQ72HPoKNMXraBHp3b8uHKhsj4P+lh9vsaQCdNo1rAuP65cRM2qlegzcsIH9bkwI/r1ZPvapQQtmkmhggXoNnAE4ZHKbd57+BiFQsGYQX3YGbSMob26sfXn3cxdvjZLc0tr7/4DzJg9l++6dWXLhiA8Pdz5rlcfwtLUy7QuBl9i6MjRNGvamK0b11GzejX6DhzMrdt3VGXWBAaxcfMWRo8YxobA1RgbG/Ndrz5qx0/vfgNIepfEymWL2bw+EA8Pd3r1G0BoaCgA+vr61Kj2BfPnzOTXHduYOG4MJ0+dZuKUaVmT9759zJw1m+7du7F540Y8Pdzp0fP7zPO+GMyw4SNo1rQJWzZtpEb16vQbMIBbt2+n5r02kE2bNjFqxAjWBwVibGxMj++/V+V9/949khXJjB41ku3bfmTwwIH8uO0n5i9YqPZZP0yfwfYdOxnYvz87d2xn/tw5eH/k4sO/+h4OHGbGvEV817UjWwNX4OHuSvd+gwgLz+S8dukKQ8dMpHmjBvwYuIKaX1Sl75CR3LpzV1UmLj6OUr4+9P++e4bbeBMXR7e+g9BDj5UL5xC0fCGJie/oPXg4ycnZ87ytvedCmLH9MN81qMKWYZ3xLJyf7xZuISw6NsPyF+8+Zuian2lWyZetwztTs4Q7fZf/xK2nrwBlA7Lv8p94HBrJvO5fs2V4ZwpZmdNt/mbevE3/G2f972fQ02iGWc/QJC+Pg0PY/P0YbYfyfzm6cxMnfvuJpt0H8P3UJRgYGbN64mASEzL/dy34+GF2rV1M7Zad6D1jBXZOrqyaOJiYKGX9SIiPY9WEwejp6REwbg49Ji8k6V0igVNHqB3LLt6l8B84loHz19Fu8ATCXjxl/cyxGs9Z5DzSyM8G1atXp1evXvTq1Qtzc3NsbGwYPXo0CoXyipaenh47d+5UW8fCwoK1a9dmuL2IiAj8/f2xtbXF2NgYd3d31qxZo3r/0aNHtGzZEgsLC6ysrGjSpAn379/XUHafTqFQcGrPdr5o1o6iZStTwMmVpt8PJToilOtn/8x0PfdSFajZ6luKlf98e+/fC9qynRaN6tGsYV1cizgxZlAfjIwM2bF7X4bl12/bSeXyZfm27Te4OjvSu2tHvDzc2Lj9Z1WZhl/WpFLZ0jgUssOtiDNDencjJvYNN+/cy6600lEoFGzauIEuAQFUr1EDdw8PJkycyKtXrzjy+++Zrrdh/TqaNm9O4yZNcXF1ZfjIURgZGfFLSj2IiY7m55076D9gIOXKl6eYlxdjx4/nUnAwly9dAuDA/n24u7sT0L07Do6OlClblj59+/Hj1i3Exmb84yyrBG3ZxteNGtCsYT1cizgzZnA/jA0N2bFrb4bl12/dTuUK5ejs3woXZyd6d+uMl4c7m7Yp8zXNl48V82ZQr1Z1ijg54OvtxYgBvbl24ybPnr8A4N27JKbNW8TA77vRslkjnB0dcC3iTL1a1TWWp0KhYMOGDQQEBFCjRg08PDyYOGkSr1694vfDhzNdb926dTRv3pymTZvi6urKqFHK/fv+PBcdHc2OHTsYOGgQ5StUwMvLi/ETJhB88SKXUvZv02bNGDp0KGXLlqVw4cI0/OorGjdpwqFDh1SfU7RYMerXr4+bmxv29vY0/Oor/Pz8uHD+fJZ+D0Fbt9Piq3o0a1AHV2cnxgzs/c/qc5sP6/MvqjINv6yhXp97qdfnKhXKMmn4QCqXL4NDITtqVKlEp9Zfc+jY8SzNTS3P9Rv5ullTmjZuhKuLC6NHDMPYyIidP/+aYfkNmzZTuVJFOndoj0uRIvTq+R3FihZl89atgPL4Wb9xMwFdvqVG9Wp4uLszefw4Xr0K5fCRowBERETy4OEjvu3cAQ93d5wcHenX+3vi4+O5ndJYNDMzo9U3LSju5UUhOzsqli9Pq29acD6LbmFbt34DzZs3o2mTJri6ujBq5MiU4/XnDMtv2LQRP79KdOrYERcXF3p935NixYqyefMWVd4bNm4kIKArNWpUx8PDg0kTJ/Dq1SsO/34EgMqVKzNx/Hj8KlWicOHCVK9ejY4d2nMoTb26e/cuP27bxrw5s6levRqF7e3x8vKiUsWK6YPKAkGbtvJ1k69o9lUD5Xlt6ECMjYzYseu3DMuv37KNyhXL07ldG1yKONO7exe8PD3YtG2Hqkyj+nXp0aUTFcuVyXAbFy9d4emz50waMxwPN1c83FyZPGY4V0NucOps1tbjzAQdOs3Xfr40rVQCVzsbRreuh3EeA3b+dSnD8ht+P0tlLxc6f1kBl4I29Gr0BcUcCrL56DkAHryM4NK9p4xqXRdvJzuKFLBmVOu6xCe+Y8/ZELVtXX/0gsBDZ5jQroHG88xKV/ce4ZfRs7i4M+Nz4OdMoVBwfNc2arZoT/HyVbBzdqVV7+G8jgjl2unMf4P++euPlK/dkLI161PAwZmm3QeQx9CIs4eU9eP+9StEvHrON72GUdDJhYJOLrTsPZwnd25w53LqsVy10Tc4ehTHMn9BnIp6U71ZWx7dvEbSu3caz13kLNLIzyaBgYHkzp2b06dPM2/ePGbPns3KlSv/r22NHj2aa9eusWfPHkJCQliyZAk2NsphPomJidStWxdTU1P++OMPjh8/Tr58+ahXrx4JH+klz06RL58RExmOi09p1TKjvPko7FaMRzevaTGyrJGYmMi1m7eoWCY1P319fSqWLUXw1YzzC74SQqWypdSW+ZUvQ/CVkAzLJyYm8uMvv2GazwRPN5esC/4TPXnyhLDQUMpXqKBals/UFG9vHy5fCs5wncTERK6HhFAhzTr6+vqUr1BB1cALCQnh3bt3VKiYWsa5SBEKFrTjUsp2ExISyWNoqLZtQ0ND3r59S0iI5o6jxMRErt24ScVyH+7f0gRfyWT/Xr1GxbLqP3L9KpTN9HgAiI6JRU9PD1NT5XDkkJu3ePkqFD19fb7p1J0ajb/hu4HDVKMBNOHJkyeEhoaq7StTU1N8fHwIvpTxD+DExERCQkKokKYhoq+vT4WKFVP377Vryv2bZrtFihTBzs6O4OCMjxtQXvwxNzfP9P3rISEEBwdTpmzZf5zj31HV5zT1U19fn4plShF8NeP6GXw1hEplMqjPmZRX1uc9yvrsmnl9jomJxczM9P/I4u8lJiYScv06FcuXUy3T19enQvlyBF++nOE6wZcuU6FCebVlfpUqEnxJWf7Jk6eEhoVRMU0ZU9N8+HgXV5WxsDDH2cmJX3f9xpu4ON69e8ePP+3AysoKr2IZ3/7y8tUrDv3+O2VLl87w/U/x/nit+MH5qGKa89GHLl26rFYewK9SJVX5TOuNt3em2wSIiYnB3MxM9ffRY8ewt7fn6LE/qN/wK+o3aMi48ROIior6v3L9mNTzWup5Sl9fn4rlyhB8+WqG6wRfuZqu8e5XsVym5TOSkJCAnp4eedLcomCYJw/6+vpcCM74uMtKie+SCHn0nIpFnVXL9PX1qFDUmeC7TzJcJ/jeUyp4Oqst8ytWhOB7yvIJKY01Q4PU28b09fXIkzsXF+48Ui2LS0hk2NpfGNnyS2zMs+a2E/H3wl88IzoyHLcSqceukUk+HNy9eHAj43+T3yUm8uTODbV19PX1cStRhgcpv1vfJSaiB+ROcyznzpMHPT097l/P+Fh+E/2ai8cO4uhZnFzZcJuhtimSFZ/tSxdJIz+bODg4MGfOHDw9PfH396d3797MmTPn/9rWw4cPKVWqFGXLlsXZ2ZnatWvTqFEjALZs2UJycjIrV67Ex8eHYsWKsWbNGh4+fMiRI0eyMKP/X0ykcmiTibml2nITc0tiIzMeFvhfEhH1mqSkZKytLNSWW1taEhqWcX6h4RFYW6l/HzZWloR+MEzyyPGTlKvThNK1GrFu6w6Wz56KpUXmjR5NC0sZTmttZa223MrairA0Q7PTioyIICkpCat061gTFqbcXlhYKAYGBpiamn1QJnW7lfwqcSk4mL179pCUlMTLly9YuXw5AKGvQv99cpmIiIxK2b/q+8vayjLT4b2hYeEZlg8Ny7j827cJzFmygvq1a5LPxASAx0+fArBkVSDdOvqzcPpkzExN+bbXAKJev/63aWUc9/v9a53BvgrN+DuOSNm/H65jbW2t2l5oWBgGBgaYmX2wf62sMt3uxYsX2b9/P82//jrde3W+/JJyZcvStm1bWrVqRfPmzf9Zgv+Aqj5bWqgtt7aySFc/31PWZ/XyNpbpyx85cYpydZtSunZj1v24g+WzpmRanx8+fsrG7b/QsrFmevwiIiNT9pv6PcPW1laEhmZcl0PDwrC2+qC8lZXquA5NqasZlXlfj/X09Fi+ZCHXb9ygUtXqlPOryroNG1myYF6642PIiFGU96tK7XoNMTExYdzokf9/wikiIlLy/jBGaytV/B8KDQ1Nd86ztrZWlX//faXfpjWhYRkf3w8fPmTT5i20aJF6fD9+/IRnz55x4OABJk+cwIQJ47kWEsLAwYM/Lcl/QHleS0p/nrK0JCyT81SG5zXLzM9rGSnhXRxjIyPmLFpGXHw8b+LimDl/MUlJSbzK5PvPShExb0hKVmBtaqK23NrUhNDXGY8IC30dg7XZB+XNUssXKWiNnaUZ834+yus38SS+S2L1/pO8iIxW2+aMbYfwdbGnxn/gHnxdEhOpPD7zWajXz3zmlqr3PvQmOork5OSPruPo4YWBkTF71i0j4W08CfFx7A5cQnJyMtER6tvds24Zo9vWY0KnxkSGvqDDsMlZlZ4QKtLIzyYVK1ZETy/1rqtKlSpx69YtkpKSPnlbPXr0YPPmzZQsWZIhQ4Zw4sQJ1XvBwcHcvn0bU1NT8uXLR758+bCysiI+Pp47d+5kus23b9/y+vVrtdfH7k36FJf+PMiUjg1Vr6QkGZL0/ypfuiQ/rV7M+iVzqFyhLIPGTs70vmBN2PPbbqr6VVK93mlxeFnFSn706defqVMm41ehPM2bNKFyFeWtHPr6/91TW+K7dwwaPQEUCkYP7qta/v75sgEd/fmyxhcUL+rBpBHK+//2HT6aJZ+9e/duKlWsqHppc/+mdfvWLfr360f37t3x8/NL9/6aNPMGbNiwgT179mghyk9XvpQvP61azPrFs6lcvgyDxk7JsD6/eBVK98EjqVO9Ki0a1c/+QDVIoVAw5YcZWFlZsXblcjYErqFG9Wr07j+QVx9crBsyoB9bNqxj3uyZPH78mBmz52on6Cz24uVLevbqxZe1a/N1mgtUCkUyCQkJTJo4kdKlS1OubFnGjx3DmTNnP6tb8P4NK0sLZk0Zz5E/T1ChRj38ajckOiaGYp4e6Ov91+5UVzLIlYs53Zrz4GU4VQbPpXz/mZy++YAqXi6q34G/X7rF6ZsPGPp1bS1Hq/suHDvAGP96qpemfoPmM7fAf+A4Qs7+xVj/+oxr35D42BjsXTzUfv8DfNGkFX1mrqDLmJno6euzdf5U1S28QmQV3R8b8h+gp6eXrnInJiZmWr5+/fo8ePCA3377jQMHDlCrVi2+//57Zs6cSUxMDGXKlGHDhg3p1rO1tc10m1OnTmX8+PFqy5p368/X3w3IZI1/zrOMH4XdUmcffZeSW2xUBKaWqb0hsVERFHByTbf+f42luRm5cukTFh6ptjwsIgIba8sM17Gxskw3uVFoeAQ2H/SS5DU2wrGwPY6F7fEtXowGbTqzfddeAtq3ztIcMvNFtepqM+AnJCpvAQkLD8MmzfEVHhaOh2fGvRMWlpbkypWL8HD1XprwsDCsrZW3nVhb25CYmEh09Gu13vzwsHC1HuJ27dvj364doa9eYWpmxrOnT1m4YD72he3/fbKZsLQwT9m/6vsrLDwiXc/dezbWVhmW/3D26PcN/KcvXrBq/kxVLz6AbUpZV+fUWe3z5MlD4UJ2PH/x8l/l9F716tXVZsB/f4vP+9m/3wsPC8PDM+OZ5S1T9u+HIznCwsJUtxXZWFuTmJjI69ev1Xprw8PDsbZRn2H4zp07dOvWjeZff01At24ZfqZ9YeWMyO7u7oSHhbF0yRLq18+axrCqPn/Q+A4Lj0xXP99T1mf18qER6csr63MhHAsXSqnP37J9914C2qXW55ehYXzbdyglvb0Yl+aiT1aztLBI2W/qPU5hYeHY2FhnuI6NtXW60Sth4eGq49ompa6GhYdjm+YpEWHh4Xh6KM8Pp86c4dgff/Ln7wdVM+V7FSvKyVOn+WXXbrp07pj6eTY22NjYUKSIM+ZmZnTq2o3uXbuobfuT87ZMyfvDPMLCVfGny9vGhrDwDI7vlPLvvy9l3rZqZTw/qDcvX76ia0A3fEv4Mmb0qHSfkzt3bpzTPMmiSJEiADx7/hxnZ+dPyPTjlOe1XOnPUxER6UZ3qOLL6LwWkf689nf8KpRjz0+biIiMJFeuXJiZmlK9QTMK22c+u31WscyXl1z6eukm2QuLjsXmg97692zM8hH2QS9/2Gv18l6OBflxxLdEx8WT+C4ZK9O8tJ0eSHEnOwBO33zAo9AIKg9WH9E5YMUOSrsVZnU/f0TW8CpXWW0G/KSU36AxkeGYpfkNGhMVgZ2zW4bbyGtqjr6+frqe/pioCLXefY+S5RiyeCOxryPRz5ULYxNTJnVpRokCNdXWMzGzwMTMAttCDuQv7MjUbi15ePMaTp6ZP8lEFyTLhYxs9d/t7vqPOXXqlNrfJ0+exN3dnVy5cmFra8uzZ89U7926dYs3b958dHu2trZ07NiR9evXM3fuXJanDFMuXbo0t27dIn/+/Li5uam9PnYv6/Dhw4mKilJ7Nf72+3+RcSpD47xYFbRXvWwLO5HPwoq7V1InInn7JpbHt0Nw8PDKks/UJgMDA7w83Dl17oJqWXJyMqfOXcS3eMb5+XoX4+S5i2rL/jp7Hl/vzB9dpNyugoSPXBDKaiYmJjg4OqpeLi6uWNvYcObUaVWZmJgYrly5jE8J3wy3YWBgQNFixTidZp3k5GTOnD5NiRIlAChWrJhyDos0Ze7fv8/z588o8cF29fT0sM2fHyMjI/bt3UuBggUpWvTj39u/YWBggJenB6fOqu/fk+cu4Oudyf4t7sWpc+qTSP115pza8fC+gf/w0RNWzJ2BxQf11auoB3nyGHD/4SO1dZ48e45dwQJZkRomJiY4OjqqXq6urtjY2HA6zfkrJiaGy5cv45uyrz5kYGBAsWLF1NZJTk7m9KlTqfvXy0s1R8l79+/f59mzZ/j6pu7f27dvE9C1K40aN6Z3797/KIfk5OQsrROp9fmi2mecOn8R30weLeZbvBgnz19UW/bXmfOZlldtV6EgISE19hevQuncZwhenm5MGjZAoyNUDAwMKFa0KKfOnEmNJzmZU2fO4pvmwk9aviV8OHX6jNqyk6dO4VtCWd7evhA21tZqZWJiYrh85aqqTHy8csTYh7np6euRrMh8dvX3772/0Pj/en+8nvrgfHQqzfnoQyVK+HAqzbELcPJk6vFtb2+PjY2N2jaVeV9R2+aLly/pEhCAV7FiTBg/Lt13ULJkSd69e8ejR6l1/sGDhwDY2dn9nxlnTHVeO3NOtSw5OZmTZ87j65Nxw8PXu7haeYC/Tp/NtPzfsbSwwMzUlFNnzxMeEUH1qpX/fqV/ySB3Loo5FOTUjfuqZcnJCk7deICvS8YXi32LFFIrD3Dy+n18i6Qvb2pshJVpXh68DOfaw+fUKKF8fGCXLyuybUQXtg7/VvUCGPx1LSa0a5g1yQlA+RvUxq6w6pXfwRlTCytup5kML/5NLI9uXcPJM+N/w3MbGGDv6qm2TnJyMrcvncMpg9+tJmYWGJuYcvvyeWKjIvEql34E2nvv7wd/9y/PZUJ8SHrys8nDhw8ZMGAA3bt35/z58yxYsIBZs2YBULNmTRYuXEilSpVISkpi6NChH30O8pgxYyhTpgzFixfn7du37Nq1i2LFlD8e/f39mTFjBk2aNGHChAkULlyYBw8esH37doYMGULhwhk/A9TQ0BDDDyYxM8ijmft89fT0qFC/OX/s2IB1wcJY5C/I71vXYGppQ9GyqTPnB00cRNFyVShfrymgfDxJ+PPUiXAiXj7n+f3bGOczxdwmaxo5WaVDq+aMnDKT4kU98C7myfofdxAXF0/TBnUAGD5pOvltbOj/nfIf9nYtmtK592DWbt7GF5XKs+fQUa5ev8W4wf0AeBMXz/KgjdSoUglbaysiol6zafsvvAwNpW6NqtpKEz09Pdq09WfVyhU4ODpib2/PksWLsLW1pXqNGqpyPbp3o3qNmrRqreyh9G/XnnFjRuPl5UVxb282btxAXFwcjZo0AZST9zVp2ow5s2Zhbm6OiYkJM36YRokSJfBJ8yM5KHAtfn6V0dPX4/dDh1m7ZjXTpk8nV65cGs27Q6sWjJz8A8WLeuDjVZR1W38iLj6epg3rAjBi4jTy29jQr4fyWdbtWjan8/f9Cdy0lap+Fdl78HeuXr/J2KHKkTKJ794xYOR4Qm7eYtH0ySQnJ6vuazU3M8XAwIB8Jia0bNKIRasCKZg/P3YFC7B2o3I27zo1qmkkTz09Pfz9/VmxYgWOTk7Y29uzaJFy/9aomdoz0S0ggJo1a9K6TRsA2rdvz+jRo/EqXhxvb282rF9PXFwcTZo2BZSTkDVr1oxZM2dibmaGSb58TJs2jRK+vqpG0O1btwgICMDPz4/27durPU7NKmXExObNm7ErWBDnlN7N8+fOERQURJu2bbP0e+jQsjkjp86kuKd7xvV58gzy21jTv3ua+txnMGs3/5RSn49w9cYtVU/8m7h4lq/bRI3KFVPr845f1erz+wZ+oYL5GdQzgIjI1MnWNPX88A7t2jJq7Hi8ihXDx7s46zduJi4ujqaNvwJgxJixFLDNT9/eygvA/m1a821AdwLXbeCLKpXZs38/V6+FMGbkCEB5/LRr25rlq1bj6OiAfaFCLFqyFFtbG2pWVx6zvj4+mJmaMnLseL4L6IKhoSE/7fiZJ0+e8kUVZSPvjz+PExYeTnEvL/LmNebOnbvMnreAUr6+2Bf697297dv5M3rMWIp7eeHtXZz1Gzcq827SGICRo0aTP39++vbpnZJ3W7oEBBAYtI4vqlZh7759XL12jdEpPfF6enr4t23LipUrcXJ0xN6+EIsWL8HW1paaNaoDygZ+164B2NnZMWBAfyLSPH7z/YiXihUqUKxYUcaOG8/gwYNQJCczZdo0KlasqNa7n1U6tGnJyIlTKV6sqPK8tmUbcfFxNG2oHBUzYvxk8tva0q+nckRNu1Yt6NyjD4EbtlC1ckX2HjjM1ZAbjB02SLXNqKjXPHvxgpcp8xTcf6C8YGFjbaUa+bBj12+4ODthZWHBxctX+WHOAtq3/oYiTo5ZnmOGedcqz6igXXg52uHjbMf6w2eJe5tA04rKc9GIwF8pYGFK3ybVAfCvUZZv52wk8OApvvB2Y8+5a1x9+Iwxbeuptrn//HUs8xljZ2XOrScv+WHbQWr4uuNXTHmusjHPl+Fke3ZWZhS2sdB4zv+WoUlebN2cVX/bFHGgsK8XseGRRDx6qr3A/gE9PT0qf9WCw9vWYWNXGKv8duzftAozSxu80jy9acW4ARQvXwW/BspbaKo0+oYfF0ylsKsnDu7F+HPXNhLexlOmZuqosbOH95C/sCMmZhY8vHGVX1cvpPJX32BrrzyWH968xuPb13Eu5oOxiSlhL55yYNNqrAsW0vlefJH9pJGfTTp06EBcXBzly5cnV65c9O3bl24pQ09nzZpF586dqVq1KoUKFWLevHmcO3cu023lyZOH4cOHc//+fYyNjalatSqbN28GIG/evBw7doyhQ4fSvHlzoqOjsbe3p1atWukmMdKmyo1bk/g2nl9XzCb+TQyOnj60GzaV3HnyqMqEv3jKm+jUH7ZP79wgcOJA1d/71y0BwPeLOjTtOTT7gv8H6teqTkRkFAtXBREaHkFRNxeWzpysGq777MUr9PVSe21K+RTnh7HDWLAikHnL1+JUuBDzp4zF3cUZgFz6+tx7+JhfRk0kIuo1FmameBfzIHDhLNyKOGshw1QdO3UiPi6OKZMmEh0dTcmSpZi/aLHaRaPHjx4RmWZSxTp16xIREcHSJUsICwvFw9OTBYsWqw3FHzBoEPr6egwZNJCEhAQq+fkxdPgItc8+cfw4q1euJDExEXcPD2bNmau6L1+T6tWuQXhkFItWrlXuX3dXls6ahk1K4/PZi5dq9+CV9CnOtHEjWbh8NfOWrcapsD3zpk7A3UX5g+/lq1CO/KmcW6NFJ/Uh6asXzKJc6ZIADOjVnVy5czF84lTevk3Ax6soq+bPwlxDM64DdOrcmbi4OCZOmEB0dDSlSpVi8WL1/fvo8WMiUp7vDlC3Xj0iIiJYsngxoaGheHp6snix+v4dNHgwevr6DByo3L9+fn6MGJk6kdqBgweJiIhg9+7d7N69W7XcrlAh1T33iuRk5s+fz5MnT8idOzeFCxemb79+tGjRIku/g/q1qinr8+p1aerzpDT1+aXa/cOlfLz4YcxQFqwMZN6KlPo8eYx6fX7wiF/2Hkytz0U9CFwwU1Wf/zp7nodPnvLwyVNqfd1OLZ4rxzJ+VOO/Va/Ol0RERLB46XJCw8Lw9PBgyYJ5qv32/PkLtfNWSd8STJs8kQVLljJ/0WIcHR2YN2sG7m6pt1117tiBuLh4JkyeQnR0DKVK+rJkwTzV8WNpacGShfNYsGgJXb/rybt3Sbi6FGHe7JmqIf3Khv9OZsyaQ0JiIgUL5KdWjRp8m2Yo/7/KO+V8tHjJEmXenp4sXrQwTd7P1XrZS5b0ZeqUySxctJgFCxfi6OjI3NmzcXdLHerbuVNH4uLimDBpkrLelCzJ4kULVXmfPHmSh48e8fDRI+rUracWT/AFZW+hvr4+8+fOY9oPP/Btl64YGxtTubIfgwb8+9voMvwevqxJeGQki1asJjQsnKLubiydM0N1UenZ85fopd3/JbyZNmE0C5etYt7SFTg5FGbe9Mm4p3lCxO9/HGf0pGmqvwePVt4W2KNLJ3oGdAaUDf95i1cQ9fo19nYFCejUjg5tWmokx4zUK1OMiOg3LN71B6HRsXja52fJ961Uk+s9j3itVr9LuhRmWufGLPj1GPN/PYajrSXzun2Ne6HUWzNeRcUw46dDhEXHYmuWj0YVvOleX/MjE7KLU9kSDDiyWfX3N3NGA/DX2m0Edh6U2WqfjWpN25AQH8/2pTOJj43BuagPnUdPxyBP6r9rYc+fEJvmN6hv5ZrERkVyYPMaoiPDKVTEjW9HTcc0zXD9V08esnfDcuJiorG0LUiNr9tRpdE3qvfzGBpx5dQfHNyyloS3cZhaWuNRsjw1W4wlt0Hq719dpauz2H+u9BQy04PGVa9enZIlSzJ37lxth/JJNl54rO0QtOIb+89jsrHsFp/v8xoNkV0M32h+BufPUVK+//8+5v+y3FHP/r6QDko20Uzv/+dOoZ8z+zL030ZrOwStUJz7b0y6mdX6fjn+7wvpoLqX/9J2CFrRzDtrb9fJLkX7/qztEDJ1fV4TbYeQ5eSefCGEEEIIIYQQQkfkzEvcQgghhBBCCCGyhQzXz17SyM8GR44c0XYIQgghhBBCCCFyABmuL4QQQgghhBBC6AjpyRdCCCGEEEIIoTHJMlw/W0lPvhBCCCGEEEIIoSOkkS+EEEIIIYQQQugIGa4vhBBCCCGEEEJjFAoZrp+dpCdfCCGEEEIIIYTQEdLIF0IIIYQQQgghdIQM1xdCCCGEEEIIoTEKmV0/W0lPvhBCCCGEEEIIoSOkkS+EEEIIIYQQQugIGa4vhBBCCCGEEEJjkmW4fraSnnwhhBBCCCGEEEJHSCNfCCGEEEIIIYTQETJcXwghhBBCCCGExiiSk7QdQo4iPflCCCGEEEIIIYSOkEa+EEIIIYQQQgihI2S4vhBCCCGEEEIIjZHh+tlLevKFEEIIIYQQQggdIY18IYQQQgghhBBCR8hwfSGEEEIIIYQQGiPD9bOX9OQLIYQQQgghhBA6Qhr5QgghhBBCCCGEjpDh+kIIIYQQQgghNEaRJMP1s5P05AshhBBCCCGEEDpCevJFpqITcuYVt9fG+bUdglYkJSZrOwSteJJkpu0QtMI6IWfub2PTgtoOQSticmj9NkJP2yFohV4ec22HoBUGldtoOwStqHu5nrZD0Ip9PpW0HYJWNFPc13YI4j9AGvlCCCGEEEIIITRGZtfPXjJcXwghhBBCCCGE0BHSyBdCCCGEEEIIIXSEDNcXQgghhBBCCKExMlw/e0lPvhBCCCGEEEIIoSOkkS+EEEIIIYQQQugIGa4vhBBCCCGEEEJjZLh+9pKefCGEEEIIIYQQQkdII18IIYQQQgghhNARMlxfCCGEEEIIIYTGyHD97CU9+UIIIYQQQgghhI6QRr4QQgghhBBCCKEjZLi+EEIIIYQQQgiNkeH62Ut68oUQQgghhBBCCB0hjXwhhBBCCCGEEEJHyHB9IYQQQgghhBAakyzD9bOV9OQLIYQQQgghhBA6Qhr5QgghhBBCCCGEjpDh+kIIIYQQQgghNEZm189e0pMvhBBCCCGEEELoCGnkCyGEEEIIIYQQOkKG6wshhBBCCCGE0BgZrp+9pCdfCCGEEEIIIYTQEdLIF0IIIYQQQgghdIQM1xdCCCGEEEIIoTGKJBmun52kka8D9PT02LFjB02bNtV2KJlSKBSc2B7ElSN7iH8Tg717cWp16oNlQftM13l8/RJnf/uRF/dvERsZTuO+Y3ErU1mtzK0zf3Lp9128uHeL+Nho2k1cQn4nV02nkyGFQsHKZUv4ZccOomOiKeHry+BhI3BwdProej9t3cKGdYGEh4Xh5u7BgMFD8fL2Vr2/c/tPHNi7hxs3rvMmNpZ9vx/D1NRUbRs3roeweP48Qq5dRT9XLqrXrEWf/gPJmzevRnJNS6FQsGr5Un7duYOYmGh8SvgycOgIHBwdP7re9h+3sGl9EOFhYbi6e9Bv0BC8iivzfh0VxarlSzlz6iQvXjzHwsKSqtWq0/W7HuTLp8z99s2brA9aw+WLF4mMisTOzo4mzVvwTeu2Gs8ZlHlvXL2MA7/uJDYmhqI+JegxYBiFHD6e9+7tW9m5eT0R4WE4u7rTre9gPLyKq94f2ac7Vy6eV1unbuPm9Bw0XPX38nkzuX45mAf37uDg5Mzc1RuzNrmPUCgUrFq2hF93Ko9znxK+DPqHx/mm9YGq/d1/8NAP9vcSTp9M3d9fVK9O1+96qvY3wNyZP3ApOJh7d27j5FyEtRu3aDTPpUuWsGPHdmKio/H1LcnwESNwdPp4nlu3bCYoMJCwsDDcPTwYMnQo3t4+qvffvn3LnNmz2L9vHwkJCVSq5MewESOwtrZW284vv/zMhvXrefjgASYmJtT+8kuGDR+h2saUyZMICQnh/r17VKlaldlz5mb5dwDK72H18qXsSlO/BwwdQeG/qd87ftzC5jT1u++gIRRLs79XL1/K2TT1u0q16nRJU78BqpUvnW67YyZNpVadulmbZAYUCgXLly7h5x3KvEv4+jJk+Agc/+Y4/3HrFjYEpex/dw8GDhlK8TTn8x3bf2L/3j1cv648nx88kv58Pqh/X27euElERDimpmaUq1CBXn36YGubXyO5/p3338XOlLpQwrckQ0f8g+9iy2bWB6XWhUFDhlI8TV3Y8dM29u3dw43r14mNjeXQ0WOYmpppOh1AmdOSJYvZsX070dHR+JYsyYgRI3H6m/q9ZfNmAgMDCQsLxcPDg6FDh+Hto16/Z8+axb59e5X128+PESNGqur3jRs3WLNmNRcvXCAyMpJChQrRosU3tPX3z/DzLl64QNeuXXB1dWPL1q1Z9wWkUCgUHNi8hjMHdxH3JgZnT2+adhuATaHCH13vrz07OPrzZmIiw7FzdqNxlz44uBdTvR/2/Am7A5fw4Ppl3iUm4lGyPI279sHUwkpVJnDqCJ7ev01sVATGJqa4lShD/fbdMbOyyfI8s4pb1fLUGdwNxzI+WBQqwJKm3Qj+eb+2wxIiQzJcX2SLM7u3cvHATmp16kPbsfMxMDRi+4zhvEtIyHSdxLfx2Dq6ULNDr8zLJMRTyMObqq26aiLsT7I+cC0/bt7E4OEjWLk2CCMjY/r3/p63b99mus7B/fuYP2cW3wZ0Z836jbh5eNC/d0/Cw8NVZd7Gx1PBz48Onb/NcBuvXr2kT8/vKOzgwIq165g9fxH37txh0rgxWZ5jRjYGBfLTlk0MGjaCZasDMTY2ZmCfj+d96MA+Fs6dTaeu3VgZtBE3d3cG9vmeiJS8Q0NfERb6iu/79iNo01ZGjBnHqb9OMG3SBNU2bly/hqWlFaMmTGLd5h9p37kLyxYt5KetmzWeM8D2jUHs/mkLPQYOZ8ayNRgZGTNuUG8SPpL3H4f2s3rRXFp16srsleso4ubOuEG9iYwIVytXp1FT1u7Yo3p16tE73bZqNWhElZpfZnlef2dD0Fq2bdnEoOEjWL4mCGNjYwb8zXF+aP8+Fs6dReeu3Vm1bqPyYlbvnqn7+9UrQl+94vu+/Vm3+UdGjh3Pyb9OMG3i+HTbatioCTW/rKOx/N4LXLuWzZs2MmLESAKD1mFsbEyv73t+NM/9+/Yxe9YsunXvzoaNm/Dw8KBXT/X6PGvmTI4dO8a06TNYsXIVr169YvDAAWrbWb9uHYsXLqRT585s3fYTS5Yuo1IlP9X7ycnJGBoa0bpNG8pXqJD1yaexKSiQ7Vs2MXDYCJauDsTI2JhBf1O/Dx/Yx6K5s+nYtRsrgjbi6u7OoAzqd4++/Vi7aSvDx4zj9F8nmJ6mfr83bMw4tv+2X/WqUq26plJVsy5wLVs3b2LoiBGsCgzCyNiYvr0+nveB/fuYN3sWXbp1J3CD8nzet5f6/o+Pj6diJT86ZXI+ByhTthyTf/iBrdt3MG3GDJ48fsTwIYOzNL9PERS4li2bNjJsxEhWByrrQp+/qQsH9u1j7uxZdO3WnaCNm3B396DP9+m/i0p+len0bZfsSEPN2rVr2LRxEyNGjiJo3XqMjY35vmePj+a0b99eZs2aSffu3dm4aTMeHp707NmD8PAwVZmZM2dw7NhRps+YwcpVq3n16hUDB6TW75CQa1hZWjFp8hS2/bSdLl27smDBfDZv3pTu86Jfv2b06FGUL18+a5NP4+jOTZz47Seadh/A91OXYGBkzOqJg0lMyPx7CD5+mF1rF1O7ZSd6z1iBnZMrqyYOJiYqAoCE+DhWTRiMnp4eAePm0GPyQpLeJRI4dQTJycmq7bh4l8J/4FgGzl9Hu8ETCHvxlPUzx2os16xgaJKXx8EhbP4+e35fCfFvSCP/M7Ft2zZ8fHwwNjbG2tqa2rVrExsby5kzZ/jyyy+xsbHB3NycatWqcf58ai+fs7MzAM2aNUNPT0/1d3BwMDVq1MDU1BQzMzPKlCnD2bNntZCZ8krxhX07qNC4LW5l/LB1dKFe9yHERIZx+/zxTNcr4lueyi064162SqZlvCrXplLTdjgWL6WJ0P8xhULB1k0b6dQlgC+q18DN3YMxEyYS+uoVx478nul6mzesp3HT5nzVuAlFXFwZMnwkhkZG7Pplp6pMq7b+dOj0Ld7eJTLcxvE//iB37twMHDocJ2dnvIoXZ8iIkRw5fIjHjx5mdapqFAoFWzdvpMO3XalarTpu7h6MHDeBsNBX/HH0SKbrbdm4gUZNm9GwUROKuLgwaNhIjIyM2P3rzwC4uLox6YeZVK5aDfvCDpQpV55uPb7nxB/HePfuHQANGzel78DBlCpdhkL2halbvyENGjXi2O+HNZrz+7x//XET37T/lgpVq+Hs6k6/keMJDwvl5J9HM13v560bqfNVU2o3aIyjsws9Bg7H0MiIg7t/UStnaGiEpbWN6pXXJJ/a+936DqJh85YUtMt8JIwmKBQKfty0kQ7fBlC1mvI4HzV+Ysr+/shxvnE9jZo2p2HKcT54uHJ/vz/OXdzcmDx9FlW+SLu/e3E8zf4G6DdoKF+3bEUh+4/3MmVFnhs3bqBLQADVa9TA3cOD8RMn8urVK478nnme69evo1nz5jRu0hQXV1dGjByFkZERP+9U5hkdHc3PO3cwYMBAypcvTzEvL8aOH09wcDCXL10C4PXr1yxevIgJEydRv34DHBwccPfwoFr16qrPMTY2ZsTIkTRv/nW6EQBZ/T38uHkj7b/tSpVq1XF192BESv3+8yP1e+vGDXzVtBkNGjXB2cWFgSn1+7c09Xtimvpdulx5un5Qv9/Ll88Uaxsb1cvQ0FBj+b6nUCjYvHEjnbsEUK16DdzdPRg3Xnk+P/qR8/mm9etp0qw5jRo3wcXFlWEjlHn/+vNOVZk2bf3p2PlbvH0yPp8DtPFvh49PCezsClHCtyQdOnXmymVlj2h2U34XG/i2a8p34eHBuAl//11s3LCOps2a06hJU+V3kVIX1L4L/3Yp34VPptvRBIVCwcYNGwgICKBGjRp4eHgwceIkXr16xe8f+fdj/bp1NG/enCZNm+Lq6srIUcqcdqap3zt37GDAwEGUL18BLy8vxo+fQHDwRS6l1O+mTZsxZOhQypYtS+HChWnY8CsaN27C4UOH0n3epMmTqFe/PiVK+Grsezi+axs1W7SnePkq2Dm70qr3cF5HhHLt9J+Zrvfnrz9SvnZDytasTwEHZ5p2H0AeQyPOHvoNgPvXrxDx6jnf9BpGQScXCjq50LL3cJ7cucGdy6m/X6s2+gZHj+JY5i+IU1Fvqjdry6Ob10j64BzwObm69wi/jJ7FxZ37tB3Kf5IiOemzfekiaeR/Bp49e0abNm349ttvCQkJ4ciRIzRv3hyFQkF0dDQdO3bkzz//5OTJk7i7u9OgQQOio6MBOHPmDABr1qzh2bNnqr/9/f0pXLgwZ86c4dy5cwwbNgwDAwOt5Bf16jmxUeE4Fk8demmY14SCLkV5djtEKzFltadPnhAWFkrZ8qm9avnymeLl7c2Vy5cyXCcxMZEb10Mom6YnTl9fn3LlK3DlUsbrZLidhAQMDAzQ10+tzu9/CAdfvPiJmXyaZ0+fEJ5B3sWKe3P1I3nfvB5CmXLqeZctVyHTdQBiYmLIa2JC7tyZ32UUExODqbn5/5HJp3nx7AkR4WH4lk3tYTHJlw+PYsW5cSXzvO/cvK62jr6+Pr5lynPj6mW1skcP7KVdo9r07tiKoGULeRsfr5lEPtH747zch8d5ce9Mj9n3+zvtMaKvr0/Z8h/f37Ex0Zj8zf7WlCdPnhAWGkqFNHXT1NQUb28fLl0KznCdxMREroeEqPWs6+vrU75CBVUDPiQkhHfv3lGhYmqZIkWKULCgnWq7J0/+hSI5mZcvX/J182bUr1uHoUMG8/z5c02k+lHv63eZLKjfZf6mfsdmUr/nzphG4y9r0r1Te3b/shOFQvEvs/p774/ztPsyn6kpxb29VfvyQ4mJiVy/HkL58unP55c/kvffiYqKYt+ePfiU8CW3Fv4Nf5pSF9J/Fz5c/pu6UO7Df9vS1AVtevLkCaEZ1W8fHy4FZ75/Q0JCqFChomqZvr4+FSpUVDXgQ0Ku8e7dOypW+KB+29lxKTjj7wogJiYasw/+3fp5506ePH5M9+7f/V85/hPhL54RHRmOW4kyqmVGJvlwcPfiwY1rGa7zLjGRJ3duqK2jr6+PW4kyPLh5TVVGD9SO19x58qCnp8f965c/3CQAb6Jfc/HYQRw9i5NLC+d8IXSR1KTPwLNnz3j37h3NmzdX3Q/mk3Jlu2bNmmplly9fjoWFBUePHuWrr77C1tYWAAsLCwoWLKgq9/DhQwYPHkzRokUBcHd3z45UMvQmSjk8L6+5hdpyE3NLYiMjtBBR1gsPCwXAytpKbbmVlTXhYWEZrUJkZARJSUlYWaVf58H9+//4s8uUK8/8ObPZEBRIyzZtiYuLY/GC+QCEhb76hCw+XVhKbpYZ5PD+O/lQVGRkhnlbWlnx4MH9DNeJjIwgcPUKGjdtnmksly8Fc/jAAabPmfcJGfx/IlLytrBU70W1sLImIjzj/f06KpLkpCQsLK0+WMeKxw/vq/7+onZdbAvaYWVty/07twhatpAnDx8wfPKMrE3i//B+n1p+cJxbWmd+nEf9H8d5ZGQEa1etoFGzr/990P+HsNCU+mylvn+trK1Ux/yHIiOUeVp/sI61tTX3U/IMCwvFwMAg3X3H1mm2++TxE5KTk1m9ehWDBg/BNF8+Fi9aRM8e37Fl64/ZerH2/T5NX1f/vn5/eE6wtLLi4Ufqd9DqFTT6oH5/270HpcuWw9DIiLMnTzJ3+jTi4uJo0arN/5nRPxP2/nye4Xntb87nH/4bYP1p5/P3Fs6fx49bNhMfH4+3jw+z587/5G1khdTvIoO6EPp3/7Z9sM4n/tumKaHv6/cHo2CsraxV+X4oIuL9/s2oft8DICw0TFm/zT6o31ZWmW734sWL7N+/n/nzF6iWPXjwgPnz57F6zRqNXuSMiVT+NstnoX7M5jO3VL33oTfRUSQnJ2e4zqsnypGDjh5eGBgZs2fdMur6B4BCwZ71y0lOTib6g1vT9qxbxok9O0h8G4+jhxcdR0zNqvSEyPGkJ/8z4OvrS61atfDx8eGbb75hxYoVREQoG78vXrwgICAAd3d3zM3NMTMzIyYmhocPPz4Me8CAAXTt2pXatWszbdo07ty589Hyb9++5fXr12qvj92T9TEhJw6xIKCx6pWkg7Np7tvzG7Wq+qleHw4xzU4urq6MHj+BTRvWUbNKJRrVrU0he3usrK3R08vaKr5/72/UqVZZ9cqOvGNjYhjSvy/ORVz4tlv3DMvcvXOb4YP607lrN8pXrJTlMRzZv4dWdb9QvZKSNJd33cbNKV2+Es6ublSvU59+I8Zx8o8jPHvyWGOfmZn9e37jyy/8VK/s2t+D+/XBuYgLXTLZ31ntt992U8WvkuqlzfqsUCTz7t07Bg8Zgp+fHz4lSjBl6lQePXyoGqmlKQf2/ka9apVVr+za38P698WpiAudP9jfHbsE4ONbEg/PorTt2InW7TuyeV1Qlsew97ffqF7FT/XS5v5/r137DqzbuJn5i5agr5+LcWNGZ8sohr2/7aZa5Uqq1+fwXfxbv+3ejV+liqrX55LT7du36N+/H926d6eSn3LOjaSkJEYMH853PXrg5OScpZ934dgBxvjXU7009e9YPnML/AeOI+TsX4z1r8+49g2Jj43B3sUDPT09tbJfNGlFn5kr6DJmJnr6+mydPzVbjnOhHdoekp/ThutLT/5nIFeuXBw4cIATJ06wf/9+FixYwMiRIzl16hQ9evQgLCyMefPm4eTkhKGhIZUqVSLhIxPWAYwbN462bduye/du9uzZw9ixY9m8eTPNmjXLsPzUqVMZP159kquGXfrSKKD/J+fjWqoSBV2Lqv5OSrmP8E1UJPksUq+Cx0ZFaG0m/H+ryhfV1GZMTkhQ5hgeFo6Nja1qeXh4GO4enhluw8LCkly5cqlNRPR+nQ97C/5OnXr1qVOvPuFhYRgZG6Onp8fmDeuxL5y19y5XqVpNNSM6QGJK3hHh/zxvcwuLDPOOCA9Pd3/xm9hYBvXtRd68eZk8fRa5c6fvxbx39y79vv+Oxk2b07GLZiZgLF/lCzy90uSdqKx/kRFhWNmkzgQcGR5GETePDLdhZm6Bfq5c6SbZiwwPx9Iq8/3tkfK5z548wk7D96J/qMoX1dSe9PD+OI/44DiPCAvDLdP9nflxntH+Htjne/LmzcuUGbMz3N+aUK1adXzSzPqdkLJ/w8PDVKOlQFm/PTwz3r8Wlso8wz4YyREWFoaNtfIYsba2ITExkejo12q9+WFhqce+Tcrx5OKSem60tLLCwsKC58+f/Zs0/1blqtVUM+BDav0ODw/HOu3+Dv/Y/lbW74gM6veH57U3sbEMTqnfkzKp32l5FfcmaNUKEhISyJMnzyfl9jFVq1WjuE/GedvYfuL5POyD4zwsDCubT583wcLSEgtLSxydnHAuUoTGDepx5fIlfDR0f/Z7VatVV5sBP21dsPmndUFV59XrgrLOZ//M6dWqV1e77z8x5fdTeJh6/Q4LD8Mzk/1rafl+/6av39YpddbaxlpZv1+/VuvNDwsPT5f3nTt36N6tG183/5qAgG6q5W9iY7l27So3blznh2nTAOVEmwqFgrJlSrN4yRK1W0I+hVe5ymoz4L//bRYTGY5ZmlFpMVER2Dm7ZbiNvKbm6Ovrp+vpj4mKUOvd9yhZjiGLNxL7OhL9XLkwNjFlUpdmlCigPjrVxMwCEzMLbAs5kL+wI1O7teThzWs4eRZHCPHvSE/+Z0JPT4/KlSszfvx4Lly4QJ48edixYwfHjx+nT58+NGjQgOLFi2NoaKgaavaegYFBhr3lHh4e9O/fn/3799O8eXPWrFmT6ecPHz6cqKgotVe9jj3/r1zyGOfFsoC96mVt74SJuRUPr11QlXkbF8vzu9excyv2kS19vkxMTCjs4Kh6FXFxwdrahrNnTqnKxMbEcO3KlUwnWDIwMMCzaDHOnU5dJzk5mbNnTuNdIvNJmT7GytqavHnzcmj/PvLkyUO5NPcPZoW8H+Tt7OKClbUN586cVpWJjYkh5OoVin8kb4+ixdTWSU5O5tzZ02rrxMbEMKB3T3IbGDBt1pwMJ9y6d+cOfXt2o16Dr+jWM/OnMPxbefOaYFfYQfVycHbB0sqaS+dSe1bfxMZwM+QqnplMkGhgYICrR1G1dZKTk7l0/gyexTOfeOre7ZsAWGnhx/GH+zvT4/zqlUyP2dT9rX6cnzuTfn/3792D3AYG/DB7brZMsPaeiYkJDo6OqpeLiyvWNjacPpV6jMbExHDlyuVMJ8EyMDCgaLFinDmlflyfOX0an5TvplixYuTOnVttu/fv3+f582eq7fqWVE4imnZYc1RUFJGRysdEalJm9ft8FtTv8xnU74G9e2JgYMCUTOr3h27fvIGpmVmWNvAhZf87OKpe74/zM2nOzTExMVy9ckW1Lz9kYGBA0aLFOPPBcX7mzGl8PjLJ3j+hSJmR/P1FNk3KrC6cOa1eF65euZzpBQdVXTitfgycTVMXspOJiQmOjo6ql4urKzY2Npz6YP9euXyZEr6Z799ixYqprZOcnMzp06cooarfXuTOnZtTpz+o38+eUcI39bu6c/s23QK60qhRY3r1Vn9yikm+fPy4bRubt2xRvVq0+AZnZ2c2b9miupXz/2FonBcbu8KqV34HZ0wtrLidZjK8+DexPLp1DSdPrwy3kdvAAHtXT7V1kpOTuX3pHE4e6dcxMbPA2MSU25fPExsViVc5v3Rl3lMkK3vw3yV+vBNLCPHPSE/+Z+DUqVMcOnSIOnXqkD9/fk6dOsWrV68oVqwY7u7urFu3jrJly/L69WsGDx6MsbGx2vrOzs4cOnSIypUrY2hoiJGREYMHD6ZFixYUKVKEx48fc+bMGb7+OvP7Ww0NDdP9yDLIkzX3y+vp6VGqbjNO/bwRywL2mNkW5MRPa8lnYY1b6dTn3v84bQhuZSpT6ssmgPIxLJEvnqrej3r1nJcP7mBkYoqZjfJ5wXExr4kOe0VMpPLqesSzR4Dyfn+TD+4Z0yQ9PT1atmlL4KqVODg4UsjenuVLFmNja8sX1WuoyvXu0Z1q1WvQolVrAFr7t2PSuDEU9fLCq7g3WzZuJD4ujq8aNVGtExYaSlhYGI8fK2/RuHP7FnnzmlCwYEHVZD3btmzGx9cXY+O8nDl1koXz5tKjd+90z1/WSN6t2xK4eiWFHRyxK1SIlUuXYG1jS9U0j7rq27M7X1SvwdctlXm3auvPlPFjKVrMi2LFi/Pj5o3ExcXR4KvGQEoDv09P4uPjGT1hErExscTGxAKpPaZ379ymb8/ulK9YiVZt26nuo9bPlQtLS0uN593omzZsDVqNXWEHCtjZs3HVUqysbahYpZqq3Oh+PahYtQYNv24JQJOWbZk3dTxunsVwL1acX3/cRHxcHLUbNALg2ZPHHDu4lzIVK2NqZs79O7dYvXAOxX1L4eyaOq/Gs8ePiIt7Q0R4GG/fvuXurRsAODi7aPSebT09Pb5po9zfDg6O2Nnbs3Lp4pT9nXqc9+3RnS9qpO7v1m3bMXn8mJT97c3WTcr93TDlOFc28HvyNj6eMRMmZ7i/AR4/ekjcmzjCw0J5+/Ytt24o83Z2ydq89fT0aNvWn1UrV+DoqKzPSxYvwtbWluo1UvP8rns3atSoSavWyjzbtWvP2DGjKeblhbe3Nxs3biAuLo7GTZR5mpqa0qRpM2bPmoWZuTn5TEyY/sM0SpQooWr8ODk5Ua16dWbOmM7IUaMxyZePhQvm4+zsTNmy5VSffffOHRLfJfI66jWxb2K5ceM6AJ6eqaOosuJ7+KZ1W4JS6nfBQoVYnVK/0z7Krn/P7lStXoPmKfu7ZVt/pqbU76LFi7MtpX7XT1O/B6XU71GZ1O/jfxwlIiwcLx8f8uTJw9lTp1i/djWt2rXPsvw+lnfrtm1Zs2olDo6OFCpkz7KU83m1NOfz77/rTvUaNfgm5Xzepl07JowdQ7FiXnh5e7P5/fm8cQbn85Qnn9y+fQuTvCYUKFgQc3Nzrly+TMi1q/iWLIWpmSlPHj1m2dLFFC7soJUGsvK78Gf1yhWq72LpkkXpvoue3btRvUZNWqbUhbb+7Rk/VlkXihf3ZnNKXUj7XYSGhhIeFsqjR8p/t2/fuo2JSV4KFLTDXIMTqOrp6dHW35+VK1bg6OiEvb09ixcp63eNGqk9zd27BVCjZk1at1bOAdGufXvGjB6Nl1dxZf3esJ64uDiaNGkKKOt302bNmDVrJubmZpiY5OOHadMoUcJXdSHg9u1bdAsIwM/Pj3bt26s6bfT19bGyslJOYuemPoeSlZUVefIYplueFd9D5a9acHjbOmzsCmOV3479m1ZhZmmDV/nUpxqtGDeA4uWr4NdAOWdGlUbf8OOCqRR29cTBvRh/7tpGwtt4ytSsr1rn7OE95C/siImZBQ9vXOXX1Qup/NU32No7AvDw5jUe376OczEfjE1MCXvxlAObVmNdsNBn3YtvaJIXWzdn1d82RRwo7OtFbHgkEY+eZr6iANDZYfGfK2nkfwbMzMw4duwYc+fO5fXr1zg5OTFr1izq169PwYIF6datG6VLl8bBwYEpU6YwaNAgtfVnzZrFgAEDWLFiBfb29ty8eZOwsDA6dOjAixcvsLGxoXnz5umG42encg1bkvg2ngNr5vL2TQz27t40HzSF3Gl6ZKJePiMuOkr194t7N/lxauqzgY9uXAaAV5UvqddNufzuhZPsWzFTVWb34ikAVGzaDr/mHTSa04fadexEfHwcP0yZREx0NCVKlmT2/EVqF0+ePH5EZGSk6u/adeoSGRHBiqVLCA9TDgWdvWCR2rDWHT9tY/WKZaq/ewYonyk8cux4GjZS/mi+dvUKK5cvJe7NG5ycnRkyYiT1G36l4YyV2nboSFx8HDOmTCImJhof35LMnLdQLe+nTx4TlSbvWl8q8161XJm3m4cnM+ctVOV988Z1rl25AkDr5k3UPm/rzl3YFSrEkUMHiYyIYP+e39i/5zfV+wXt7Pjx590azFipedsOxMfHsXjmFGJjYijm48vYmfPJkybv50+f8DoqUvV31Vp1eB0ZycbVy4hIGdo/duZ8LFKG6+fOnZvgs6f59cfNxMfHYWNbgErVatKyg/oztRdOn8SVi6k9Kf27tANg+ZafKWBXSINZg3+HTsTHxTE9zf6e9eFx/kT9OK9Vpy6RkRGsXJa6v2fNTz3Ob9y4zrUrylmXWzVrrPZ5P/68G7tCypymTZrAxfPnVO91btc6XZms0rFTJ+Li4pg8aSLR0dGULFmKBYsWq+X5+NEjItNMHlqnbl0iIiJYumQJYWGheHh6smDRYrXbEgYOGoS+vh5DBg0kISGBSn5+DBs+Qu2zJ0ycxOyZM+nbpzf6+vqULlOGBYsWq13I6NO7F8+epQ7fb5vSuDp34WKWfg9tUur3zDT7e8bf1O+aKfV7dZr6PSOT+t32g/q9OaV+586dmx3btrJw7ixQKLAv7MD3/Qbw1Ucm38xK7Tsq9//UycrzuW/Jksxb8PHz+Zcp5/PlS5cQFhaGh4cncxcsUtv/23/axsrlqefz77oqz+ejx47nq8aNMTIy4vfDh1m+bCnxcXFY29hQqZIfnacFZPkIhn+qQ0dlnZ8yaWLKd1GKeQsXZ/BdpNaFL1PqwvI0dWHeQvW6sH3bj2rfRfeuyvPcmHHj1S4GaEKnTp2Ji4tj0sQJyvpdqhSLFqvn9OjRYyIjIlV/161bj4iICJYsWUxYaCienp4sWqye06BBg9HX02fQQGX99vPzY/iIkar3Dx44SEREBLt372b37tR/p+zsCvHbnj0azTkj1Zq2ISE+nu1LZxIfG4NzUR86j56OQZ7U7yHs+RNi0/w2861ck9ioSA5sXkN0ZDiFirjx7ajpmKbpWHn15CF7NywnLiYaS9uC1Pi6HVUafaN6P4+hEVdO/cHBLWtJeBuHqaU1HiXLU7PFWHIbaOc4/yecypZgwJHNqr+/mTMagL/WbiOw86DMVhNCK/QUMsOFyMSyUw+0HYJWtPCy/ftCOigpOWeeCsLjc+aVZWvjnHmN1zi33t8X0kExicnaDkErjHLlzP394QRnOYWBfs7Me98d3XhS0afa55P1E+3+FyxV3Nd2CP8Xi9qjtB1CpiIPTtJ2CFkuZ/7KE0IIIYQQQgiRLd7PLyKyh0y8J4QQQgghhBBC6Ahp5AshhBBCCCGEEDpChusLIYQQQgghhNAYmV0/e0lPvhBCCCGEEEIIoSOkkS+EEEIIIYQQQugIGa4vhBBCCCGEEEJjZLh+9pKefCGEEEIIIYQQQkdII18IIYQQQgghhNARMlxfCCGEEEIIIYTGJMtw/WwlPflCCCGEEEIIIYSOkEa+EEIIIYQQQgihI2S4vhBCCCGEEEIIjVEkyXD97CQ9+UIIIYQQQgghhI6QRr4QQgghhBBCCKEjZLi+EEIIIYQQQgiNUcjs+tlKevKFEEIIIYQQQggdIY18IYQQQgghhBBCR8hwfSGEEEIIIYQQGiPD9bOX9OQLIYQQQgghhBA6Qhr5QgghhBBCCCGEjpDh+kIIIYQQQgghNEaG62cv6ckXQgghhBBCCCF0hDTyhRBCCCGEEEKILBQeHo6/vz9mZmZYWFjQpUsXYmJiPrpO9+7dcXV1xdjYGFtbW5o0acL169c/+bOlkS+EEEIIIYQQQmMUyUmf7UtT/P39uXr1KgcOHGDXrl0cO3aMbt26fXSdMmXKsGbNGkJCQti3bx8KhYI6deqQlPRpcco9+UIIIYQQQgghRBYJCQlh7969nDlzhrJlywKwYMECGjRowMyZMylUqFCG66W9CODs7MykSZPw9fXl/v37uLq6/uPPl558IYQQQgghhBA50tu3b3n9+rXa6+3bt/9qm3/99RcWFhaqBj5A7dq10dfX59SpU/9oG7GxsaxZs4YiRYrg4ODwaQEohPjMxMfHK8aOHauIj4/XdijZSvKWvHMCyVvyzgkkb8k7J5C8c1beumzs2LEKQO01duzYf7XNyZMnKzw8PNItt7W1VSxevPij6y5atEhhYmKiABSenp6K27dvf/Ln6ykUCsWnXRYQQrNev36Nubk5UVFRmJmZaTucbCN5S945geQteecEkrfknRNI3jkrb1329u3bdD33hoaGGBoapis7bNgwfvjhh49uLyQkhO3btxMYGMiNGzfU3sufPz/jx4+nR48ema4fFRXFy5cvefbsGTNnzuTJkyccP34cIyOjf5yT3JMvhBBCCCGEECJHyqxBn5GBAwfSqVOnj5ZxcXGhYMGCvHz5Um35u3fvCA8Pp2DBgh9d39zcHHNzc9zd3alYsSKWlpbs2LGDNm3a/KMYQRr5QgghhBBCCCHE37K1tcXW1vZvy1WqVInIyEjOnTtHmTJlADh8+DDJyclUqFDhH3+eQqFAoVB88hwBMvGeEEIIIYQQQgiRRYoVK0a9evUICAjg9OnTHD9+nF69etG6dWvVzPpPnjyhaNGinD59GoC7d+8ydepUzp07x8OHDzlx4gTffPMNxsbGNGjQ4JM+Xxr54rNjaGjI2LFj//GwGV0heUveOYHkLXnnBJK35J0TSN45K2/x6TZs2EDRokWpVasWDRo0oEqVKixfvlz1fmJiIjdu3ODNmzcAGBkZ8ccff9CgQQPc3Nxo1aoVpqamnDhxgvz583/SZ8vEe0IIIYQQQgghhI6QnnwhhBBCCCGEEEJHSCNfCCGEEEIIIYTQEdLIF0IIIYQQQgghdIQ08oUQQgghhBBCCB0hjXwhhBBCCCGEEEJHSCNffFZu377Nvn37iIuLAyCnPfwhKSmJixcvEhERoe1QhMgSiYmJuLq6EhISou1QhNCouLg41WOQAB48eMDcuXPZv3+/FqPSrMTERHLnzs2VK1e0HYoQQog0cms7ACEAwsLCaNWqFYcPH0ZPT49bt27h4uJCly5dsLS0ZNasWdoOUSP69euHj48PXbp0ISkpiWrVqnHixAny5s3Lrl27qF69urZDzDKWlpbo6en9o7Lh4eEajkZkFwMDA+Lj47UdhtZs27aNrVu38vDhQxISEtTeO3/+vJaiynoDBgz4x2Vnz56twUi0p0mTJjRv3pzvvvuOyMhIKlSogIGBAaGhocyePZsePXpoO8QsZ2BggKOjI0lJSdoOJdv98ccfLFu2jDt37rBt2zbs7e1Zt24dRYoUoUqVKtoOT6PevXvHkSNHuHPnDm3btsXU1JSnT59iZmZGvnz5tB2eRpw/fx4DAwN8fHwA+Pnnn1mzZg1eXl6MGzeOPHnyaDlCIdRJT774LPTv35/cuXPz8OFD8ubNq1reqlUr9u7dq8XINGvbtm34+voC8Ouvv3Lv3j2uX79O//79GTlypJajy1pz585lzpw5zJkzh1GjRgFQt25dxo0bx7hx46hbty4Ao0eP1maYGhUbG8vo0aPx8/PDzc0NFxcXtZeu+v777/nhhx949+6dtkPJVvPnz6dz584UKFCACxcuUL58eaytrbl79y7169fXdnhZ6sKFC2qvVatWsWzZMo4cOcKRI0dYvnw5q1at4uLFi9oOVWPOnz9P1apVAeW5vUCBAjx48ICgoCDmz5+v5eg0Z+TIkYwYMSJHXZz96aefqFu3LsbGxly4cIG3b98CEBUVxZQpU7QcnWY9ePAAHx8fmjRpwvfff8+rV68A+OGHHxg0aJCWo9Oc7t27c/PmTQDu3r1L69atyZs3Lz/++CNDhgzRcnRCpKenyGnjocVnqWDBguzbtw9fX19MTU0JDg7GxcWFu3fvUqJECWJiYrQdokYYGRlx+/ZtChcuTLdu3cibNy9z587l3r17+Pr68vr1a22HqBFff/01NWrUoFevXmrLFy5cyMGDB9m5c6d2AtOwNm3acPToUdq3b4+dnV26kQ19+/bVUmSa1axZMw4dOkS+fPnw8fHBxMRE7f3t27drKTLNKlq0KGPHjqVNmzZq57UxY8YQHh7OwoULtR2iRsyePZsjR44QGBiIpaUlABEREXTu3JmqVasycOBALUeoGXnz5uX69es4OjrSsmVLihcvztixY3n06BGenp5qQ/l1SalSpbh9+zaJiYk4OTmlq9+6NGLlvVKlStG/f386dOigVrcvXLhA/fr1ef78ubZD1JimTZtiamrKqlWrsLa2VuV+5MgRAgICuHXrlrZD1Ahzc3POnz+Pq6srP/zwA4cPH2bfvn0cP36c1q1b8+jRI22HKIQaGa4vPguxsbFqPfjvhYeHY2hoqIWIskeBAgW4du0adnZ27N27lyVLlgDw5s0bcuXKpeXoNGffvn388MMP6ZbXq1ePYcOGaSGi7LFnzx52795N5cqVtR1KtrKwsODrr7/WdhjZ7uHDh/j5+QFgbGxMdHQ0AO3bt6dixYo628ifNWsW+/fvVzXwQXm7zqRJk6hTp47ONvLd3NzYuXMnzZo1Y9++ffTv3x+Aly9fYmZmpuXoNKdp06baDiHb3bhxgy+++CLdcnNzcyIjI7M/oGz0xx9/cOLEiXTD052dnXny5ImWotI8hUJBcnIyAAcPHuSrr74CwMHBgdDQUG2GJkSGpJEvPgtVq1YlKCiIiRMnAqCnp0dycjLTp0+nRo0aWo5Oczp37kzLli1Vvbq1a9cG4NSpUxQtWlTL0WmOtbU1P//8c7of+z///DPW1tZaikrzLC0tsbKy0nYY2W7NmjXaDkErChYsSHh4OE5OTjg6OnLy5El8fX25d++eTk8q+vr1a9UQ3rRevXqlutChi8aMGUPbtm3p378/tWrVolKlSgDs37+fUqVKaTk6zRk7dqy2Q8h2BQsW5Pbt2zg7O6st//PPP3X61iuA5OTkDOdgePz4MaamplqIKHuULVuWSZMmUbt2bY4eParqlLl37x4FChTQcnRCpCeNfPFZmD59OrVq1eLs2bMkJCQwZMgQrl69Snh4OMePH9d2eBozbtw4vL29efToEd98841q1EKuXLl0ukd7/PjxdO3alSNHjlChQgVAeWFj7969rFixQsvRac7EiRMZM2YMgYGBGY5c0WU5caKmmjVr8ssvv1CqVCk6d+5M//792bZtG2fPnqV58+baDk9jmjVrRufOnZk1axbly5cHlPV78ODBOp13ixYtqFKlCs+ePVPNtQJQq1YtmjVrpsXINC8yMpJt27Zx584dBg8ejJWVFefPn6dAgQLY29trO7wsFxAQQN++fVm9ejV6eno8ffqUv/76i0GDBun0vDIAderUYe7cuSxfvhxQdsrExMQwduxYGjRooOXoNGfOnDm0a9eOnTt3MnLkSNzc3ADl/BvvR2wJ8TmRe/LFZyMqKoqFCxcSHBxMTEwMpUuX5vvvv8fOzk7boWWL+Ph4jIyMtB1Gtjl16hTz589XPVqtWLFi9OnTR9Xo10WlSpXizp07KBQKnJ2dMTAwUHtfF+9dBeVETfXq1ePhw4e8ffuWmzdv4uLiQt++fXn79i1Lly7VdogakZycTHJyMrlzK6+nb968mRMnTuDu7k737t11djbmN2/eMGjQIFavXk1iYiIAuXPnpkuXLsyYMSPdPdviv+3SpUvUrl0bc3Nz7t+/z40bN3BxcWHUqFE8fPiQoKAgbYeY5RQKBVOmTGHq1KmquRYMDQ0ZNGiQakSirnr8+DF169ZFoVBw69YtypYty61bt7CxseHYsWPkz59f2yFmq/j4eHLnzq06zwvxuZBGvhBalJSUxJQpU1i6dCkvXrxQNX5Gjx6Ns7MzXbp00XaIIguNGzfuo48R1NVhrzl1oqacLjY2ljt37gDg6uqqk4375s2bs3btWszMzP52lIKuTjBZu3ZtSpcuzfTp09UmoTtx4gRt27bl/v372g4xSyUlJXH8+HFKlChB3rx5uX37NjExMXh5eensqKQPvXv3ji1btqh1yvj7+2NsbKzt0DTGxcWFM2fOpLulMDIyktKlS3P37l0tRSZExuSyk/gsXLp0KcPlenp6GBkZ4ejoqJMT8E2ePJnAwECmT59OQECAarm3tzdz587V6UZ+cnIyt2/f5uXLl6rJbN7LaEIjXTBu3Dhth6AVOXWiJlD28ly6dCnD47xx48Zaiip7mJiYqCbf08UGPignWnt/4c7c3FzL0WjHmTNnWLZsWbrl9vb2OjnLfK5cuahTpw4hISFYWFjg5eWl7ZCyXe7cufH398ff31/boWSb+/fvZzgXwdu3b3n8+LEWIhLi46SRLz4LJUuWVP1Qej+4JG2Pp4GBAa1atWLZsmU6NaQ9KCiI5cuXU6tWLb777jvVcl9fX65fv67FyDTr5MmTtG3blgcPHqSbgExPTy/Df0h1QU7tCcipEzXt3buXDh06ZDjzsi4f5+/evWP8+PHMnz9f9fjTfPny0bt3b8aOHZvuNpX/srSTSubUCSYNDQ0zfNzrzZs3sbW11UJEmuft7c3du3cpUqSItkPJdoGBgdjY2NCwYUMAhgwZwvLly/Hy8mLTpk04OTlpOcKs9csvv6j+f9++fWoX85KSkjh06FCOPA7E509f2wEIAbBjxw7c3d1Zvnw5wcHBBAcHs3z5cjw9Pdm4cSOrVq3i8OHDjBo1StuhZqknT56oJm9JKzk5WXUvqy767rvvKFu2LFeuXCE8PJyIiAjVKzw8XNvhaUxO7Ql4P1HTezlloqbevXvzzTff8OzZM9X9+e9futrAB2Xey5cvZ/r06Vy4cIELFy4wffp0Vq1aRZ8+fbQdnshijRs3ZsKECap/s/T09Hj48CFDhw7V2UdnTpo0iUGDBrFr1y6ePXvG69ev1V66bMqUKaph+X/99RcLFy5k+vTp2NjYqB4bqUuaNm1K06ZN0dPTo2PHjqq/mzZtSuvWrTlw4ACzZs3SdphCpCP35IvPQvny5Zk4cSJ169ZVW75v3z5Gjx7N6dOn2blzJwMHDlTd46kLypQpQ//+/WnXrp3avYwTJkzgwIED/PHHH9oOUSNMTEwIDg7O8AKHLnrfE9C0aVMCAwMz7Ak4cOAAN27c0FaIGpVTJ2oyMzPjwoULuLq6ajuUbGVubs7mzZupX7++2vLffvuNNm3aEBUVpaXIsl6pUqU+Os9GWro6sWZUVBQtWrTg7NmzREdHU6hQIZ4/f06lSpX47bffdPJWDX391D6ytPtfoVDo9CgdgLx583L9+nUcHR0ZOnQoz549IygoiKtXr1K9evUMH5+pC4oUKcKZM2ewsbHRdihC/CMyXF98Fi5fvpzhEC8nJycuX74MKIf0P3v2LLtD06gxY8bQsWNHnjx5QnJyMtu3b+fGjRsEBQWxa9cubYenMRUqVOD27ds5ppHftGlTAFVPQFoGBgY4OzvrdE9A4cKFCQ4OVpuoqUuXLjo/UVOLFi04cuRIjmvkGxoapnt+OCh/JOvaEwXe121Qzr+wePFivLy8qFSpEqC8Nenq1av07NlTSxFqnrm5OQcOHOD48eNqE7HVrl073e1YuuL333/Xdghaky9fPsLCwnB0dGT//v0MGDAAACMjI+Li4rQcnebcu3dP2yEI8UmkJ198FkqVKoWvry/Lly9X/QhMTEwkICCA4OBgLly4wPHjx2nXrp3OnWj/+OMPJkyYoPbjaMyYMdSpU0fboWWptJMr3rlzh1GjRjF48GB8fHzS3aNbokSJ7A4vW0hPQM7y5s0bvvnmG2xtbTM8znV16PqECRO4fv06a9asUU2Y+vbtW7p06YK7u7vOPkWia9eu2NnZpXuE2tixY3n06BGrV6/WUmSaNWPGDAYPHpxueVJSEu3atWPTpk1aiEpoir+/P9evX6dUqVJs2rSJhw8fYm1tzS+//MKIESO4cuWKtkPUmNjYWI4ePcrDhw9JSEhQe09Xz+fiv0sa+eKzcOLECRo3boy+vr6qgXf58mWSkpLYtWsXFStWZN26dTx//jzDHxPi86evr4+enl6mPTvv39P1oY6HDh3i0KFDGc62rquNgKlTp1KgQAG+/fZbteWrV6/m1atXDB06VEuRadaqVav47rvvMDIywtraWm1Yr56ens5OtNisWTMOHTqEoaEhvr6+AAQHB5OQkECtWrXUyurSY+XMzc05e/Ys7u7uasvf36KiS+E2y90AACHiSURBVLcppJU/f36mTp2q9jSYpKQkWrduzZUrVwgJCdFidJpx7Nixj76vq0+IAeVEsaNGjeLRo0f06NGDevXqAcqLWXny5GHkyJFajlAzLly4QIMGDXjz5g2xsbFYWVkRGhpK3rx5yZ8/v86ez8V/lzTyxWcjOjqaDRs2cPPmTQA8PT1p27atTs++nZNmW3/w4ME/Lqtrs/O+N2HCBMaPH0/ZsmWxs7NLdy/vjh07tBSZZjk7O7Nx40b8/PzUlp86dYrWrVvr3Oic9woWLEifPn0YNmyY2j28uq5z587/uKwuzUhfsGBBpk2bRqdOndSWr127lqFDh/LixQvtBKZhZ86coU6dOqxYsYIWLVrw7t07WrZsyfXr1zl8+DAFCxbUdohZLqP6nPZ8rssXqnOq6tWr4+HhwdKlSzE3Nyc4OBgDAwPatWtH3759ad68ubZDFEKN3JMvPhumpqZ88cUXODs7q4ZBvb/vTVefJ/2x2dZ17fnhaRvuObVnd8mSJaxdu5b27dtrO5Rs9fz5c+zs7NItt7W11bl5NtJKSEigVatWOaqBD7rVcP8U/fr1o0ePHpw/f57y5csDygtZq1evZvTo0VqOTnPKlSvHTz/9RNOmTcmTJw+rVq3i9u3b/P777xQoUEDb4WlERESE2t+JiYlcuHCB0aNHM3nyZC1FpTlpb7f7O7p6u93FixdZtmwZ+vr65MqVi7dv3+Li4sL06dPp2LGjNPLFZ0ca+eKzcPfuXZo1a8bly5fVhm2/p2tXxf/Jc1czmrhKVyxbtoyNGzemW168eHFat26ts438hISEdL3ZOYGDgwPHjx9P9yzh48ePU6hQIS1FpXkdO3Zky5YtjBgxQtuhaMWrV69UT4zw9PTU2Wemvzds2DBcXFyYN28e69evB6BYsWKsWbOGli1bajk6zapZsyZBQUF8/fXXFCtWjKNHj+r03CNp/81+78svvyRPnjwMGDCAc+fOaSEqzSlZsmSOv93OwMBAdcE2f/78PHz4kGLFimFubs6jR4+0HJ0Q6UkjX3wW+vbtS5EiRTh06BBFihTh1KlThIeHM3DgQGbOnKnt8LJcTp9tPaf27Hbt2pWNGzfqdK9eRgICAujXrx+JiYnUrFkTUM5NMGTIEAYOHKjl6DQnKSmJ6dOns2/fPkqUKJFu4r3Zs2drKTLNio2NpXfv3gQFBanmnciVKxcdOnRgwYIF5M2bV8sRak7Lli3/tkG/adMmGjdu/J9+tFxmvZa2trZYWFjQrVs31TJdmnfh7xQoUEAnH4Wqq7dUfYpSpUpx5swZ3N3dqVatGmPGjCE0NJR169bh7e2t7fCESEca+eKz8Ndff3H48GFsbGxUQ6GqVKnC1KlT6dOnDxcuXNB2iFnq/Q/fnDrbek7q2X3/eCFQ7vfly5dz8ODBHNXoGzx4MGFhYfTs2VN1K46RkRFDhw5l+PDhWo5Ocy5fvkypUqUA0s04/U+frf5fNGDAAI4ePcqvv/5K5cqVAfjzzz/p06cPAwcOZMmSJVqOULu6d+9OhQoVcHFx0XYo/7eMerIB6tatm82RaMeHw9cVCgXPnj1j2rRplCxZUjtBaZCuzpPzKaZMmUJ0dDQAkydPpkOHDvTo0QMPDw9Wrlyp5eiESE8m3hOfBUtLS86fP0+RIkVwdXVl5cqV1KhRgzt37uDj48ObN2+0HaLGxcfHY2RkpO0wssX06dOZPn06M2bMyLBnV5cafjVq1PhH5fT09Dh8+LCGo9GumJgYQkJCMDY2xt3dXfV4NaFbbGxs2LZtG9WrV1db/vvvv9OyZUtevXqlncA+E6ampgQHB/+nG/k5XWZPi6lYsSKrV6+maNGiWopM84KCgj76focOHbIpkuwVFxeHQqFQjUS6f/8+O3bswMvLK8dc3BL/LdKTLz4L3t7eBAcHU6RIESpUqMD06dPJkycPy5cv1+kfQsnJyUyePJmlS5fy4sULbt68iYuLC6NHj8bZ2VntkUS6JCf17L6fPFJAvnz5KFeunLbDEBr25s2bDCdcy58/f464YJtT5aQ5GD4cvq6vr4+trW2OuFDft29ftb8TExN58+YNefLkIW/evDrbyG/SpAnNmzfnu+++IzIykooVK2JgYEBoaCizZ8+mR48e2g5RCDU5a8pf8dkaNWqUagj7hAkTuHfvHlWrVuW3335j/vz5Wo5OcyZNmsTatWtVFzXe8/b21unhX3p6evzwww+8evWKkydPEhwcTHh4OGPGjNF2aEIDYmNjGT16NH5+fri5ueHi4qL20lU5Ne9KlSoxduxY4uPjVcvi4uIYP348lSpV0mJkQhNiY2P59ttvsbOz44svvuCLL76gUKFCdOnSRWcv6hw9epSCBQvi5OSEk5MTDg4OGBkZkZCQ8Lc93f91ERERaq+YmBhu3LhBlSpV2LRpk7bD05jz589TtWpVALZt20aBAgV48OABQUFBOv07Vfx3yXB98dkKDw/H0tJSp+9ddXNzY9myZdSqVUttCOf169epVKlSusf0CPFf1KZNG44ePUr79u2xs7NLV6c/7BnSFTk178uXL1OvXj3evn2Lr68vAMHBwRgaGrJ//36KFy+u5Qi1S9eG63fv3p2DBw+ycOHCdHMwfPnllzo5B0OuXLl49uwZ+fPnV1seFhZG/vz5dXaG+Y85e/Ys7dq14/r169oORSPy5s3L9evXcXR0pGXLlhQvXpyxY8fy6NEjPD09dfaClvjvkuH64rNlZWWl7RA07smTJ7i5uaVbnpycTGJiohYiEiLr7dmzh927d6saADlFTs3bx8eHW7dusWHDBtUP/jZt2uDv74+xsbGWoxNZ7aeffko3B0ODBg0wNjamZcuWOtnI//Axv+89fvw400kJdV3u3Ll5+vSptsPQGDc3N3bu3EmzZs3Yt28f/fv3B+Dly5eYmZlpOToh0pNGvhBa5OXlxR9//JFu5tpt27apZuUW4r/O0tIyR1y0+1BOzXvq1KkUKFCAgIAAteWrV6/m1atXDB06VEuRfR6cnJzSPVnjvywnzcFQqlQp9PT00NPTo1atWuTOnfozOikpiXv37lGvXj0tRqh5v/zyi9rf758skHYkhy4aM2YMbdu2pX///tSqVUt169H+/fvl95r4LMlwfSG06Oeff6Zjx44MHz6cCRMmMH78eG7cuEFQUBC7du3iyy+/1HaIQvxr69ev5+effyYwMFCnn5H+oZyat7OzMxs3bsTPz09t+alTp2jdurVOP3M7MjKSbdu2cefOHQYPHoyVlRXnz5+nQIEC2Nvbazs8jahVqxbW1tYEBQWpJp6Li4ujY8eOhIeHc/DgQS1HmHXGjx+v+u/AgQPJly+f6r08efLg7OzM119/rTbHjq7R11efzktPTw9bW1tq1qzJrFmzsLOz01Jkmvf8+XOePXuGr6+v6ns4ffo0ZmZmOv1EBfHfJI18IbTsjz/+YMKECQQHBxMTE0Pp0qUZM2YMderU0XZoQmSJUqVKcefOHRQKBc7Ozul6Mc+fP6+lyLLe+56+927fvp0j8k7LyMiIkJAQihQporb87t27eHl5qU3Ip0suXbpE7dq1MTc35/79+9y4cQMXFxdGjRrFw4cPdXZCtitXrlC3bt10czAYGRmxb98+nZyDITAwkFatWuWI2fQ/5v2EyR82/IUQ2ifD9YXQsqpVq3LgwAFthyGExjRt2lTbIWSbnJRrZhwcHDh+/Hi6Rv7x48cpVKiQlqLSvAEDBtCpUyemT5+OqampanmDBg1o27atFiPTLG9v7xw3B0PHjh21HYJWrVq1ijlz5nDr1i0A3N3d6devH127dtVyZEKI96SRL8Rn4OzZs4SEhADK+/TLlCmj5YiEyDpjx47VdgjZJiflmpmAgAD69etHYmIiNWvWBODQoUMMGTKEgQMHajk6zTlz5gzLli1Lt9ze3p7nz59rIaLskzdv3nRzMOiypKQk5syZw9atW3n48CEJCQlq74eHh2spMs0bM2YMs2fPpnfv3qr70v/66y/69+/Pw4cPmTBhgpYjFEKANPKF0KrHjx/Tpk0bjh8/joWFBaC8p9PPz4/NmzdTuHBh7QYohPi/ubi4cObMGaytrdWWR0ZGUrp0ae7evaulyDRr8ODBhIWF0bNnT1Xjx8jIiKFDhzJ8+HAtR6c5hoaGvH79Ot3ymzdvYmtrq4WIss/Tp0/5888/efnypWoI93t9+vTRUlSaM378eFauXMnAgQMZNWoUI0eO5P79++zcuZMxY8ZoOzyNWrJkCStWrKBNmzaqZY0bN6ZEiRL07t1bGvlCfCbknnwhtKhevXpERkYSGBiIp6cnADdu3KBz586YmZmxd+9eLUcoxL+XU3u99PX1ef78ebpnab948QIHB4d034OuiYmJISQkBGNjY9zd3TE0NNR2SBrVtWtXwsLC2Lp1K1ZWVly6dIlcuXLRtGlTvvjiC+bOnavtEDVi7dq1dO/enTx58mBtba02J4Wenp5OXsxydXVl/vz5NGzYEFNTUy5evKhadvLkSTZu3KjtEDXGwsKCM2fO4O7urrb85s2blC9fnsjISO0EJoRQI418IbTI2NiYEydOpHv8yrlz56hatarOPX5I5Exjxoz5aK+XrvX0vX/EVNOmTQkMDFR7bnZSUhKHDh3iwIED3LhxQ1shCg2IioqiRYsWnD17lujoaAoVKsTz58+pVKkSv/32GyYmJtoOUSMcHBz47rvvGD58eI6ZgM3ExISQkBAcHR2xs7Nj9+7dqtE5pUqVIioqStshakzv3r0xMDBg9uzZassHDRpEXFwcixYt0lJkQoi0ZLi+EFrk4OBAYmJiuuVJSUk6PUGVyFk2bNjAihUraNiwIePGjaNNmza4urpSokQJTp48qXON/PeT7+np6aWboMvAwABnZ2dmzZqlhciEJpmbm3PgwAH+/PNPLl26pHpaSu3atbUdmka9efOG1q1b55gGPkDhwoV59uwZjo6OuLq6sn//fkqXLs2ZM2d0fsQKKCfe279/PxUrVgSUj8d8+PAhHTp0YMCAAapyH14IEEJkH+nJF0KLfv75Z6ZMmcKiRYsoW7YsoJyEr3fv3gwdOlRm6hY6Iaf2ehUpUoQzZ85gY2Oj7VCE0JghQ4ZgZWXFsGHDtB1Kthk2bBhmZmaMGDGCLVu20K5dO5ydnXn48CH9+/dn2rRp2g5RY2rUqPGPyunp6XH48GENRyOEyIw08oXIZpaWlmr3LMbGxvLu3Tty51YOrHn//yYmJjp7r7LIWTw9PQkKCqJChQpUqVKFr776imHDhrFlyxZ69+7Ny5cvtR1itomMjFRNsil0z6FDhzh06FCGE9CtXr1aS1FpVlJSEl999RVxcXH4+PhgYGCg9n5O6M09efIkJ06cwN3dnUaNGmk7HCGEkOH6QmQ3XZ18SYjMNGvWjEOHDlGhQgV69+5Nu3btWLVqlarXS1f98MMPODs706pVKwC++eYbfvrpJ+zs7Pjtt9/w9fXVcoQiK40fP54JEyZQtmxZ7Ozs1C7m6rKpU6eyb98+1eSxH068p2sSExPp3r07o0ePpkiRIgBUrFhRNXRdCCE+B9KTL4QQIlvllF6vIkWKsGHDBvz8/Dhw4AAtW7Zky5YtqqcM7N+/X9shiixkZ2fH9OnTad++vbZDyVaWlpbMmTOHTp06aTuUbGNubs7FixdVjXwhhPjc5JxZUoT4zMXHx/P69Wu1lxC6YOrUqWpDlStWrMiAAQN49eoVP/zwgxYj06znz5/j4OAAwK5du2jZsiV16tRhyJAhnDlzRsvRiayWkJCAn5+ftsPIdoaGhlSuXFnbYWSrpk2bsnPnTm2HIYQQmZJGvhBaFBsbS69evcifPz8mJiZYWlqqvYTQBcuWLaNo0aLplhcvXpylS5dqIaLsYWlpyaNHjwDYu3evapZ1hUJBUlKSNkMTGtC1a1edfj56Zvr27cuCBQu0HUa2cnd3Z8KECbRo0YKpU6cyf/58tZcQQmib3JMvhBYNGTKE33//nSVLltC+fXsWLVrEkydPWLZsmU7PzitylufPn2NnZ5duua2tLc+ePdNCRNmjefPmtG3bFnd3d8LCwqhfvz4AFy5cwM3NTcvRiawWHx/P8uXLOXjwICVKlMgxE9CdPn2aw4cPs2vXLooXL54u7+3bt2spMs1ZtWoVFhYWnDt3jnPnzqm9p6enp3OPBRVC/PdII18ILfr1118JCgqievXqdO7cmapVq+Lm5oaTkxMbNmzA399f2yEK8a85ODhw/PjxdPevHj9+nEKFCmkpKs2bM2cOzs7OPHr0iOnTp5MvXz4Anj17Rs+ePbUcnchqly5domTJkgBcuXJF7T1dnIDuPQsLC5o3b67tMLLVvXv3tB2CEEJ8lDTyhdCi8PBwXFxcADAzM1M9Mq9KlSr06NFDm6EJkWUCAgLo168fiYmJ1KxZE1A+amzIkCEMHDhQy9FpjoGBAYMGDeLatWs8fPiQX375BQBXV1ctRyY04ffff9d2CFqxePFikpOTMTExAeD+/fvs3LmTYsWKUbduXS1Hp1kJCQncu3cPV1dX1WNwhRDicyBnJCG0yMXFhXv37uHo6EjRokXZunUr5cuX59dff5VnaQudMXjwYMLCwujZsycJCQkAGBkZMXToUIYPH67l6DTn7t27NG/enMuXLwPKe/EhtVdX7ssXuqBJkyY0b96c7777jsjISCpWrIiBgQGhoaHMnj1bJy9Yv3nzht69exMYGAjAzZs3cXFxoXfv3tjb2zNs2DAtRyiEyOnkEXpCaNGcOXPIlSsXffr04eDBgzRq1AiFQkFiYiKzZ8+mb9++2g5RiCwTExNDSEgIxsbGuLu7Y2hoqO2QNKpRo0bkypWLlStXUqRIEU6fPk1YWBgDBw5k5syZVK1aVdshiixUo0aNjw7LP3z4cDZGk31sbGw4evQoxYsXZ+XKlSxYsIALFy7w008/MWbMGEJCQrQdYpbr27cvx48fZ+7cudSrV49Lly7h4uLCzz//zLhx47hw4YK2QxRC5HDSky+EFvXv31/1/7Vr1+b69eucO3cONzc3SpQoocXIhMh6+fLlo1y5ctoOI9v89ddfHD58GBsbG/T19dHX16dKlSpMnTqVPn36SENAx7y/H/+9xMRELl68yJUrV+jYsaN2gsoGb968wdTUFID9+/fTvHlz9PX1qVixIg8ePNBydJqxc+dOtmzZQsWKFdUu7BQvXpw7d+5oMTIhhFCSRr4QnxEnJyecnJy0HYYQIgskJSWpGj82NjY8ffoUT09PnJycuHHjhpajE1ltzpw5GS4fN24cMTEx2RxN9nFzc2Pnzp00a9aMffv2qS5ev3z5EjMzMy1HpxmvXr0if/786ZbHxsbq9CSLQoj/DmnkC5HN5s+fT7du3TAyMvrb5+nKY3iE+O/y9vYmODiYIkWKUKFCBaZPn06ePHlYvny5asJNofvatWtH+fLlmTlzprZD0YgxY8bQtm1b+vfvT61atahUqRKg7NUvVaqUlqPTjLJly7J792569+4NpM6zsXLlSlX+QgihTXJPvhDZrEiRIpw9exZra+t0jxRLS09Pj7t372ZjZEKIrLRv3z5iY2Np3rw5t2/f5quvvuLmzZtYW1uzZcsW1ZMGhG5bt24dQ4cO5enTp9oORWOeP3/Os2fP8PX1RV9fH4DTp09jZmZG0aJFtRxd1vvzzz+pX78+7dq1Y+3atXTv3p1r165x4sQJjh49SpkyZbQdohAih5NGvhBCCPG/9u4/pqr6j+P4615+WLKLXhRoSwMTuRMBm2Zlbm3g5h8ot2K5WmMpuTW2iuaPfmyVMpoZOon6p9ZWzbY23Vy1OTb1D8C2GoR5u4i5GNcmLTEIanghF17O9w/mrdtV59cDfPCe52Nj43wOf7z+Al738znvM02Ghobk9Xo50puA/vuueMuy1NfXp5MnT+rNN9/Url27DCXDVAiFQnrnnXcUDAYVDoe1YsUKvfrqqyoqKjIdDQAo+cB027Zt2039nMvl0v79+6c4DQBgMlRVVcVcu91uZWZmqrS0VOvWrTOUCgDgRJR8YJqVlJTEXJ86dUpXrlyRz+eTNPG+3aSkJK1cuTJhX7kEAMDtLBKJ6Msvv4y+IrCgoECPPvqokpMZdwXAPH4TAdOspaUl+n1DQ4M8Ho8OHDggr9crSfrjjz9UVVXFO7QB4DYVDoc1Pj4es5aok+ad6MyZM/L7/bp48WL0A/r6+nplZmbqyJEjKiwsNJwQgNOxkw8YdPfdd+v48eNatmxZzHpXV5fWrVuX0IOaACCR/Pzzz3rhhRfU2tqqy5cvR9cty5LL5VIkEjGYDpNp9erVyszMjPuAfvPmzRoYGNC3335rOCEAp2MnHzBoeHhYAwMDcesDAwO6dOmSgUQAgFtRWVkpy7L0ySefKDs7m+GKCeyHH37QyZMnowVfkrxer3bv3q1Vq1YZTAYAEyj5gEGPP/64qqqqtH//fj3wwAOSpPb2dr388stxk5oBADNXMBjU999/Hz2+jcSVn5+v3377Le4UXn9/v/Ly8gylAoB/UPIBgz788EPt2LFDTz/9tMbGxiRJycnJ2rJli/bt22c4HQDgZq1atUq//PILJd8B9uzZo5qaGtXW1uqhhx6SJLW1tamurk719fUaHh6O/iyzGACYwDP5wAwwMjKiUCgkSVq8eLHS0tIMJwIA/D9CoZCqq6tVWVmpwsJCpaSkxNwvLi42lAyTze12R7+/+ljG1X+n/33NLAYAprCTD8wAaWlp/AMIALexgYEBhUIhVVVVRddcLhdlLwH9+y05ADATsZMPAABgU0FBgZYuXapXXnnlmoP3cnJyDCUDADgNJR8AAMCmtLQ0BYNBBq85xOXLl9XZ2an+/n6Nj4/H3PP7/YZSAcAEjusDAADYVFpaSsl3iKNHj+qZZ57R77//HnePRzMAzASUfAAAAJvKy8u1detWnT59WkVFRXGD99jdTRwvvviiNm7cqJ07dyo7O9t0HACIw3F9AAAAm/49cf2/2N1NLOnp6QoEAlq8eLHpKABwTdf/iwQAAICbMj4+ft0vCn5ieeKJJ9Ta2mo6BgBcFzv5AAAAwE0aHR3Vxo0blZmZec1HM2pqagwlA4AJlHwAAIBJ0NHRoZaWlmtOXG9oaDCUCpPt448/VnV1te644w7Nmzcv5nWJLpdL586dM5gOACj5AAAAtr399tt644035PP5lJ2dHVf8mpubDabDZLrrrrtUU1Oj11577YazGADAFEo+AACATdnZ2aqvr9fmzZtNR8EUy8jIUEdHB4P3AMxYfPwIAABgk9vt1po1a0zHwDTYtGmTDh06ZDoGAFwXO/kAAAA27d27VxcuXFBjY6PpKJhiNTU1+uyzz7R8+XIVFxfHDd5j/gIA0yj5AAAANo2Pj2v9+vXq7u5WQUFBXPH74osvDCXDZCspKbnuPeYvAJgJkk0HAAAAuN3V1NSopaVFJSUlcRPXkVhaWlpMRwCAG2InHwAAwCaPx6ODBw9q/fr1pqNgmvT09CgUCumRRx7RnXfeKcuy+HAHwIzA4D0AAACbMjIymLbuEIODg1q7dq3y8/NVVlamvr4+SdKWLVu0fft2w+kAgJIPAABgW21trXbt2qXR0VHTUTDFtm7dqpSUFPX29mr27NnR9SeffFJHjx41mAwAJvBMPgAAgE3vv/++QqGQsrOzlZubGzd479SpU4aSYbIdP35cx44d04IFC2LWlyxZovPnzxtKBQD/oOQDAADY9Nhjj5mOgGkyMjISs4N/1dDQkGbNmmUgEQDEYvAeAAAAcJPKysq0cuVKvfXWW/J4POrs7FROTo6eeuopjY+P6/Dhw6YjAnA4Sj4AAABwk7q6urR27VqtWLFCzc3N8vv9OnPmjIaGhvTNN98wgBGAcRzXBwAAuAUZGRnq7u7W/Pnz5fV6b/j6tKGhoWlMhqmUnp6us2fP6oMPPpDH41E4HFZFRYWef/55jY2NmY4HAJR8AACAW/Huu+/K4/FIkhobG82GwbRZtGiR+vr69Prrr8esDw4OasGCBYpEIoaSAcAEjusDAAAAN8ntduvixYvKysqKWT9//rwKCgo0MjJiKBkATGAnHwAAYBJEIhF99dVXOnv2rCRp2bJl8vv9SkpKMpwMk2Hbtm2SJJfLpZ07d8ZM2I9EImpvb9d9991nKB0A/IOSDwAAYFNPT4/Kysr066+/yufzSZL27NmjhQsXqqmpiWFsCSAQCEiSLMvS6dOnlZqaGr2Xmpqq5cuXa8eOHabiAUAUx/UBAABsKisrk2VZ+vzzz5WRkSFp4hntyspKud1uNTU1GU6IyVJVVaX33ntP6enppqMAwDVR8gEAAGxKS0tTW1ubioqKYtaDwaDWrFmjcDhsKBkAwGncpgMAAADc7mbNmqVLly7FrYfD4Zhj3QAATDVKPgAAgE0bNmzQc889p/b2dlmWJcuy1NbWpurqavn9ftPxAAAOwnF9AAAAm/78809t2rRJR44cUUpKiiTpypUr8vv9+vTTTzV37lyzAQEAjkHJBwAAmCQ9PT3RV+gtXbpUeXl5hhMBAJyG4/oAAAA21dXVaXR0VHl5eSovL1d5ebny8vL0119/qa6uznQ8AICDsJMPAABgU1JSkvr6+pSVlRWzPjg4qKysLEUiEUPJAABOw04+AACATZZlyeVyxa0Hg0FlZGQYSAQAcKpk0wEAAABuV16vVy6XSy6XS/n5+TFFPxKJKBwOq7q62mBCAIDTcFwfAADgFh04cECWZenZZ59VY2Oj5syZE72Xmpqq3NxcrV692mBCAIDTUPIBAABsOnHihB5++OHo6/MAADCFkg8AAGBTb2/vDe/fc88905QEAOB0lHwAAACb3G73NQfvXcV0fQDAdGHwHgAAgE2BQCDmemxsTIFAQA0NDdq9e7ehVAAAJ2InHwAAYIo0NTVp3759am1tNR0FAOAQbtMBAAAAEpXP51NHR4fpGAAAB+G4PgAAgE3Dw8Mx15Zlqa+vT7W1tVqyZImhVAAAJ6LkAwAA2DR37ty4wXuWZWnhwoU6ePCgoVQAACfimXwAAACbTpw4EXPtdruVmZmpvLw8JSezpwIAmD6UfAAAgEny448/qre3V3///XfMut/vN5QIAOA0fLQMAABg07lz51RRUaHOzk65XC5d3UO5eoQ/EomYjAcAcBCm6wMAANj00ksvKTc3V/39/Zo9e7a6urr09ddf6/777+f1eQCAacVxfQAAAJvmz5+v5uZmFRcXa86cOfruu+/k8/nU3Nys7du3KxAImI4IAHAIdvIBAABsikQi8ng8kiYK/4ULFyRJOTk5+umnn0xGAwA4DM/kAwAA2FRYWKhgMKhFixbpwQcf1N69e5WamqqPPvpI9957r+l4AAAH4bg+AACATceOHdPIyIgqKirU09OjDRs2qLu7W/PmzdOhQ4dUWlpqOiIAwCEo+QAAAFNgaGhIXq83OmEfAIDpQMkHAAAAACBBMHgPAAAAAIAEQckHAAAAACBBUPIBAAAAAEgQlHwAAAAAABIEJR8AAAAAgARByQcAAAAAIEFQ8gEAAAAASBCUfAAAAAAAEsT/APAEGcDw6h+vAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Select all numerical features.\n",
"numerical_features = X.select_dtypes([\"float64\", \"int64\"])\n",
"\n",
"# Create distribution plots.\n",
"nrows = len(numerical_features.columns)\n",
"fig, ax = plt.subplots(nrows=nrows, ncols=2, figsize=(15, 30))\n",
"for i, feature in enumerate(numerical_features):\n",
" sns.violinplot(x=TARGET_COLUMN_NAME, y=feature, hue=TARGET_COLUMN_NAME, data=data, ax=ax[i, 0], legend=False)\n",
" if i == 0:\n",
" ax[i, 0].set_title(\"Violin Plots\")\n",
" ax[i, 1].set_title(\"Box Plots\") \n",
" sns.boxplot(x=TARGET_COLUMN_NAME, y=feature, hue=TARGET_COLUMN_NAME, data=data, ax=ax[i, 1], legend=False)\n",
" ax[i, 0].set_xlabel(\"\")\n",
" ax[i, 1].set_xlabel(\"\")\n",
" ax[i, 1].set_ylabel(\"\")\n",
"_ = fig.text(0.5, 0, \"COVID-19 Test Results\", ha='center')\n",
"_ = fig.suptitle(\"Numerical Feature Distributions\", y=1)\n",
"fig.tight_layout()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{note}\n",
"[Violin plots](https://en.wikipedia.org/wiki/Violin_plot) are essentially [box plots](https://en.wikipedia.org/wiki/Box_plot) combined with a [kernel density estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation). While box plots give us a good understanding of the data's quartiles and outliers, violin plots provide us with an informative representation of it's entire distribution.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# k-Nearest Neighbors (k-NN)\n",
"[k-NN](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) is a simple and useful non-parametric method that is commonly used for both classification and regression. It relies on having some method of calculating distance between data points, and using the the \"nearest\" observations to predict the target value for new ones."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"
\n",
" \n",
" \n",
" Example of k-NN classification. The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).\n",
" \n",
" Wikipedia\n",
" \n",
" \n",
" \n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading the Dataset"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"from sklearn.datasets import load_iris\n",
"\n",
"TARGET_NAME = \"class\"\n",
"\n",
"# Read a type of dictionary with the dataset as well as some metadata.\n",
"iris_dataset = load_iris()\n",
"\n",
"# Read the features and targets.\n",
"X = pd.DataFrame(iris_dataset.data, columns=iris_dataset.feature_names)\n",
"y = pd.Series(iris_dataset.target, name=TARGET_NAME)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Exploration"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
sepal length (cm)
\n",
"
sepal width (cm)
\n",
"
petal length (cm)
\n",
"
petal width (cm)
\n",
"
class
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
5.10
\n",
"
3.50
\n",
"
1.40
\n",
"
0.20
\n",
"
setosa
\n",
"
\n",
"
\n",
"
1
\n",
"
4.90
\n",
"
3.00
\n",
"
1.40
\n",
"
0.20
\n",
"
setosa
\n",
"
\n",
"
\n",
"
2
\n",
"
4.70
\n",
"
3.20
\n",
"
1.30
\n",
"
0.20
\n",
"
setosa
\n",
"
\n",
"
\n",
"
3
\n",
"
4.60
\n",
"
3.10
\n",
"
1.50
\n",
"
0.20
\n",
"
setosa
\n",
"
\n",
"
\n",
"
4
\n",
"
5.00
\n",
"
3.60
\n",
"
1.40
\n",
"
0.20
\n",
"
setosa
\n",
"
\n",
"
\n",
"
72
\n",
"
6.30
\n",
"
2.50
\n",
"
4.90
\n",
"
1.50
\n",
"
versicolor
\n",
"
\n",
"
\n",
"
73
\n",
"
6.10
\n",
"
2.80
\n",
"
4.70
\n",
"
1.20
\n",
"
versicolor
\n",
"
\n",
"
\n",
"
74
\n",
"
6.40
\n",
"
2.90
\n",
"
4.30
\n",
"
1.30
\n",
"
versicolor
\n",
"
\n",
"
\n",
"
75
\n",
"
6.60
\n",
"
3.00
\n",
"
4.40
\n",
"
1.40
\n",
"
versicolor
\n",
"
\n",
"
\n",
"
76
\n",
"
6.80
\n",
"
2.80
\n",
"
4.80
\n",
"
1.40
\n",
"
versicolor
\n",
"
\n",
"
\n",
"
145
\n",
"
6.70
\n",
"
3.00
\n",
"
5.20
\n",
"
2.30
\n",
"
virginica
\n",
"
\n",
"
\n",
"
146
\n",
"
6.30
\n",
"
2.50
\n",
"
5.00
\n",
"
1.90
\n",
"
virginica
\n",
"
\n",
"
\n",
"
147
\n",
"
6.50
\n",
"
3.00
\n",
"
5.20
\n",
"
2.00
\n",
"
virginica
\n",
"
\n",
"
\n",
"
148
\n",
"
6.20
\n",
"
3.40
\n",
"
5.40
\n",
"
2.30
\n",
"
virginica
\n",
"
\n",
"
\n",
"
149
\n",
"
5.90
\n",
"
3.00
\n",
"
5.10
\n",
"
1.80
\n",
"
virginica
\n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"# Class colors\n",
"COLORS = \"rgba(255, 0, 0, 0.3)\", \"rgba(0, 255, 0, 0.3)\", \"rgba(0, 0, 255, 0.3)\"\n",
"\n",
"# Create a unified dataframe.\n",
"data = pd.concat([X, y], axis=\"columns\")\n",
"\n",
"\n",
"# Set class background color\n",
"def set_class_color(class_index: str) -> str:\n",
" return f\"background-color: {COLORS[class_index]};\"\n",
"\n",
"\n",
"def set_class_name(class_index: str) -> str:\n",
" return iris_dataset.target_names[class_index]\n",
"\n",
"\n",
"# Select some sample indices\n",
"sample_indices = np.linspace(0, len(data) - 5, 3, dtype=int)\n",
"sample_indices = [index for i in sample_indices for index in range(i, i + 5)]\n",
"\n",
"# Display table\n",
"data.iloc[sample_indices, :].style.background_gradient().map(lambda x: set_class_color(x), subset=[TARGET_NAME]).format(\n",
" {TARGET_NAME: set_class_name}).set_properties(**{\n",
" \"border\": \"1px solid black\"\n",
" }, subset=[TARGET_NAME]).set_properties(**{\n",
" \"text-align\": \"center\"\n",
" }).set_table_styles([\n",
" dict(selector=\"th\", props=[(\"font-size\", \"14px\")]),\n",
" dict(selector=\"td\", props=[(\"font-size\", \"12px\")]),\n",
" ]).format(\"{:.2f}\", subset=[col for col in data.columns if col != TARGET_NAME])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train/Test Split"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{admonition} [Train-Test Split](https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/)\n",
" :class: note\n",
"A lot can be said regarding the different approaches for model validation and evaluation (which we'll discuss later in the course), but the general guideline is that, since our model should detect underlying trends in the data, we would evaluate its performance over unseen data. Therefore, we'll split our data into a training (for model fitting) and testing (for evaluation).\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
" y,\n",
" random_state=0,\n",
" test_size=0.25)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"application/papermill.record/text/plain": "112"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_train"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "38"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_test"
}
},
"output_type": "display_data"
}
],
"source": [
"from myst_nb import glue\n",
"\n",
"glue(\"n_train\", len(X_train), display=False)\n",
"glue(\"n_test\", len(X_test), display=False)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now have a training dataset consisting of {glue:}`n_train` observations and a test dataset with {glue:}`n_test` observations."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Creation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{admonition} [Models and Estimators](https://scikit-learn.org/stable/getting_started.html)\n",
" :class: note\n",
"Machine Learning algorithms and models are easily accesible through numberous packages, namely [scikit-learn](https://scikit-learn.org/stable/index.html). While different estimators provide different advantages and pitfalls, they share some basic properties, making it easy for users to use them.\n",
"\n",
"*Since these estimators are basically just algorithms and formulas that need to be tailored to the dataset being used, all estimators have a 'fit' method, (unsurprisingly) fitting the estimators to generalize to any specific data.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"k = 1\n",
"\n",
"knn = KNeighborsClassifier(n_neighbors=k)\n",
"_ = knn.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Evaluation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Misclassification Rate / Accuracy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"
\n",
" \n",
" \n",
" Accuracy is defined as 1-error rate. It is used as a statistical measure of how well a classification test performes.\n",
" \n",
" Wikipedia\n",
" \n",
" \n",
" \n",
""
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"y_predicted = knn.predict(X_test)\n",
"\n",
"misclassification_rate = np.mean(y_predicted != y_test) * 100"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"application/papermill.record/text/plain": "'2.632'"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "misclassification_rate"
}
},
"output_type": "display_data"
},
{
"data": {
"application/papermill.record/text/plain": "37"
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "n_correct"
}
},
"output_type": "display_data"
}
],
"source": [
"glue(\"misclassification_rate\", f\"{misclassification_rate:.3f}\", display=False)\n",
"glue(\"n_correct\", (y_predicted == y_test).sum(), display=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our model achieved a misclassification_rate of {glue:}`misclassification_rate`%, meaning it correctly predicted {glue:}`n_correct` of {glue:}`n_test` target values in our test set.\n",
"\n",
"Another way to look at it is:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"97.36842105263158"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.metrics import accuracy_score\n",
"accuracy_score(y_test, y_predicted) * 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Confusion Matrix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"
\n",
" \n",
" \n",
" A confusion matrix is a table that is often used to describe the performance of a classification model on a set of data for which the true values are known.\n",
" \n",
" Medium\n",
" \n",
" \n",
" \n",
""
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[13, 0, 0],\n",
" [ 0, 15, 1],\n",
" [ 0, 0, 9]])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"confusion_matrix(y_test, y_predicted)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABezElEQVR4nO3deXyM1/4H8M9Mlpns1qwiQYioEGK5BKEi0dZW105FLL1KbLGEqkQsza3a1a7WRlFKa6ki1obWGhcliCVauyAiZJk5vz/yy9TIhIlMMpmZz7uved07Z85zzveZJ+TrLM8jEUIIEBERERkYqb4DICIiInoXTGKIiIjIIDGJISIiIoPEJIaIiIgMEpMYIiIiMkhMYoiIiMggMYkhIiIig8QkhoiIiAwSkxgiIiIySExiiEqhK1euIDg4GA4ODpBIJNi2bZtO279x4wYkEglWr16t03YNWcuWLdGyZUudtnnr1i3I5XIkJCSo9VO7dm2d9vMulixZgsqVKyMzM1PfoRC9MyYxRAVITk7Gf/7zH1StWhVyuRz29vYICAjAvHnz8OLFi2LtOzQ0FOfOncP06dOxbt06NGjQoFj7K0n9+vWDRCKBvb29xu/xypUrkEgkkEgkmDlzZqHbv337NiZPnozExEQdRFs0U6ZMQePGjREQEFBifW7cuBF9+vRB9erVIZFICkzM+vXrh6ysLCxdurTEYiPSNXN9B0BUGu3cuRNdu3aFTCZD3759Ubt2bWRlZeG3337D2LFjceHCBSxbtqxY+n7x4gWOHTuGiRMnIjw8vFj68PDwwIsXL2BhYVEs7b+Nubk5MjIysH37dnTr1k3ts7i4OMjlcrx8+fKd2r59+zZiYmLg6ekJPz8/rY/bs2fPO/VXkAcPHmDNmjVYs2aNTtt9m8WLF+PUqVNo2LAhHj16VGA9uVyO0NBQzJ49G8OGDYNEIinBKIl0gyMxRK+5fv06evToAQ8PD/z555+YN28eBg0ahKFDh+L777/Hn3/+iffee6/Y+n/w4AEAoEyZMsXWh0QigVwuh5mZWbH18SYymQytW7fG999/n++z9evX46OPPiqxWDIyMgAAlpaWsLS01Fm73333HczNzdG+fXudtamNdevW4enTp9i/fz9cXV3fWLdbt264efMmDhw4UELREekWkxii18yYMQPp6en49ttv4eLiku9zLy8vjBgxQvU+JycHU6dORbVq1SCTyeDp6YnPP/8831oDT09PtGvXDr/99hsaNWoEuVyOqlWrYu3atao6kydPhoeHBwBg7NixkEgk8PT0BJA7/J/3/181efLkfP+K3rt3L5o1a4YyZcrA1tYW3t7e+Pzzz1WfF7QmZv/+/WjevDlsbGxQpkwZdOzYERcvXtTY39WrV9GvXz+UKVMGDg4OCAsLUyUE2ujVqxd++eUXPHnyRFV24sQJXLlyBb169cpXPzU1FWPGjIGvry9sbW1hb2+PDz74AGfPnlXVOXjwIBo2bAgACAsLU01L5Z1n3nqUU6dOoUWLFrC2tlZ9L6+viQkNDYVcLs93/iEhIShbtixu3779xvPbtm0bGjduDFtb27d+F3v27IG1tTV69uyJnJyct9Z/E3d3d0il2v3V7u/vj3LlyuGnn34qUp9E+sIkhug127dvR9WqVdG0aVOt6g8cOBBRUVGoX78+5syZg8DAQMTGxqJHjx756l69ehVdunRBmzZtMGvWLJQtWxb9+vXDhQsXAACdO3fGnDlzAAA9e/bEunXrMHfu3ELFf+HCBbRr1w6ZmZmYMmUKZs2ahQ4dOqgtLtVk3759CAkJwf379zF58mRERETg6NGjCAgIwI0bN/LV79atG549e4bY2Fh069YNq1evRkxMjNZxdu7cGRKJBD/++KOqbP369ahZsybq16+fr/61a9ewbds2tGvXDrNnz8bYsWNx7tw5BAYGqhIKHx8fTJkyBQDw6aefYt26dVi3bh1atGihaufRo0f44IMP4Ofnh7lz56JVq1Ya45s3bx4qVqyI0NBQKBQKAMDSpUuxZ88eLFiw4I2jHNnZ2Thx4oTG83jdjh070KFDB3Tt2lU1egMAT58+xcOHD9/6Sk9Pf2sfb1K/fv23/mwQlVqCiFSePn0qAIiOHTtqVT8xMVEAEAMHDlQrHzNmjAAg9u/fryrz8PAQAMThw4dVZffv3xcymUyMHj1aVXb9+nUBQHz99ddqbYaGhgoPD498MURHR4tX/yjPmTNHABAPHjwoMO68PlatWqUq8/PzE46OjuLRo0eqsrNnzwqpVCr69u2br7/+/furtfnxxx+L8uXLF9jnq+dhY2MjhBCiS5cuonXr1kIIIRQKhXB2dhYxMTEav4OXL18KhUKR7zxkMpmYMmWKquzEiRP5zi1PYGCgACCWLFmi8bPAwEC1sl9//VUAENOmTRPXrl0Ttra2olOnTm89x6tXrwoAYsGCBRr7ee+994QQQmzZskVYWFiIQYMG5Tu3vFjf9goNDS0wjvfeey/fOb3u008/FVZWVm89J6LSiAt7iV6RlpYGALCzs9Oq/q5duwAAERERauWjR4/GzJkzsXPnTrV/6deqVQvNmzdXva9YsSK8vb1x7dq1ooaukreW5qeffkJYWJhWUwt37txBYmIixo0bh3LlyqnK69SpgzZt2qjO81WDBw9We9+8eXNs3boVaWlpsLe31yrWXr16oWvXrrh79y7Onz+Pu3fvapxKAnLX0eRRKBR48uSJaqrs9OnTWvWX105YWJhWdYODg/Gf//wHU6ZMwebNmyGXy7XazZO3oLZs2bIF1vn+++/Rt29fDB48GPPnz883JThr1iw8fvz4rX29bd3L25QtWxYvXrxARkYGrK2ti9QWUUljEkP0irxfvs+ePdOq/s2bNyGVSuHl5aVW7uzsjDJlyuDmzZtq5ZUrV87XRtmyZbX6ZaWt7t27Y8WKFRg4cCDGjx+P1q1bo3PnzujSpUuBCU1enN7e3vk+8/Hxwa+//ornz5/DxsZGVf76ueT9wn78+LHWScyHH34IOzs7bNy4EYmJiWjYsCG8vLw0Tl8plUrMmzcPixYtwvXr11VTPABQvnx5rfoDADc3t0It4J05cyZ++uknJCYmYv369XB0dNT6WCGExvLr16+jT58+6Nq1KxYsWKCxjr+/v9b9FEVejNydRIaISQzRK+zt7eHq6orz588X6jhtfwEUtBuooF922vTx6i9zALCyssLhw4dx4MAB7Ny5E7t378bGjRvx/vvvY8+ePTrbkVSUc8kjk8nQuXNnrFmzBteuXcPkyZMLrPvll19i0qRJ6N+/P6ZOnYpy5cpBKpVi5MiRUCqVWvdpZWWldV0AOHPmDO7fvw8AOHfuHHr27PnWY/KSqoKSUxcXF7i4uGDXrl04efKkxvsApaamIisr6619WVlZwcHB4a31CvL48WNYW1sX+nshKg24sJfoNe3atUNycjKOHTv21roeHh5QKpW4cuWKWvm9e/fw5MkT1U4jXShbtqzaTp48r4/2AIBUKkXr1q0xe/Zs/Pnnn5g+fTr2799f4FbavDiTkpLyfXbp0iVUqFBBbRRGl3r16oUzZ87g2bNnGhdD59m8eTNatWqFb7/9Fj169EBwcDCCgoLyfSe6HFF4/vw5wsLCUKtWLXz66aeYMWMGTpw48dbjKleuDCsrK1y/fl3j53K5HDt27ED16tXRtm1b1cLuV3Xu3FmV7Lzp9epOuXdx/fp1+Pj4FKkNIn1hEkP0mnHjxsHGxgYDBw7EvXv38n2enJyMefPmAcidDgGQbwfR7NmzAUCn9zupVq0anj59iv/973+qsjt37mDr1q1q9VJTU/Mdm3fTt4JuMe/i4gI/Pz+sWbNGLSk4f/489uzZozrP4tCqVStMnToV33zzDZydnQusZ2Zmlm+U54cffsDff/+tVpaXbGlK+AorMjISKSkpWLNmDWbPng1PT0+Ehoa+9Vb9FhYWaNCgAU6ePFlgHQcHB/z6669wdHREmzZtkJycrPb5rFmzsHfv3re+xo0bV6RzPH36tNY78YhKG04nEb2mWrVqWL9+Pbp37w4fHx+1O/YePXoUP/zwA/r16wcAqFu3LkJDQ7Fs2TI8efIEgYGBOH78ONasWYNOnToVuH33XfTo0QORkZH4+OOPMXz4cGRkZGDx4sWoUaOG2sLWKVOm4PDhw/joo4/g4eGB+/fvY9GiRahUqRKaNWtWYPtff/01PvjgAzRp0gQDBgzAixcvsGDBAjg4OLxxmqeopFIpvvjii7fWa9euHaZMmYKwsDA0bdoU586dQ1xcHKpWrapWr1q1aihTpgyWLFkCOzs72NjYoHHjxqhSpUqh4tq/fz8WLVqE6Oho1VbpVatWoWXLlpg0aRJmzJjxxuM7duyIiRMnvnGhc4UKFVT39AkKCsJvv/0GNzc3AO++Jubw4cM4fPgwgNwbJz5//hzTpk0DALRo0UJtu/mpU6eQmpqKjh07vlNfRHqn171RRKXY5cuXxaBBg4Snp6ewtLQUdnZ2IiAgQCxYsEC8fPlSVS87O1vExMSIKlWqCAsLC+Hu7i4mTJigVkeI3C3WH330Ub5+Xt/aW9AWayGE2LNnj6hdu7awtLQU3t7e4rvvvsu3xTo+Pl507NhRuLq6CktLS+Hq6ip69uwpLl++nK+P17ch79u3TwQEBAgrKythb28v2rdvL/7880+1Onn9vb6Fe9WqVQKAuH79eoHfqRDqW6wLUtAW69GjRwsXFxdhZWUlAgICxLFjxzRujf7pp59ErVq1hLm5udp5vrq9+XWvtpOWliY8PDxE/fr1RXZ2tlq9UaNGCalUKo4dO/bGc7h3754wNzcX69aty9fP6zFcvXpVuLi4CB8fnzdujddG3vXR9IqOjlarGxkZKSpXriyUSmWR+iTSF4kQhViFR0REWhswYAAuX76MI0eO6DuUfDIzM+Hp6Ynx48cXeV0Nkb5wTQwRUTGJjo7GiRMnSuUdcVetWgULC4t89/shMiQciSEiIiKDxJEYIiIiMkhMYoiIiKhIDh8+jPbt28PV1RUSiQTbtm176zEHDx5E/fr1IZPJ4OXlpXrafGEwiSEiIqIief78OerWrYuFCxdqVf/69ev46KOP0KpVKyQmJmLkyJEYOHAgfv3110L1yzUxREREpDMSiQRbt25Fp06dCqwTGRmJnTt3qj3ipUePHnjy5Al2796tdV+82Z2BUCqVuH37Nuzs7PigNiIiAySEwLNnz+Dq6qrV0+XfxcuXL7V65pY2hBD5ft/IZDK1J8q/q2PHjiEoKEitLCQkBCNHjixUO0xiDMTt27fh7u6u7zCIiKiIbt26hUqVKum83ZcvX8LKrjyQk6GT9mxtbZGenq5WFh0drZM7eN+9exdOTk5qZU5OTkhLS8OLFy+0fiApkxgDYWdnBwCwrBUKiZmlnqMpOVaWUiwaHYghsw7hRZb2Tyo2dCkHZ+o7hBKXk52NQ/v3IPD9YJhbWOg7HCpGpnqtn6WlwauKu+rvc13LysoCcjIgqxUKFPX3hCIL6X+uwa1bt9Qem6GLURhdYhJjIPKG9CRmliaVxEjMzWBtbQ2JuQwShULf4ZSYgp61Y8xysrNhbW0Ne3t7k/rFZopM/VoX+5IAc3mRf08ISe50l729fbH8feTs7JzvAbv37t2Dvb291qMwAJMYIiIi4yIBUNREqZjzrCZNmmDXrl1qZXv37kWTJk0K1Q63WBMRERkTiVQ3r0JIT09HYmIiEhMTAeRuoU5MTERKSgoAYMKECejbt6+q/uDBg3Ht2jWMGzcOly5dwqJFi7Bp0yaMGjWqUP0yiSEiIqIiOXnyJOrVq4d69eoBACIiIlCvXj1ERUUBAO7cuaNKaACgSpUq2LlzJ/bu3Yu6deti1qxZWLFiBUJCQgrVL6eTiIiIjIlEooPppMId37JlS7zptnOa7sbbsmVLnDlzprCRqWESQ0REZEzeYTpIYxsGwDCiJCIiInoNR2KIiIiMiR6mk/SFSQwREZFR0cF0koFM1BhGlERERESv4UgMERGRMeF0EhERERkk7k4iIiIiKt04EkNERGRMOJ1EREREBsmEppOYxBARERkTExqJMYxUi4iIiOg1HIkhIiIyJpxOIiIiIoMkkeggieF0EhEREVGx4UgMERGRMZFKcl9FbcMAMIkhIiIyJia0JsYwoiQiIiJ6DUdiiIiIjIkJ3SeGSQwREZEx4XQSERERUenGkRgiIiJjwukkIiIiMkgmNJ3EJIaIiMiYmNBIjGGkWkRERESv4UgMERGRMeF0EhERERkkTicRERERlW4ciSEiIjIqOphOMpAxDiYxRERExoTTSURERESlG0diiIiIjIlEooPdSYYxEsMkhoiIyJiY0BZrw4iSiIiI6DUciSEiIjImJrSwl0kMERGRMTGh6SQmMURERMbEhEZiDCPVIiIiInoNR2KIiIiMCaeTiIiIyCBxOomIiIiodONIDBERkRGRSCSQmMhIDJMYIiIiI2JKSQynk4iIiMggcSSGiIjImEj+/1XUNgwAkxgiIiIjwukkIiIiolKOIzFERERGxJRGYpjEEBERGREmMUR61rReNQz7JAh+PpXhXMEBbX97gK37EvUdFhWT5ZsOYcG6fbj74Cl8NyVhxrhu8H/PU99hUTH5dstvmLniCJ59eQC1q7vhq7Fdeb11yJSSGK6Jec2NGzcgkUiQmJio71BMmrWVDOcv/43PZ2/WdyhUzH7ccwpfzN2KMf1DEPufxnjPyxX/HrYQD1Kf6Ts0KgY/7jmFqPnb0KVlVcSvGo3a1d14vemdMYmhUmnf0T8xfckO7D78P32HQsVs0fr96NupKXq1a4xKjraYOa4rrOWW+O7nY/oOjYrBovX70adDE7Ss5wbvKs6YPaEHr7euSXT0MgBGm8Rs3rwZvr6+sLKyQvny5REUFITnz58DAFasWAEfHx/I5XLUrFkTixYtUh1XpUoVAEC9evUgkUjQsmVLAIBSqcSUKVNQqVIlyGQy+Pn5Yffu3arjsrKyEB4eDhcXF8jlcnh4eCA2Nlb1+ezZs+Hr6wsbGxu4u7tjyJAhSE9PL4Fvgqj0ysrOQeKlW2jZyFtVJpVKEdjIGyfOXddjZFQc8q53YIMaqjJeb93Lm04q6ssQGOWamDt37qBnz56YMWMGPv74Yzx79gxHjhyBEAJxcXGIiorCN998g3r16uHMmTMYNGgQbGxsEBoaiuPHj6NRo0bYt28f3nvvPVhaWgIA5s2bh1mzZmHp0qWoV68eVq5ciQ4dOuDChQuoXr065s+fj59//hmbNm1C5cqVcevWLdy6dUsVk1Qqxfz581GlShVcu3YNQ4YMwbhx49QSKCJT8+hJOhQKJSqWs1Mrr1jOHldu3NNTVFRcXr3eaXf+Kef1pndltElMTk4OOnfuDA8PDwCAr68vACA6OhqzZs1C586dAeSOvPz5559YunQpQkNDUbFiRQBA+fLl4ezsrGpz5syZiIyMRI8ePQAAX331FQ4cOIC5c+di4cKFSElJQfXq1dGsWTNIJBJVv3lGjhyp+v+enp6YNm0aBg8eXGASk5mZiczMTNX7tLQ0AICVpRQSc7OifD0GRW6Ze64W5lJYyUznvHOys/UdQolQZOfk/m+OAjk5ueeck5MNoVRACGEy34OpUF1vRe7/5l1zU7neJXV+Egl0sLBXN7EUN6NMYurWrYvWrVvD19cXISEhCA4ORpcuXWBpaYnk5GQMGDAAgwYNUtXPycmBg4NDge2lpaXh9u3bCAgIUCsPCAjA2bNnAQD9+vVDmzZt4O3tjbZt26Jdu3YIDg5W1d23bx9iY2Nx6dIlpKWlIScnBy9fvkRGRgasra3z9RkbG4uYmJh85YtGB2qsb+wGd3wPnf9VXt9hlJj4Pbv0HUKJyMlRQiqRIH7/QaTdcQQAHNq/F/87fwkSRY7JfA+mIu96Hzz0Gxr6OOLQ/r0AYDLXOyMjo0T6kUAX00GGkcUYZRJjZmaGvXv34ujRo9izZw8WLFiAiRMnYvv27QCA5cuXo3HjxvmOKYr69evj+vXr+OWXX7Bv3z5069YNQUFB2Lx5M27cuIF27drhs88+w/Tp01GuXDn89ttvGDBgALKysjQmJRMmTEBERITqfVpaWu5amlmHIDGXFSlWQyK3NMO1jzpiyU8XsP3AWX2HU2JSDszUdwglxu/HK3iisEPg+21waP9eNG/ZGqMWHseAfzdD6+AgfYdHOub34xU8zrYBAAS+3wZSqZnJXO+8EXXSHaNMYoDcobSAgAAEBAQgKioKHh4eSEhIgKurK65du4bevXtrPC5vDYxCoVCV2dvbw9XVFQkJCQgMDFSVJyQkoFGjRmr1unfvju7du6NLly5o27YtUlNTcerUKSiVSsyaNQtSae5a6k2bNr0xfplMBpksf7LyIksJySuxGSsbK0tUca8IuUVuculcsSyqeTjjydMM/HXvsZ6jK37mFhb6DqHEDO3dGkNi1sGvpjuyHqdjwpyfkPEyC590CjCp78FU5F1vmdIb7jVSseyHIyZzvUvq/EzpPjFGmcT88ccfiI+PR3BwMBwdHfHHH3/gwYMH8PHxQUxMDIYPHw4HBwe0bdsWmZmZOHnyJB4/foyIiAg4OjrCysoKu3fvRqVKlSCXy+Hg4ICxY8ciOjoa1apVg5+fH1atWoXExETExcUByN195OLignr16kEqleKHH36As7MzypQpAy8vL2RnZ2PBggVo3749EhISsGTJEj1/S6Wbn48HdiwdoXofM/xjxABYv+N3DI35Tn+Bkc51DvbHwyfp+Gr5btx9+AR1vN2xef5QOJa313doVAw6B/vj/qOnmPXtLny782v41qjE661rfIq1YbO3t8fhw4cxd+5cpKWlwcPDA7NmzcIHH3wAALC2tsbXX3+NsWPHwsbGBr6+vqqFt+bm5pg/fz6mTJmCqKgoNG/eHAcPHsTw4cPx9OlTjB49Gvfv30etWrXw888/o3r16gAAOzs7zJgxA1euXIGZmRkaNmyIXbt2QSqVom7dupg9eza++uorTJgwAS1atEBsbCz69u2rr6+o1Es4fQVlG4bDSmaGVRPeR1jsfrzINP4RKFP1abdA9P+4KeL37ELr4A+N/l/kpm5gl+aoYv+M15qKTCKEEPoOgt4uLS0NDg4OkPkOgsTMUt/hlBhTTWIen/hG3yGUuJzsbCYxJsJUr3VaWhqcyjvg6dOnsLfX/chT3u+Jsj2/hdSyaBtAlFkZePz9gGKLVVeMciSGiIjIVOliTQxvdkdEREQlzpSSGKN97AARERGVrIULF8LT0xNyuRyNGzfG8ePH31h/7ty58Pb2hpWVFdzd3TFq1Ci8fPlS6/6YxBARERkTPT0AcuPGjYiIiEB0dDROnz6NunXrIiQkBPfv39dYf/369Rg/fjyio6Nx8eJFfPvtt9i4cSM+//xzrftkEkNERGRE9PUAyNmzZ2PQoEEICwtDrVq1sGTJElhbW2PlypUa6x89ehQBAQHo1asXPD09ERwcjJ49e7519OZVTGKIiIhIo7S0NLXXq8/0e1VWVhZOnTqFoKB/7roslUoRFBSEY8eOaTymadOmOHXqlCppuXbtGnbt2oUPP/xQ6/i4sJeIiMiI6HJhr7u7u1p5dHQ0Jk+enK/+w4cPoVAo4OTkpFbu5OSES5cuaeyjV69eePjwIZo1a5b7ANCcHAwePLhQ00lMYoiIiIyILpOYW7duqd0nRtPjcN7VwYMH8eWXX2LRokVo3Lgxrl69ihEjRmDq1KmYNGmSVm0wiSEiIiKN7O3ttbrZXYUKFWBmZoZ79+6pld+7dw/Ozs4aj5k0aRI++eQTDBw4EADg6+uL58+f49NPP8XEiRNVzxp8E66JISIiMiL6WNhraWkJf39/xMfHq8qUSiXi4+PRpEkTjcdkZGTkS1TMzHIf+qvtwwQ4EkNERGRM9PQAyIiICISGhqJBgwZo1KgR5s6di+fPnyMsLAwA0LdvX7i5uSE2NhYA0L59e8yePRv16tVTTSdNmjQJ7du3VyUzb8MkhoiIiIqse/fuePDgAaKionD37l34+flh9+7dqsW+KSkpaiMvX3zxBSQSCb744gv8/fffqFixItq3b4/p06dr3SeTGCIiIiOiz8cOhIeHIzw8XONnBw8eVHtvbm6O6OhoREdHv1NfAJMYIiIio2JKz05iEkNERGRETCmJ4e4kIiIiMkgciSEiIjImetqdpA9MYoiIiIwIp5OIiIiISjmOxBARERkRUxqJYRJDRERkRCTQQRJjIItiOJ1EREREBokjMUREREaE00lERERkmExoizWnk4iIiMggcSSGiIjIiHA6iYiIiAwSkxgiIiIySBJJ7quobRgCrokhIiIig8SRGCIiIiOSOxJT1OkkHQVTzJjEEBERGRMdTCdxizURERFRMeJIDBERkRHh7iQiIiIySNydRERERFTKcSSGiIjIiEilEkilRRtKEUU8vqQwiSEiIjIinE4iIiIiKuU4EkNERGREuDuJiIiIDJIpTScxiSEiIjIipjQSwzUxREREZJA4EkNERGRETGkkhkkMERGRETGlNTGcTiIiIiKDxJEYIiIiIyKBDqaTYBhDMUxiiIiIjAink4iIiIhKOY7EEBERGRHuTiIiIiKDxOkkIiIiolKOIzFERERGhNNJREREZJBMaTqJSQwREZERMaWRGK6JISIiIoPEkRgDk3JwJuzt7fUdRonJyc5G/J5dSDkwE+YWFvoOp8SUDZqq7xBKnJWlFKuG1kbljjPwIkup73BKVMr28foOoUTl5GQDAJ69zIZ5jp6DKUHpL7JLpiMdTCcZyA17mcQQEREZE04nEREREZVyHIkhIiIyItydRERERAaJ00lEREREpRxHYoiIiIwIp5OIiIjIIHE6iYiIiKiU40gMERGRETGlkRgmMUREREaEa2KIiIjIIJnSSAzXxBAREZFB4kgMERGREeF0EhERERkkTicRERERlXIciSEiIjIiEuhgOkknkRQ/JjFERERGRCqRQFrELKaox5cUTicRERGRQeJIDBERkRHh7iQiIiIySNydRERERAZJKtHN610sXLgQnp6ekMvlaNy4MY4fP/7G+k+ePMHQoUPh4uICmUyGGjVqYNeuXVr3x5EYIiIiKrKNGzciIiICS5YsQePGjTF37lyEhIQgKSkJjo6O+epnZWWhTZs2cHR0xObNm+Hm5oabN2+iTJkyWvfJJIaIiMiYSHQwHfQOh8+ePRuDBg1CWFgYAGDJkiXYuXMnVq5cifHjx+erv3LlSqSmpuLo0aOwsLAAAHh6ehaqT04nERERGZG8hb1FfQFAWlqa2iszM1Njn1lZWTh16hSCgoJUZVKpFEFBQTh27JjGY37++Wc0adIEQ4cOhZOTE2rXro0vv/wSCoVC63NlEkNEREQaubu7w8HBQfWKjY3VWO/hw4dQKBRwcnJSK3dycsLdu3c1HnPt2jVs3rwZCoUCu3btwqRJkzBr1ixMmzZN6/g4nURERGREJP//X1HbAIBbt27B3t5eVS6TyYrU7quUSiUcHR2xbNkymJmZwd/fH3///Te+/vprREdHa9UGkxgiIiIjUpTdRa+2AQD29vZqSUxBKlSoADMzM9y7d0+t/N69e3B2dtZ4jIuLCywsLGBmZqYq8/Hxwd27d5GVlQVLS8u3x/nWGkRERERvYGlpCX9/f8THx6vKlEol4uPj0aRJE43HBAQE4OrVq1Aqlaqyy5cvw8XFRasEBmASQ0REZFTybnZX1FdhRUREYPny5VizZg0uXryIzz77DM+fP1ftVurbty8mTJigqv/ZZ58hNTUVI0aMwOXLl7Fz5058+eWXGDp0qNZ9ajWd9PPPP2vdYIcOHbSuS0RERLqlr8cOdO/eHQ8ePEBUVBTu3r0LPz8/7N69W7XYNyUlBVLpP2Mn7u7u+PXXXzFq1CjUqVMHbm5uGDFiBCIjI7XuU6skplOnTlo1JpFICrU1ioiIiIxHeHg4wsPDNX528ODBfGVNmjTB77///s79aZXEvDpfRURERKWXVCKBtIhDMUU9vqQUaXfSy5cvIZfLdRULERERFZEpPcW60At7FQoFpk6dCjc3N9ja2uLatWsAgEmTJuHbb7/VeYBERESkPX0t7NWHQicx06dPx+rVqzFjxgy1LVC1a9fGihUrdBocERERUUEKncSsXbsWy5YtQ+/evdVuUFO3bl1cunRJp8ERERFR4ejy2UmlXaHXxPz999/w8vLKV65UKpGdna2ToIiIiOjdmNLC3kKPxNSqVQtHjhzJV75582bUq1dPJ0ERERERvU2hR2KioqIQGhqKv//+G0qlEj/++COSkpKwdu1a7NixozhiJCIiIi1J/v9V1DYMQaFHYjp27Ijt27dj3759sLGxQVRUFC5evIjt27ejTZs2xREjERERacmUdie9031imjdvjr179+o6FiIiIiKtvfPN7k6ePImLFy8CyF0n4+/vr7OgiIiI6N1IJbmvorZhCAqdxPz111/o2bMnEhISUKZMGQDAkydP0LRpU2zYsAGVKlXSdYxERESkJV1MBxnKdFKh18QMHDgQ2dnZuHjxIlJTU5GamoqLFy9CqVRi4MCBxREjERERUT6FHok5dOgQjh49Cm9vb1WZt7c3FixYgObNm+s0OCIiIio8AxlIKbJCJzHu7u4ab2qnUCjg6uqqk6CIiIjo3XA66Q2+/vprDBs2DCdPnlSVnTx5EiNGjMDMmTN1GhwREREVTt7C3qK+DIFWIzFly5ZVy8qeP3+Oxo0bw9w89/CcnByYm5ujf//+6NSpU7EESkRERPQqrZKYuXPnFnMYREREpAumNJ2kVRITGhpa3HEQERGRDpjSYwfe+WZ3APDy5UtkZWWpldnb2xcpICIiIiJtFDqJef78OSIjI7Fp0yY8evQo3+cKhUIngREREVHhSSUSSIs4HVTU40tKoXcnjRs3Dvv378fixYshk8mwYsUKxMTEwNXVFWvXri2OGImIiEhLEoluXoag0CMx27dvx9q1a9GyZUuEhYWhefPm8PLygoeHB+Li4tC7d+/iiJOIiIhITaFHYlJTU1G1alUAuetfUlNTAQDNmjXD4cOHdRsdERERFUre7qSivgxBoUdiqlatiuvXr6Ny5cqoWbMmNm3ahEaNGmH79u2qB0IS6cLyTYewYN0+3H3wFL6bkjBjXDf4v+ep77BISwM7NMCwbk3gWM4W55PvIfKb3TiddFtjXXMzKUb1bIbmLRvgWpuPcPXWI0xeEY/4E8ka64/s0RTRA1tj8ZY/8PniPcV5GqTBmh9/w9IN+/Eg9Rl8qrliyojO8KvlUWD9HQcSMevbX/DX3VR4ulXEuEFtYfNanSs37iF2yXb8cTYZOQolqns6YenUMLg5lcWTtOeYvXI3Dp9Iwt/3nqB8GRsEN/fFmAEfwN7WqnhP1gDpYjrIQHKYwo/EhIWF4ezZswCA8ePHY+HChZDL5Rg1ahTGjh2r8wB16caNG5BIJEhMTCyV7dE/ftxzCl/M3Yox/UMQ+5/GeM/LFf8ethAPUp/pOzTSwscta2Ha4Db4at1htBy8HOev3cOW//ZChTLWGut/EdYKfT6oj4sX/oeWg5di1Y5TWDe5K3y9nPPVreftgn4f1cf55HvFfRqkwc/xZzB14TaM7BeCnStGw8fLFX3GLMXDx5r/bJ48dx3DpqxD948aY9eKMQhpXhuDo9bi1r10VZ0bfz/Ev8Pno5qHIzbOG4pfV43F8L7BkFnm/jv73sM03HuYholDOmDvmnGYNaEXDv1xCWO/2lAi50ylV6GTmFGjRmH48OEAgKCgIFy6dAnr16/HmTNnMGLECJ0HqEvu7u64c+cOateure9Q6C0Wrd+Pvp2aole7xqjkaIuZ47rCWm6J734+pu/QSAtD/v0vrN11But/PYuklIeImLsTGZnZ6NPWT2P9bkG+WLApAQ8f3EfK3SdYuf0U9h6/ivAu/1KrZyO3wLIJH2PEnJ14kv6iBM6EXrdi00H0bNcE3T5sjBqezogd3RVWckts3PmHxvorNx9GYKOaGNzzfVT3dMKYgR/ivepu+PV4iqrO18t3odW/fDDxsw6oXaMSPN0qILhZbVQoawcA8K7qgqXTwtAmoDY83SogwL86xg76EPFHLyAnhztiX5e3O6moL0NQ6CTmdR4eHujcuTPq1Kmji3iKRNODKV9lZmYGZ2dn1eMSSoPX77NDQFZ2DhIv3ULLRv88KV0qlSKwkTdOnLuux8hIGxbmUvjVcMHB0/9cKyGAQ6evo2GtShqPkVmaITMrR63sZWYO/lXbXa3s6+EfYM8fV3DoNH8O9CErOwfnLv+FZg1qqMqkUima+VfH6Qs3NR5z+sINNPOvoVbWvGENXP7rKQBAqVRi/7E/UdXdEX1GL0G9DpPQ4T9z8OuRc2+M5dnzl7C1lsPc3KyIZ2V8TGl3klZJzPz587V+aWvZsmVwdXWFUqlUK+/YsSP69+8PAPjpp59Qv359yOVyVK1aFTExMcjJ+ecvOolEgsWLF6NDhw6wsbHB9OnT8fjxY/Tu3RsVK1aElZUVqlevjlWrVgHQPP1z4cIFtGvXDvb29rCzs0Pz5s2RnJw7D69UKjFlyhRUqlQJMpkMfn5+2L179xvP69ChQ2jUqBFkMhlcXFwwfvx4tZhbtmyJ8PBwjBw5EhUqVEBISIjW35mpePQkHQqFEhXL2amVVyxnj/uP0vQUFWmrvIM1zM2kePA4Xa38wePncCxrq/GY/Sev4dOPG8Pa2gYSCdCyfhW0a1YTTuX+qd+55XuoW90FU1bsL9b4qWCpT59DoVCqRkjyVChnhwepmv9sPkh9lu/PcoWytnianvsPuIeP0/H8RSYWxcWjZeOa+G7WYIQ098WnX6zC74lXNcfxJB3z1+xBrw5NdHBWxocLe18zZ84crRqTSCSqqaa36dq1K4YNG4YDBw6gdevWAHJ3Pu3evRu7du3CkSNH0LdvX8yfP1+VWHz66acAgOjoaFU7kydPxn//+1/MnTsX5ubmmDRpEv7880/88ssvqFChAq5evYoXLzQPO//9999o0aIFWrZsif3798Pe3h4JCQmqpGPevHmYNWsWli5dinr16mHlypXo0KEDLly4gOrVq2ts78MPP0S/fv2wdu1aXLp0CYMGDYJcLsfkyZNV9dasWYPPPvsMCQkJBX4/mZmZyMzMVL1PS8v9CyInOxs5bxlxMnSK7NzvX5GjQE5O7rnm5GRDKBUQQhj9+QOAlWWRB0n1Rm6RG7vMQqp2HuZmEkilms9t8rK9mD3yI7Rp2Ro3W7yPm3ceY9O+s+jepi6sLKVwrWCH/w4NRo+J30MqEbCylEIqkcDcTGLQ31WevJ/z0k7x/3EqFDlqMQulMvfPZgHnka++Qvn/7eUgOzs3mQlqWgv9OgcAALyrOOLkuWtYu/U3NKitvmD42fOXCB23HF4ejhj2SWuD+e4Aw7nOhkSrJOb6dd0P3ZYtWxYffPAB1q9fr0piNm/ejAoVKqBVq1YIDg7G+PHjVc9tqlq1KqZOnYpx48apJTG9evVCWFiY6n1KSgrq1auHBg0aAAA8PT0LjGHhwoVwcHDAhg0bYGFhAQCoUeOfYc+ZM2ciMjISPXr0AAB89dVXOHDgAObOnYuFCxfma2/RokVwd3fHN998A4lEgpo1a+L27duIjIxEVFQUpNLcv2yrV6+OGTNmvPH7iY2NRUxMTL7yQ/v3wNpa8+JIY5GTo4RUIkH8/oNIu+MIADi0fy/+d/4SJIocxO/ZpecIi9+qoYa7bksikeSOYvbywf17ZVXlteu6wcJcWuC5iUcXsW93EiwsLJGZ+RKBPrWgyHqBVUNrw9HJGRXL2mLvNwNU9aVSKZr4VsaADg2w95ftxX5exen44b36DkEreX82j/32G3IeXVaVX7p0GeYiR+N52Ftb4PTJU3C2eKgqO3cuGQ62ljh19ABycpQwk0pgJZ6pHW8tfYGkq7fVyl5k5uDLdachszDDgDbVceaoYY3KZWRklEg/UhR9rYih/NNAr4tDevfujUGDBmHRokWQyWSIi4tDjx49IJVKcfbsWSQkJGD69Omq+gqFAi9fvkRGRobqF3lespLns88+w7///W+cPn0awcHB6NSpE5o2baqx/8TERDRv3lyVwLwqLS0Nt2/fRkBAgFp5QECAanfW6y5evIgmTZqoDcMFBAQgPT0df/31FypXrgwA8Pf3f+t3M2HCBERERKjF4+7ujsD3g03i+VR+P17BE4UdAt9vg0P796J5y9YYtfA4Bvy7GVoHB+k7vGJXueObk9zSbkc1fyTeluKLJecB5M6vn1jTCiu2n8Q3P5zXeIzcQorFn9ZC/wWnkaMEDi1tjpW7zuG/a87DxuoyKjmq/7mbM6odrv71CAt/OIakmw+K/ZyK04WNo/QdgtZ8N1/Gg0wbNGrRBkDutPvlb47jk05N0ahFq3z1/3XwHv56mq2qDwBfbUpCjUoO8G/aCmbm5qj741VkmTmo1Vm59za8q5dRlT17/hL9IlegXPnyWBnbH1Zyy2I+U917llYy0+F8inUJad++PYQQ2LlzJxo2bIgjR46opq7S09MRExODzp075ztOLper/r+NjfrdBj744APcvHkTu3btwt69e9G6dWsMHToUM2fOzNeOlZV+7i/wesyayGQyyGSyfOXmFhYw15B0GZuhvVtjSMw6+NV0R9bjdEyY8xMyXmbhk04BJnH+L7KUb69Uin3zw+9YNK4jTly8jdNJt/FZ50awlllg9c5EvMhSYnFkR9x5+AxTvs39l7R/TVd4ODvAysoadWq4YVTP5pBIJJi1PgEvspR4kfUSD5++VOsj/UUWHjzOQOIVw99qbW5uOD/Tg7q3wujY9ajr4wE/Hw98+8MhZLzMQo92TWBuboGR0+PgXMEB4//TDgAwoGtLdBv+DVZu/g3vN6mFn+PP4Pzlv/HloEYwMzeHubkFBvd6H0Mnr8W/6nmhaT0vHPzjEuJ/v4iN84bC3Nzi/xOYb/HiZTbmTfoELzIVeJGZu0ygfBlbmJkZxriBIV1nQ6HXJEYul6Nz586Ii4vD1atX4e3tjfr16wMA6tevj6SkJHh5eRW63YoVKyI0NBShoaFo3rw5xo4dqzGJqVOnDtasWYPs7Ox8ozH29vZwdXVFQkICAgMDVeUJCQlo1KiRxn59fHywZcsWCCFUWWxCQgLs7OxQqZLmXRmkWedgfzx8ko6vlu/G3YdPUMfbHZvnD4VjeeMfhTIGWw/+iQoO1vi8XyAcy9riXPI9dJmwHg+ePAcAVHK0h1IpVPVlluaI7BuIam7lUNs/E3uOX8Xgr7Yh7XlmQV2QnnRoXQ+pT9Ixe+VuPEhNQy0vN6yb+R/V4t3b9x6rbc9t4FsF86M+wcwVuzBj+U54VqqIJVP6wibrL1Wdti3q4MvRXbHwu32InrcV1SpXxNIp/dCoTu7d4c9f/gtn/szd/dSi53S8KmHjJLi7lCvu0zYoEgkgNZGb3el9r3Hv3r3Rrl07XLhwAX369FGVR0VFoV27dqhcuTK6dOmimmI6f/48pk2bVmB7UVFR8Pf3x3vvvYfMzEzs2LEDPj4+GuuGh4djwYIF6NGjByZMmAAHBwf8/vvvaNSoEby9vTF27FhER0ejWrVq8PPzw6pVq5CYmIi4uDiN7Q0ZMgRz587FsGHDEB4ejqSkJERHRyMiIkK1Hoa092m3QPT/uCni9+xC6+APTWIExpgs/+kklv90UuNn7UevU3t/9H8paDl4GVYNrY2whee1Gol6vQ0qOf3+3Rz9/t1c42eb5ofnK2vXyg/tWvmp3ufkZOP44b/U6nT/qDG6f9RYY5tN6nkh5bB2G0woN4EpahJT1ONLit6TmPfffx/lypVDUlISevXqpSoPCQnBjh07MGXKFHz11VewsLBAzZo1MXDgwDe2Z2lpiQkTJuDGjRuwsrJC8+bNsWGD5rs6li9fHvv378fYsWMRGBgIMzMz+Pn5qdbBDB8+HE+fPsXo0aNx//591KpVCz///LPGnUkA4Obmhl27dmHs2LGoW7cuypUrhwEDBuCLL754x2+HiIiICiIRQoi3V1N35MgRLF26FMnJydi8eTPc3Nywbt06VKlSBc2aNSuOOE1eWloaHBwccO/RU5NY2JsnJzvbJEdiygZN1XcIJc7KUlqokRhjkrJ9vL5DKFG5IzF70ahFG5NaJ/IsLQ3VKlXA06fF8/d43u+JoRtOQmat+Z5M2srMSMfCHg2KLVZdKfQcx5YtWxASEgIrKyucOXNGdS+Tp0+f4ssvv9R5gERERKS9vOmkor4MQaGTmGnTpmHJkiVYvny52mLYgIAAnD59WqfBERERERWk0GtikpKS0KJFi3zlDg4OePLkiS5iIiIioneki2cfGcrupEKPxDg7O+Pq1fzPs/jtt99QtWpVnQRFRERE74ZPsX6DQYMGYcSIEfjjjz8gkUhw+/ZtxMXFYcyYMfjss8+KI0YiIiLSklRHL0NQ6Omk8ePHQ6lUonXr1sjIyECLFi0gk8kwZswYDBs2rDhiJCIiIsqn0EmMRCLBxIkTMXbsWFy9ehXp6emoVasWbG2Ltp2LiIiIis6U1sS8883uLC0tUatWLV3GQkREREUkRdHXtEhhGFlMoZOYVq1avfHplvv3G9aj0YmIiMgwFTqJ8fPzU3ufnZ2NxMREnD9/HqGhobqKi4iIiN4Bp5PeYM4czQ/hmjx5MtLT04scEBEREb07U3oApM52UfXp0wcrV67UVXNEREREb6Szp1gfO3YMcrlcV80RERHRO5BIUOSFvUY7ndS5c2e190II3LlzBydPnsSkSZN0FhgREREVHtfEvIGDg4Pae6lUCm9vb0yZMgXBwcE6C4yIiIjoTQqVxCgUCoSFhcHX1xdly5YtrpiIiIjoHXFhbwHMzMwQHBzMp1UTERGVUhId/WcICr07qXbt2rh27VpxxEJERERFlDcSU9SXISh0EjNt2jSMGTMGO3bswJ07d5CWlqb2IiIiIioJWq+JmTJlCkaPHo0PP/wQANChQwe1xw8IISCRSKBQKHQfJREREWnFlNbEaJ3ExMTEYPDgwThw4EBxxkNERERFIJFI3viMQ23bMARaJzFCCABAYGBgsQVDREREpK1CbbE2lMyMiIjIVHE6qQA1atR4ayKTmppapICIiIjo3fGOvQWIiYnJd8deIiIiIn0oVBLTo0cPODo6FlcsREREVERSiaTID4As6vElRev7xHA9DBERUemnz5vdLVy4EJ6enpDL5WjcuDGOHz+u1XEbNmyARCJBp06dCtWf1klM3u4kIiIiotdt3LgRERERiI6OxunTp1G3bl2EhITg/v37bzzuxo0bGDNmDJo3b17oPrVOYpRKJaeSiIiISjvJP4t73/X1Lo9Omj17NgYNGoSwsDDUqlULS5YsgbW1NVauXFngMQqFAr1790ZMTAyqVq1a6D4L/dgBIiIiKr2kkOjkBSDfo4UyMzM19pmVlYVTp04hKCjonzikUgQFBeHYsWMFxjplyhQ4OjpiwIAB73iuREREZDSKOgrz6hZtd3d3ODg4qF6xsbEa+3z48CEUCgWcnJzUyp2cnHD37l2Nx/z222/49ttvsXz58nc+10LtTiIiIiLTcevWLdjb26vey2QynbT77NkzfPLJJ1i+fDkqVKjwzu0wiSEiIjIiurxjr729vVoSU5AKFSrAzMwM9+7dUyu/d+8enJ2d89VPTk7GjRs30L59e1WZUqkEAJibmyMpKQnVqlV7e5xvrUFEREQGI+8+MUV9FYalpSX8/f0RHx+vKlMqlYiPj0eTJk3y1a9ZsybOnTuHxMRE1atDhw5o1aoVEhMT4e7urlW/HIkhIiKiIouIiEBoaCgaNGiARo0aYe7cuXj+/DnCwsIAAH379oWbmxtiY2Mhl8tRu3ZttePLlCkDAPnK34RJDBERkRHR17OTunfvjgcPHiAqKgp3796Fn58fdu/erVrsm5KSAqlUtxNATGKIiIiMiBQ6eOzAu9woBkB4eDjCw8M1fnbw4ME3Hrt69epC98c1MURERGSQOBJDRERkRPQ1naQPTGKIiIiMiBRFn2YxlGkaQ4mTiIiISA1HYoiIiIyIRCKBpIjzQUU9vqQwiSEiIjIi7/gQ6nxtGAImMUREREbkXe64q6kNQ8A1MURERGSQOBJDRERkZAxjHKXomMQQEREZEVO6Twynk4iIiMggcSSGiIjIiHCLNRERERkk3rGXiIiIqJTjSAwREZER4XQSERERGSRTumMvp5OIiIjIIHEkhqgUerxvkr5DKHE52dmI37MLKT+Ng7mFhb7DKVFlG4brO4QSZSUzw6oJ7+O9DybgRaZC3+GUGKHIKpF+OJ1EREREBsmUdicxiSEiIjIipjQSYyjJFhEREZEajsQQEREZEVPancQkhoiIyIjwAZBEREREpRxHYoiIiIyIFBJIizghVNTjSwqTGCIiIiPC6SQiIiKiUo4jMUREREZE8v//FbUNQ8AkhoiIyIhwOomIiIiolONIDBERkRGR6GB3EqeTiIiIqMSZ0nQSkxgiIiIjYkpJDNfEEBERkUHiSAwREZER4RZrIiIiMkhSSe6rqG0YAk4nERERkUHiSAwREZER4XQSERERGSTuTiIiIiIq5TgSQ0REZEQkKPp0kIEMxDCJISIiMibcnURERERUynEkhoiIyIhwdxIREREZJFPancQkhoiIyIhIUPSFuQaSw3BNDBERERkmjsQQEREZESkkkBZxPkhqIGMxTGKIiIiMCKeTiIiIiEo5jsQQEREZExMaimESQ0REZERM6T4xnE4iIiIig8SRGCIiImOig5vdGchADJMYIiIiY2JCS2I4nURERESGiSMxRERExsSEhmKYxBARERkRU9qdxCSGiIjIiJjSU6y5JoaIiIgMEkdiiIiIjIgJLYlhEkNERGRUTCiL4XQSERERGSQmMUREREZEoqP/3sXChQvh6ekJuVyOxo0b4/jx4wXWXb58OZo3b46yZcuibNmyCAoKemN9TZjEEBERGZG83UlFfRXWxo0bERERgejoaJw+fRp169ZFSEgI7t+/r7H+wYMH0bNnTxw4cADHjh2Du7s7goOD8ffff2vdJ5MYIiIiKrLZs2dj0KBBCAsLQ61atbBkyRJYW1tj5cqVGuvHxcVhyJAh8PPzQ82aNbFixQoolUrEx8dr3SeTGCIiIiMi0dELANLS0tRemZmZGvvMysrCqVOnEBQUpCqTSqUICgrCsWPHtIo7IyMD2dnZKFeunNbnyiSGiIjImOgwi3F3d4eDg4PqFRsbq7HLhw8fQqFQwMnJSa3cyckJd+/e1SrsyMhIuLq6qiVCb8Mt1kRERKTRrVu3YG9vr3ovk8mKpZ///ve/2LBhAw4ePAi5XK71cUxiiIiIjIgun51kb2+vlsQUpEKFCjAzM8O9e/fUyu/duwdnZ+c3Hjtz5kz897//xb59+1CnTp1CxcnpJCIiIiOij91JlpaW8Pf3V1uUm7dIt0mTJgUeN2PGDEydOhW7d+9GgwYNCn2uHIkhIiIyIvq6YW9ERARCQ0PRoEEDNGrUCHPnzsXz588RFhYGAOjbty/c3NxU62q++uorREVFYf369fD09FStnbG1tYWtra1WfTKJISIioiLr3r07Hjx4gKioKNy9exd+fn7YvXu3arFvSkoKpNJ/JoAWL16MrKwsdOnSRa2d6OhoTJ48Was+mcRQqbV80yEsWLcPdx88he+mJMwY1w3+73nqOywqBrzWpqFpvWoY9kkQ/Hwqw7mCA9r+9gBb9yXqOyzjo8dnJ4WHhyM8PFzjZwcPHlR7f+PGjXfr5BUGuyZm8uTJ8PPzK3I7Bw8ehEQiwZMnT7Q+pl+/fujUqVOR+6aC/bjnFL6YuxVj+ocg9j+N8Z6XK/49bCEepD7Td2ikY7zWpsPaSobzl//G57M36zsUo6bPxw6UNINNYsaMGVOou/oVpGnTprhz5w4cHBy0PmbevHlYvXp1kfumgi1avx99OzVFr3aNUcnRFjPHdYW13BLf/azdTZPIcPBam459R//E9CU7sPvw//QdChkJg01ibG1tUb58+QI/z8rK0qodS0tLODs7Q1KIpdgODg4oU6aM1vWpcLKyc5B46RZaNvJWlUmlUgQ28saJc9f1GBnpGq81ke7p69lJ+lBqk5hly5bB1dUVSqVSrbxjx47o379/vumkvCme6dOnw9XVFd7euX8pHj16FH5+fpDL5WjQoAG2bdsGiUSCxMREAPmnk1avXo0yZcrg119/hY+PD2xtbdG2bVvcuXMnX195lEolZsyYAS8vL8hkMlSuXBnTp09XfR4ZGYkaNWrA2toaVatWxaRJk5Cdna3bL8yIPHqSDoVCiYrl7NTKK5azx/1HaXqKiooDrzWR7unysQOlXald2Nu1a1cMGzYMBw4cQOvWrQEAqamp2L17N3bt2oUjR47kOyY+Ph729vbYu3cvgNxnPrRv3x4ffvgh1q9fj5s3b2LkyJFv7TsjIwMzZ87EunXrIJVK0adPH4wZMwZxcXEa60+YMAHLly/HnDlz0KxZM9y5cweXLl1SfW5nZ4fVq1fD1dUV586dw6BBg2BnZ4dx48YVGENmZqbaMyrS0nL/Qs/JzkaOkSdAiuyc3P/NUSAnJ/dcc3KyIZQKCCGM/vxNCa91LiuZmb5DKFFyy9zztTCXmtS5ixwpND95iN5VqU1iypYtiw8++ADr169XJTGbN29GhQoV0KpVK41JjI2NDVasWAFLS0sAwJIlSyCRSLB8+XLI5XLUqlULf//9NwYNGvTGvrOzs7FkyRJUq1YNQO5q6ylTpmis++zZM8ybNw/ffPMNQkNDAQDVqlVDs2bNVHW++OIL1f/39PTEmDFjsGHDhjcmMbGxsYiJiclXfmj/HlhbW78xfkOXk6OEVCJB/P6DSLvjCAA4tH8v/nf+EiSKHMTv2aXnCElXeK1zrZrwvr5D0IvBHd9D538VvCzA2GRkZKBXr6XF35EedyeVtFKbxABA7969MWjQICxatAgymQxxcXHo0aOH2j7zV/n6+qoSGABISkpCnTp11J7D0KhRo7f2a21trUpgAMDFxQX379/XWPfixYvIzMxUJVqabNy4EfPnz0dycjLS09ORk5Pz1ts4T5gwAREREar3aWlpcHd3R+D7wVrdAtrQ+f14BU8Udgh8vw0O7d+L5i1bY9TC4xjw72ZoHaz9w8Go9OO1Biq3GqPvEEqU3NIM1z7qiCU/XcD2A2f1HU6JETklMw6jy8cOlHalOolp3749hBDYuXMnGjZsiCNHjmDOnDkF1rexsdFJvxYWFmrvJRIJhBAa61pZWb2xrWPHjqF3796IiYlBSEgIHBwcsGHDBsyaNeuNx8lkMo0P2jK3sID5a/EZo6G9W2NIzDr41XRH1uN0TJjzEzJeZuGTTgEmcf6mhNcaeJGp0HcIJcLGyhJV3CtCbpE7heRcsSyqeTjjydMM/HXvsZ6jK35CoXx7JSqUUp3EyOVydO7cGXFxcbh69Sq8vb1Rv359rY/39vbGd999h8zMTFVCcOLECZ3GWL16dVhZWSE+Ph4DBw7M9/nRo0fh4eGBiRMnqspu3ryp0xiMUedgfzx8ko6vlu/G3YdPUMfbHZvnD4VjeeMfhTI1vNamw8/HAzuWjlC9jxn+MWIArN/xO4bGfKe/wIyMLnYXGcrupFKdxAC5U0rt2rXDhQsX0KdPn0Id26tXL0ycOBGffvopxo8fj5SUFMycORMACrWl+k3kcjkiIyMxbtw4WFpaIiAgAA8ePMCFCxcwYMAAVK9eHSkpKdiwYQMaNmyInTt3YuvWrTrp29h92i0Q/T9uivg9u9A6+EOT+Ve5KeK1Ng0Jp6+gbMNwWMnMsGrC+wiL3W8yo1AlyYSWxJTeLdZ53n//fZQrVw5JSUno1atXoY61t7fH9u3bkZiYCD8/P0ycOBFRUVEAoLZOpqgmTZqE0aNHIyoqCj4+PujevbtqDU2HDh0watQohIeHw8/PD0ePHsWkSZN01jcREZEaE9pjLREFLfYwUnFxcQgLC8PTp0/fup6lNElLS4ODgwPuPXpqEgt78+RkZ/Nf5ybClK912YaanzVjrEx1JEYospB5bjmePi2ev8fzfk+cunIHtnZFaz/9WRr8q7sUW6y6Uuqnk4pq7dq1qFq1Ktzc3HD27FlERkaiW7duBpXAEBERaYu7k4zI3bt3VY8Fd3FxQdeuXdXupktERGRUdPHYAMPIYYw/iRk3btwbbypHREREhsnokxgiIiJTYkq7k5jEEBERGRMTymJK/RZrIiIiIk04EkNERGREuDuJiIiIDJIpPXaA00lERERkkDgSQ0REZERMaF0vkxgiIiKjYkJZDJMYIiIiI2JKC3u5JoaIiIgMEkdiiIiIjIgEOtidpJNIih+TGCIiIiNiQktiOJ1EREREhokjMUREREbElG52xySGiIjIqJjOhBKnk4iIiMggcSSGiIjIiHA6iYiIiAyS6UwmcTqJiIiIDBRHYoiIiIwIp5OIiIjIIJnSs5OYxBARERkTE1oUwzUxREREZJA4EkNERGRETGgghkkMERGRMTGlhb2cTiIiIiKDxJEYIiIiI8LdSURERGSYTGhRDKeTiIiIyCBxJIaIiMiImNBADJMYIiIiY8LdSURERESlHEdiiIiIjErRdycZyoQSkxgiIiIjwukkIiIiolKOSQwREREZJE4nERERGRFTmk5iEkNERGRETOmxA5xOIiIiIoPEkRgiIiIjwukkIiIiMkim9NgBTicRERGRQeJIDBERkTExoaEYJjFERERGhLuTiIiIiEo5jsQQEREZEe5OIiIiIoNkQktiOJ1ERERkVCQ6er2DhQsXwtPTE3K5HI0bN8bx48ffWP+HH35AzZo1IZfL4evri127dhWqPyYxREREVGQbN25EREQEoqOjcfr0adStWxchISG4f/++xvpHjx5Fz549MWDAAJw5cwadOnVCp06dcP78ea37ZBJDRERkRCQ6+q+wZs+ejUGDBiEsLAy1atXCkiVLYG1tjZUrV2qsP2/ePLRt2xZjx46Fj48Ppk6divr16+Obb77Ruk8mMUREREYkb2FvUV+FkZWVhVOnTiEoKEhVJpVKERQUhGPHjmk85tixY2r1ASAkJKTA+ppwYa+BEEIAAJ6lpek5kpKVk52NjIwMpKWlwdzCQt/hUDEy5WstFFn6DqFEiRwpMjIyIHIyIRRKfYdTYvKuc97f58UlTQe/J/LaeL0tmUwGmUyWr/7Dhw+hUCjg5OSkVu7k5IRLly5p7OPu3bsa69+9e1frOJnEGIhnz54BALyquOs5EiKioskE0KvXUn2HoTfPnj2Dg4ODztu1tLSEs7Mzquvo94StrS3c3dXbio6OxuTJk3XSvi4wiTEQrq6uuHXrFuzs7CAxlA38OpCWlgZ3d3fcunUL9vb2+g6HihGvtekw1WsthMCzZ8/g6upaLO3L5XJcv34dWVm6GdkTQuT7faNpFAYAKlSoADMzM9y7d0+t/N69e3B2dtZ4jLOzc6Hqa8IkxkBIpVJUqlRJ32Hojb29vUn9ZWfKeK1Nhyle6+IYgXmVXC6HXC4v1j40sbS0hL+/P+Lj49GpUycAgFKpRHx8PMLDwzUe06RJE8THx2PkyJGqsr1796JJkyZa98skhoiIiIosIiICoaGhaNCgARo1aoS5c+fi+fPnCAsLAwD07dsXbm5uiI2NBQCMGDECgYGBmDVrFj766CNs2LABJ0+exLJly7Tuk0kMERERFVn37t3x4MEDREVF4e7du/Dz88Pu3btVi3dTUlIglf6zKbpp06ZYv349vvjiC3z++eeoXr06tm3bhtq1a2vdp0QU9zJpoiLIzMxEbGwsJkyYUOBcLBkHXmvTwWtNusIkhoiIiAwSb3ZHREREBolJDBERERkkJjFERERkkJjEEJFe3LhxAxKJBImJiaWyPfrH5MmT4efnV+R2Dh48CIlEgidPnmh9TL9+/VT3HSF6HRf2Uqlw48YNVKlSBWfOnNHJX5ZU+ikUCjx48AAVKlSAuXnR7/bAn6Hik56ejszMTJQvX75I7WRlZSE1NRVOTk5a33n86dOnEEKgTJkyReqbjBPvE0NExSI7OxsWb3iQo5mZWaFuL14SsrKyYGlpqe8wSh1bW1vY2toW+Lm231ves30Ko7jvcEuGjdNJpFObN2+Gr68vrKysUL58eQQFBeH58+cAgBUrVsDHxwdyuRw1a9bEokWLVMdVqVIFAFCvXj1IJBK0bNkSQO5tq6dMmYJKlSpBJpOpbp6UJysrC+Hh4XBxcYFcLoeHh4fqbpAAMHv2bPj6+sLGxgbu7u4YMmQI0tPTS+CbMCzLli2Dq6srlEr1Jwp37NgR/fv3BwD89NNPqF+/PuRyOapWrYqYmBjk5OSo6kokEixevBgdOnSAjY0Npk+fjsePH6N3796oWLEirKysUL16daxatQqA5umfCxcuoF27drC3t4ednR2aN2+O5ORkAG//WdDk0KFDaNSoEWQyGVxcXDB+/Hi1mFu2bInw8HCMHDkSFSpUQEhISJG+R0P1tuv/+nRS3hTP9OnT4erqCm9vbwDA0aNH4efnB7lcjgYNGmDbtm1q1/j16aTVq1ejTJky+PXXX+Hj4wNbW1u0bdsWd+7cyddXHqVSiRkzZsDLywsymQyVK1fG9OnTVZ9HRkaiRo0asLa2RtWqVTFp0iRkZ2fr9guj0kMQ6cjt27eFubm5mD17trh+/br43//+JxYuXCiePXsmvvvuO+Hi4iK2bNkirl27JrZs2SLKlSsnVq9eLYQQ4vjx4wKA2Ldvn7hz54549OiREEKI2bNnC3t7e/H999+LS5cuiXHjxgkLCwtx+fJlIYQQX3/9tXB3dxeHDx8WN27cEEeOHBHr169XxTRnzhyxf/9+cf36dREfHy+8vb3FZ599VvJfTimXmpoqLC0txb59+1Rljx49UpUdPnxY2Nvbi9WrV4vk5GSxZ88e4enpKSZPnqyqD0A4OjqKlStXiuTkZHHz5k0xdOhQ4efnJ06cOCGuX78u9u7dK37++WchhBDXr18XAMSZM2eEEEL89ddfoly5cqJz587ixIkTIikpSaxcuVJcunRJCPH2nwVN7VlbW4shQ4aIixcviq1bt4oKFSqI6OhoVcyBgYHC1tZWjB07Vly6dEnVl6l52/WPjo4WdevWVX0WGhoqbG1txSeffCLOnz8vzp8/L54+fSrKlSsn+vTpIy5cuCB27dolatSooXZNDhw4IACIx48fCyGEWLVqlbCwsBBBQUHixIkT4tSpU8LHx0f06tVLra+OHTuq3o8bN06ULVtWrF69Wly9elUcOXJELF++XPX51KlTRUJCgrh+/br4+eefhZOTk/jqq6+K5Xsj/WMSQzpz6tQpAUDcuHEj32fVqlVTSy6EyP3LpkmTJkKI/L+A8ri6uorp06erlTVs2FAMGTJECCHEsGHDxPvvvy+USqVWMf7www+ifPny2p6SSenYsaPo37+/6v3SpUuFq6urUCgUonXr1uLLL79Uq79u3Trh4uKieg9AjBw5Uq1O+/btRVhYmMb+Xr/mEyZMEFWqVBFZWVka67/tZ+H19j7//HPh7e2t9rOxcOFCYWtrKxQKhRAiN4mpV69eQV+JSXnT9deUxDg5OYnMzExV2eLFi0X58uXFixcvVGXLly9/axIDQFy9elV1zMKFC4WTk5NaX3lJTFpampDJZGpJy9t8/fXXwt/fX+v6ZFg4nUQ6U7duXbRu3Rq+vr7o2rUrli9fjsePH+P58+dITk7GgAEDVHPrtra2mDZtmmqqQJO0tDTcvn0bAQEBauUBAQG4ePEigNyh5sTERHh7e2P48OHYs2ePWt19+/ahdevWcHNzg52dHT755BM8evQIGRkZuv8CDFzv3r2xZcsWZGZmAgDi4uLQo0cPSKVSnD17FlOmTFG7foMGDcKdO3fUvssGDRqotfnZZ59hw4YN8PPzw7hx43D06NEC+09MTETz5s01rqPR5mfhdRcvXkSTJk3UFpAGBAQgPT0df/31l6rM39//Dd+K6XjT9dfE19dXbR1MUlIS6tSpo/YE5UaNGr21X2tra1SrVk313sXFBffv39dY9+LFi8jMzETr1q0LbG/jxo0ICAiAs7MzbG1t8cUXXyAlJeWtcZBhYhJDOmNmZoa9e/fil19+Qa1atbBgwQJ4e3vj/PnzAIDly5cjMTFR9Tp//jx+//33IvVZv359XL9+HVOnTsWLFy/QrVs3dOnSBUDumot27dqhTp062LJlC06dOoWFCxcCyF1LQ+rat28PIQR27tyJW7du4ciRI+jduzeA3N0pMTExatfv3LlzuHLlitovLRsbG7U2P/jgA9y8eROjRo3C7du30bp1a4wZM0Zj/1ZWVsV3cm/wesym6k3XXxNdfW+vJ60SiQSigE2zb/sZOXbsGHr37o0PP/wQO3bswJkzZzBx4kT+eTdiTGJIpyQSCQICAhATE4MzZ87A0tISCQkJcHV1xbVr1+Dl5aX2ylvQm/cvOoVCoWrL3t4erq6uSEhIUOsjISEBtWrVUqvXvXt3LF++HBs3bsSWLVuQmpqKU6dOQalUYtasWfjXv/6FGjVq4Pbt2yXwLRgmuVyOzp07Iy4uDt9//z28vb1Rv359ALnJYlJSUr7r5+XlVeC/1PNUrFgRoaGh+O677zB37lwsW7ZMY706dergyJEjGhdhavuz8CofHx8cO3ZM7RdiQkIC7OzsUKlSpTfGbIredP214e3tjXPnzqlGcgDgxIkTOo2xevXqsLKyQnx8vMbPjx49Cg8PD0ycOBENGjRA9erVcfPmTZ3GQKULt1iTzvzxxx+Ij49HcHAwHB0d8ccff+DBgwfw8fFBTEwMhg8fDgcHB7Rt2xaZmZk4efIkHj9+jIiICDg6OsLKygq7d+9GpUqVIJfL4eDggLFjxyI6OhrVqlWDn58fVq1ahcTERMTFxQHI3X3k4uKCevXqQSqV4ocffoCzszPKlCkDLy8vZGdnY8GCBWjfvj0SEhKwZMkSPX9LpVvv3r3Rrl07XLhwAX369FGVR0VFoV27dqhcuTK6dOmimmI6f/48pk2bVmB7UVFR8Pf3x3vvvYfMzEzs2LEDPj4+GuuGh4djwYIF6NGjByZMmAAHBwf8/vvvaNSoEby9vd/6s/C6IUOGYO7cuRg2bBjCw8ORlJSE6OhoREREvDXxMlUFXX9t9OrVCxMnTsSnn36K8ePHIyUlBTNnzgQAre8J8zZyuRyRkZEYN24cLC0tERAQgAcPHuDChQsYMGAAqlevjpSUFGzYsAENGzbEzp07sXXrVp30TaWUfpfkkDH5888/RUhIiKhYsaKQyWSiRo0aYsGCBarP4+LihJ+fn7C0tBRly5YVLVq0ED/++KPq8+XLlwt3d3chlUpFYGCgEEIIhUIhJk+eLNzc3ISFhYWoW7eu+OWXX1THLFu2TPj5+QkbGxthb28vWrduLU6fPq36fPbs2cLFxUVYWVmJkJAQsXbtWrWFhaROoVAIFxcXAUAkJyerfbZ7927RtGlTYWVlJezt7UWjRo3EsmXLVJ8DEFu3blU7ZurUqcLHx0dYWVmJcuXKiY4dO4pr164JITQv5j579qwIDg4W1tbWws7OTjRv3lwVx9t+FjS1d/DgQdGwYUNhaWkpnJ2dRWRkpMjOzlZ9HhgYKEaMGFHEb814FHT9NS3sfXXHUJ6EhARRp04dYWlpKfz9/cX69esFANWuL00Lex0cHNTa2Lp1q3j1V9PrfSkUCjFt2jTh4eEhLCwsROXKldUWnY8dO1aUL19e2Nraiu7du4s5c+bk64OMB+/YS0RExSIuLg5hYWF4+vSp3tY8kXHjdBIREenE2rVrUbVqVbi5ueHs2bOIjIxEt27dmMBQsWESQ0REOnH37l1ERUXh7t27cHFxQdeuXdXupkuka5xOIiIiIoPEJfpERERkkJjEEBERkUFiEkNEREQGiUkMERERGSQmMUSktX79+qFTp06q9y1btsTIkSNLPI6DBw9CIpHgyZMnBdaRSCTYtm2b1m1OnjwZfn5+RYrrxo0bkEgkSExMLFI7RKQdJjFEBq5fv36QSCSQSCSwtLSEl5cXpkyZgpycnGLv+8cff8TUqVO1qqtN4kFEVBi8TwyREWjbti1WrVqFzMxM7Nq1C0OHDoWFhQUmTJiQr25WVpbqgZtFVa5cOZ20Q0T0LjgSQ2QEZDIZnJ2d4eHhgc8++wxBQUH4+eefAfwzBTR9+nS4urrC29sbAHDr1i1069YNZcqUQbly5dCxY0fcuHFD1aZCoUBERATKlCmD8uXLY9y4cXj9tlKvTydlZmYiMjIS7u7ukMlk8PLywrfffosbN26gVatWAICyZctCIpGgX79+AAClUonY2FhUqVIFVlZWqFu3LjZv3qzWz65du1CjRg1YWVmhVatWanFqKzIyEjVq1IC1tTWqVq2KSZMmaXxi9tKlS+Hu7g5ra2t069YNT58+Vft8xYoV8PHxgVwuR82aNbFo0aJCx0JEusEkhsgIWVlZISsrS/U+Pj4eSUlJ2Lt3L3bs2IHs7GyEhITAzs4OR44cQUJCAmxtbdG2bVvVcbNmzcLq1auxcuVK/Pbbb0hNTX3rE4H79u2L77//HvPnz8fFixexdOlS2Nrawt3dHVu2bAEAJCUl4c6dO5g3bx4AIDY2FmvXrsWSJUtw4cIFjBo1Cn369MGhQ4cA5CZbnTt3Rvv27ZGYmIiBAwdi/Pjxhf5O7OzssHr1avz555+YN28eli9fjjlz5qjVuXr1KjZt2oTt27dj9+7dOHPmDIYMGaL6PC4uDlFRUZg+fTouXryIL7/8EpMmTcKaNWsKHQ8R6YBeHz9JREX26lN+lUql2Lt3r5DJZGLMmDGqz52cnERmZqbqmHXr1glvb2+hVCpVZZmZmcLKykr8+uuvQgghXFxcxIwZM1SfZ2dni0qVKqk9UfjVp0AnJSUJAGLv3r0a43z9CcZCCPHy5UthbW0tjh49qlZ3wIABomfPnkIIISZMmCBq1aql9nlkZORbn0YODU/VftXXX38t/P39Ve+jo6OFmZmZ+Ouvv1Rlv/zyi5BKpeLOnTtCCCGqVasm1q9fr9bO1KlTRZMmTYQQmp+kTUTFh2tiiIzAjh07YGtri+zsbCiVSvTq1QuTJ09Wfe7r66u2Dubs2bO4evUq7Ozs1Np5+fIlkpOT8fTpU9y5cweNGzdWfWZubo4GDRrkm1LKk5iYCDMzMwQGBmod99WrV5GRkYE2bdqolWdlZaFevXoAgIsXL6rFAQBNmjTRuo88GzduxPz585GcnIz09HTk5OTA3t5erU7lypXh5uam1o9SqURSUhLs7OyQnJyMAQMGYNCgQao6OTk5cHBwKHQ8RFR0TGKIjECrVq2wePFiWFpawtXVFebm6n+0bWxs1N6np6fD398fcXFx+dqqWLHiO8XwLk8qTk9PBwDs3LlTLXkActf56MqxY8fQu3dvxMTEICQkBA4ODtiwYQNmzZpV6FiXL1+eL6kyMzPTWaxEpD0mMURGwMbGBl5eXlrXr1+/PjZu3AhHR8d8oxF5XFxc8Mcff6BFixYAckccTp06hfr162us7+vrC6VSiUOHDiEoKCjf53kjQQqFQlVWq1YtyGQypKSkFDiC4+Pjo1qknOf3339/+0m+4ujRo/Dw8MDEiRNVZTdv3sxXLyUlBbdv34arq6uqH6lUCm9vbzg5OcHV1RXXrl1D7969C9U/ERUPLuwlMkG9e/dGhQoV0LFjRxw5cgTXr1/HwYMHMXz4cPz1118AgBEjRuC///0vtm3bhkuXLmHIkCFvvMeLp6cnQkND0b9/f2zbtk3V5qZNmwAAHh4ekEgk2LFjBx48eID09HTY2dlhzJgxGDVqFNasWYPk5GScPn0aCxYsUC2WHTx4MK5cuYKxY8ciKSkJ69evx+rVqwt1vtWrV0dKSgo2bNiA5ORkzJ8/X+MiZblcjtDQUJw9exZHjhzB8OHD0a1bNzg7OwMAYmJiEBsbi/nz5+Py5cs4d+4cVq1ahdmzZxcqHiLSDSYxRCbI2toahw8fRuXKldG5c2f4+PhgwIABePnypWpkZvTo0fjkk08QGhqKJk2awM7ODh9//PEb2128eDG6dOmCIUOGoGbNmhg0aBCeP38OAHBzc0NMTAzGjx8PJycnhIeHAwCmTp2KSZMmITY2Fj4+Pmjbti127tyJKlWqAMhdp7JlyxZs27YNdevWxZIlS/Dll18W6nw7dOiAUaNGITw8HH5+fjh69CgmTZqUr56Xlxc6d+6MDz/8EMHBwahTp47aFuqBAwdixYoVWLVqFXx9fREYGIjVq1erYiWikiURBa3SIyIiIirFOBJDREREBolJDBERERkkJjFERERkkJjEEBERkUFiEkNEREQGiUkMERERGSQmMURERGSQmMQQERGRQWISQ0RERAaJSQwREREZJCYxREREZJCYxBAREZFB+j/qql5Ea3sf4AAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"from sklearn.metrics import ConfusionMatrixDisplay\n",
"\n",
"\n",
"disp = ConfusionMatrixDisplay.from_estimator(knn,\n",
" X_test,\n",
" y_test,\n",
" display_labels=iris_dataset.target_names,\n",
" cmap=plt.cm.Blues,\n",
" normalize=\"true\")\n",
"_ = disp.ax_.set_title(f\"Confusion Matrix (k={k})\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). [*Wikipedia*](https://en.wikipedia.org/wiki/Linear_regression)\n",
"\n",
"Using linear regression with Python is as easy as running:\n",
"\n",
"```python\n",
">>> from sklearn.linear_model import LinearRegression\n",
">>> model = LinearRegression()\n",
">>> model.fit(X_train, y_train)\n",
">>> predictions = model.predict(X_test)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's reproduce `scikit-learn`'s [Linear Regerssion Example](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#linear-regression-example) using the prepackaged `diabetes` dataset."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Loading the dataset"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"from sklearn import datasets\n",
"\n",
"# Read the dataset as a pandas DataFrame\n",
"dataset = datasets.load_diabetes(as_frame=True)\n",
"\n",
"# Create observations matrix and target vector\n",
"X, y = dataset.data, dataset.target\n",
"\n",
"# Create a unified DataFrame containing both\n",
"data = pd.concat([X, y], axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Raw Inspection"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
age
\n",
"
sex
\n",
"
bmi
\n",
"
bp
\n",
"
s1
\n",
"
s2
\n",
"
s3
\n",
"
s4
\n",
"
s5
\n",
"
s6
\n",
"
target
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0.038
\n",
"
0.051
\n",
"
0.062
\n",
"
0.022
\n",
"
-0.044
\n",
"
-0.035
\n",
"
-0.043
\n",
"
-0.003
\n",
"
0.020
\n",
"
-0.018
\n",
"
151.000
\n",
"
\n",
"
\n",
"
1
\n",
"
-0.002
\n",
"
-0.045
\n",
"
-0.051
\n",
"
-0.026
\n",
"
-0.008
\n",
"
-0.019
\n",
"
0.074
\n",
"
-0.039
\n",
"
-0.068
\n",
"
-0.092
\n",
"
75.000
\n",
"
\n",
"
\n",
"
2
\n",
"
0.085
\n",
"
0.051
\n",
"
0.044
\n",
"
-0.006
\n",
"
-0.046
\n",
"
-0.034
\n",
"
-0.032
\n",
"
-0.003
\n",
"
0.003
\n",
"
-0.026
\n",
"
141.000
\n",
"
\n",
"
\n",
"
3
\n",
"
-0.089
\n",
"
-0.045
\n",
"
-0.012
\n",
"
-0.037
\n",
"
0.012
\n",
"
0.025
\n",
"
-0.036
\n",
"
0.034
\n",
"
0.023
\n",
"
-0.009
\n",
"
206.000
\n",
"
\n",
"
\n",
"
146
\n",
"
-0.031
\n",
"
0.051
\n",
"
0.060
\n",
"
0.001
\n",
"
0.012
\n",
"
0.032
\n",
"
-0.043
\n",
"
0.034
\n",
"
0.015
\n",
"
0.007
\n",
"
178.000
\n",
"
\n",
"
\n",
"
147
\n",
"
-0.056
\n",
"
-0.045
\n",
"
0.093
\n",
"
-0.019
\n",
"
0.015
\n",
"
0.023
\n",
"
-0.029
\n",
"
0.025
\n",
"
0.026
\n",
"
0.040
\n",
"
128.000
\n",
"
\n",
"
\n",
"
148
\n",
"
-0.060
\n",
"
0.051
\n",
"
0.015
\n",
"
-0.019
\n",
"
0.037
\n",
"
0.048
\n",
"
0.019
\n",
"
-0.003
\n",
"
-0.031
\n",
"
-0.001
\n",
"
96.000
\n",
"
\n",
"
\n",
"
149
\n",
"
-0.049
\n",
"
0.051
\n",
"
-0.005
\n",
"
-0.047
\n",
"
-0.021
\n",
"
-0.020
\n",
"
-0.069
\n",
"
0.071
\n",
"
0.061
\n",
"
-0.038
\n",
"
126.000
\n",
"
\n",
"
\n",
"
292
\n",
"
0.009
\n",
"
-0.045
\n",
"
-0.022
\n",
"
-0.032
\n",
"
-0.050
\n",
"
-0.069
\n",
"
0.078
\n",
"
-0.071
\n",
"
-0.063
\n",
"
-0.038
\n",
"
84.000
\n",
"
\n",
"
\n",
"
293
\n",
"
-0.071
\n",
"
-0.045
\n",
"
0.093
\n",
"
0.013
\n",
"
0.020
\n",
"
0.043
\n",
"
0.001
\n",
"
0.000
\n",
"
-0.055
\n",
"
-0.001
\n",
"
200.000
\n",
"
\n",
"
\n",
"
294
\n",
"
0.024
\n",
"
0.051
\n",
"
-0.031
\n",
"
-0.006
\n",
"
-0.017
\n",
"
0.018
\n",
"
-0.032
\n",
"
-0.003
\n",
"
-0.074
\n",
"
-0.034
\n",
"
55.000
\n",
"
\n",
"
\n",
"
295
\n",
"
-0.053
\n",
"
0.051
\n",
"
0.039
\n",
"
-0.040
\n",
"
-0.006
\n",
"
-0.013
\n",
"
0.012
\n",
"
-0.039
\n",
"
0.016
\n",
"
0.003
\n",
"
85.000
\n",
"
\n",
"
\n",
"
438
\n",
"
-0.006
\n",
"
0.051
\n",
"
-0.016
\n",
"
-0.068
\n",
"
0.049
\n",
"
0.079
\n",
"
-0.029
\n",
"
0.034
\n",
"
-0.018
\n",
"
0.044
\n",
"
104.000
\n",
"
\n",
"
\n",
"
439
\n",
"
0.042
\n",
"
0.051
\n",
"
-0.016
\n",
"
0.017
\n",
"
-0.037
\n",
"
-0.014
\n",
"
-0.025
\n",
"
-0.011
\n",
"
-0.047
\n",
"
0.015
\n",
"
132.000
\n",
"
\n",
"
\n",
"
440
\n",
"
-0.045
\n",
"
-0.045
\n",
"
0.039
\n",
"
0.001
\n",
"
0.016
\n",
"
0.015
\n",
"
-0.029
\n",
"
0.027
\n",
"
0.045
\n",
"
-0.026
\n",
"
220.000
\n",
"
\n",
"
\n",
"
441
\n",
"
-0.045
\n",
"
-0.045
\n",
"
-0.073
\n",
"
-0.081
\n",
"
0.084
\n",
"
0.028
\n",
"
0.174
\n",
"
-0.039
\n",
"
-0.004
\n",
"
0.003
\n",
"
57.000
\n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"# Select some sample indices\n",
"sample_indices = np.linspace(0, len(X) - 4, 4, dtype=int)\n",
"sample_indices = [index for i in sample_indices for index in range(i, i + 4)]\n",
"\n",
"# Print data table (features and target)\n",
"data.iloc[sample_indices, :].style.set_properties(**{\n",
" \"text-align\": \"center\",\n",
"}).set_properties(**{\n",
" \"border-left\": \"4px solid black\"\n",
"}, subset=['target']).set_table_styles([\n",
" dict(selector=\"th\", props=[(\"font-size\", \"13px\")]),\n",
" dict(selector=\"td\", props=[(\"font-size\", \"11px\")]),\n",
"]).background_gradient().format(\"{:.3f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Feature Correlation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can use `seaborn`'s [`heatmap`](http://seaborn.pydata.org/generated/seaborn.heatmap.html) function to inspect feature correlations."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAMWCAYAAABmx+ncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUxf/48dddKumN9JAAoYbee5EOShXBLopdFLFiF0WwISgoqEgRFBCU3gOhdwidEHpJI73n7nL3++MuR467JJeQ8OH3zfv5eNxDmZ3Z3cnuzs7OzswqdDqdDiGEEEIIIcT/ecr/9Q4IIYQQQggh7g2p/AshhBBCCFFNSOVfCCGEEEKIakIq/0IIIYQQQlQTUvkXQgghhBCimpDKvxBCCCGEENWEVP6FEEIIIYSoJqTyL4QQQgghRDUhlX8hhBBCCCGqCan8CyGEEEIIUU1I5V8IIYQQQogy7Ny5k4ceeojAwEAUCgUrV64sM01UVBStWrXCwcGB8PBw5s+fbxZn1qxZhIWF4ejoSPv27Tl48GDl73wxUvkXQgghhBCiDDk5OTRv3pxZs2ZZFf/y5csMGjSInj17Eh0dzfjx4xk7diybNm0yxlm6dCkTJkzg008/5ejRozRv3px+/fqRlJRUVdlAodPpdFW2diGEEEIIIf6PUSgU/PfffwwdOrTEOO+99x7r1q3j1KlTxrDRo0eTnp7Oxo0bAWjfvj1t27Zl5syZAGi1WkJCQhg3bhzvv/9+ley7tPwLIYQQQghRyfbt20fv3r1Nwvr168e+ffsAUKlUHDlyxCSOUqmkd+/exjhVwbbK1iyEEEIIIcR9rKCggIKCApMwBwcHHBwc7nrdCQkJ+Pn5mYT5+fmRmZlJXl4eaWlpFBYWWoxz7ty5u95+SaTyL4QQQgghqtSyDl3+17tg0Zn+vfn8889Nwj799FM+++yz/80O3QNS+RdCCCGEENXSxIkTmTBhgklYZbT6A/j7+5OYmGgSlpiYiJubGzVq1MDGxgYbGxuLcfz9/StlHyyRPv9CCCGEEKJqKRX35c/BwQE3NzeTX2VV/jt27EhkZKRJ2JYtW+jYsSMA9vb2tG7d2iSOVqslMjLSGKcqSOVfCCGEEEKIMmRnZxMdHU10dDSgn8ozOjqaa9euAfq3CE899ZQx/ksvvcSlS5d49913OXfuHD///DPLli3jzTffNMaZMGECv/32GwsWLODs2bO8/PLL5OTkMGbMmCrLh3T7EUIIIYQQogyHDx+mZ8+exn8XdRd6+umnmT9/PvHx8cYHAYDatWuzbt063nzzTWbMmEFwcDC///47/fr1M8YZNWoUt27d4pNPPiEhIYEWLVqwceNGs0HAlUnm+RdCCCGEEFXqn87d/9e7YNHIPTv+17twz0m3HyGEEEIIIaoJqfwLIYQQQghRTUiffyGEEEIIUaUUSsX/eheEgbT8CyGEEEIIUU1I5V8IIYQQQohqQrr9CCGEEEKIKiXdfu4f0vIvhBBCCCFENSGVfyGEEEIIIaoJ6fYjhBBCCCGqlkLam+8XciSEEEIIIYSoJqTyL4QQQgghRDUh3X6EEEIIIUSVktl+7h/S8i+EEEIIIUQ1IZV/IYQQQgghqgnp9iOEEEIIIaqUQiHdfu4X0vIvhBBCCCFENSGVfyGEEEIIIaoJ6fYjhBBCCCGqlEIp7c33CzkSQgghhBBCVBNS+RdCCCGEEKKakG4/QgghhBCiaslHvu4b0vIvhBBCCCFENSGVfyGEEEIIIaoJ6fYjhBBCCCGqlHzk6/4hLf9CCCGEEEJUE1L5F0IIIYQQopqQbj9CCCGEEKJKyUe+7h9yJIQQQgghhKgmpPIvhBBCCCFENSHdfoQQQgghRJWS2X7uH9LyL4QQQgghRDUhlX8hhBBCCCGqCen2I4QQQgghqpZSuv3cL6TlXwghhBBCiGpCKv9CCCGEEEJUE9LtRwghhBBCVCmFQtqb7xdyJIQQQgghhKgmpPIvhBBCCCFENSHdfoQQQgghRJVSyGw/9w1p+RdCCCGEEKKakMq/EEIIIYQQ1YR0+xFCCCGEEFVKoZT25vuFHAkhhBBCCCGqCan8CyGEEEIIUU1Itx8hhBBCCFG1FDLbz/1CWv6FEEIIIYSoJqTyL4QQQgghRDUh3X6EEEIIIUSVko983T+k5V8IIYQQQohqQir/QgghhBBCVBPS7UcIIYQQQlQphULam+8XciSEEEIIIYSoJqTyL4QQQgghRDUh3X6EEEIIIUTVktl+7hvS8i+EEEIIIUQ1IZV/IYQQQgghqgnp9iOEEEIIIaqUQiHdfu4X0vIvhBBCCCFENSEt/0IIIYQQokoplNLefL+QIyGEEEIIIUQ1IZV/IYQQQgghqgnp9iOEEEIIIaqWDPi9b0jLvxBCCCGEENWEVP6FEEIIIYSoJqTbjxBCCCGEqFIy28/9Q46EEEIIIYQQ1YRU/oUQQgghhKgmpNuPEEIIIYSoUgqZ7ee+IS3/QgghhBBCVBNS+RdCCCGEEKKakG4/QgghhBCiSimU0u3nfiEt/0IIIYQQQlQTUvkXQgghhBCimrhvuv0s69Dl3mzI3h6Ht96g4PsZoFJV+eb6LvityrcBoCksZE/sRTrXq4utjU2Vb0+n01X5NkCfr70XLtEpvM49yRdA1rWr92Q7hTodJ/LVNHO0w+YezIJg7+Ze5dsA0Gi1HLmVQuua3tjeg4+62Dg6Vvk2QJ+vg9dv0i4k6J7ky7F2vSrfRhGNRsPO3Tvp1qUbtrZVf1tQXbtU5dsA/THbf+UaHcJq3ZNjpsrKqvJtABRqtRxJSaO1tyc29yBfhffgXgn6MjE6M5sWbi73pEx08vWt8m0U0RRq2XfpMh3r1MbWpuqPmVfjJlW+jXJTSHvz/UKOhBBCCCGEENWEVP6FEEIIIYSoJu6bbj9CCCGEEOL/Jpnt5/4hLf9CCCGEEEJUE1L5F0IIIYQQopqQbj9CCCGEEKJKKWS2n/uGHAkhhBBCCCGqCan8CyGEEEIIUU1Itx8hhBBCCFG1ZLaf+4a0/AshhBBCCFFNSOVfCCGEEEIIK8yaNYuwsDAcHR1p3749Bw8eLDFujx49UCgUZr9BgwYZ4zzzzDNmy/v371+leZBuP0IIIYQQokopFP//d/tZunQpEyZMYPbs2bRv357p06fTr18/YmJi8PX1NYv/77//olKpjP9OSUmhefPmjBw50iRe//79mTdvnvHfDg4OVZcJpOVfCCGEEEKIMk2bNo3nn3+eMWPG0LhxY2bPno2TkxN//PGHxfheXl74+/sbf1u2bMHJycms8u/g4GASz9PTs0rzIZV/IYQQQghRLRUUFJCZmWnyKygoMIunUqk4cuQIvXv3NoYplUp69+7Nvn37rNrW3LlzGT16NM7OzibhUVFR+Pr60qBBA15++WVSUlLuLlNlkMq/EEIIIYSoUgql8r78TZkyBXd3d5PflClTzPY/OTmZwsJC/Pz8TML9/PxISEgoM/8HDx7k1KlTjB071iS8f//+LFy4kMjISL7++mt27NjBgAEDKCwsvLs/eCnuqs//hQsXuHjxIt26daNGjRrodLr/E326hBBCCCHE/30TJ05kwoQJJmFV0ed+7ty5NG3alHbt2pmEjx492vj/TZs2pVmzZtStW5eoqCh69epV6fsBFWz5T0lJoXfv3tSvX5+BAwcSHx8PwHPPPcdbb71VqTsohBBCCCFEVXBwcMDNzc3kZ6ny7+Pjg42NDYmJiSbhiYmJ+Pv7l7qNnJwclixZwnPPPVfm/tSpUwcfHx8uXLhQvoyUQ4Uq/2+++Sa2trZcu3YNJycnY/ioUaPYuHFjpe2cEEIIIYT4P0ChuD9/VrK3t6d169ZERkYaw7RaLZGRkXTs2LHUtP/88w8FBQU88cQTZW7nxo0bpKSkEBAQYPW+lVeFuv1s3ryZTZs2ERwcbBJer149rl69Wik7VhLbGjVo8PijeEVE4NW4EQ7ubhz8YjJX1m2wKr2dizPNmzfHf/W/2Do4kHrmLNE/ziQ95rxZ3MCunYkY+yxuYWHkp6VzZe06zsxbgK6K+mGp1Gp+XfwXG6KiyMrOITwslBcff5z2LVuUmu7qjZss37CBAydO8lFcHCq1mv9+m0PgHf3Sjpw8ySsfflziel564nHGPDKyxOUVpVKr+fWvv9m4PYqsnBzqhoby4hOP0b5Fi1LTXb1xkxUbNnDg5Cljvv79dQ6BfubTaeXm5TFn8V9s27uP9IwMAv39eOTBBxkxoOrmylWpNSxYv56tBw+TnZdHncAAnnlwEK0bNig13e7jJ1i7ew+X4+LJyMnB08WFRrXDeHJAf2oHlnyxx91KZuxXU1FrNMx8ZwINatWq7CwZqdRq/vj3Pzbv3ac/ZiEhPDdiOG2bRJSabufhw0TuP8iJixfJyc7G18uLji2a89Tgwbg6O5nFz83LY8HqNUQdPERKejruLi5EhIfzwQtjcayC164qtZrfl/3Dpl27yMrOoW5oLV4Y9QhtmzUrNd2OAwfZuncvx8/H6vPl7U2nVi15ZsRwXIsN3MrIymLd9ij2HDnK1Zs30RQWUiswkFGDBtKrU+k3h8qSlZXFjz/9yPao7eTn5xMREcGbb7xJw4YNrUp/+fJlpv0wjejj0djZ2dG5c2cmjJ9gNvtEcnIyc36dw4EDB0hJTcHHx4fu3brz7Jhn8fDwqJS8qNRqfluylE07d5GZk014rVBeeHQ07ZqXfryi9h8gcu9ezly4SHJaGv4+PnRu05oxD48wOV5Fdh06zNxl/3Dlxg083d0Y1LMnzzw8Alsbm0rJhyUqtZp5/61k8759ZOXkUjckmOeGD6NNRFnX2BG2HTzIiYuXDNeYJx2bN+fJwQ/hWqwx7ti5c7z59bclrue54cN48qEHKy0/RVRqNfNXr2XrgQNk5eZSJyiIMUMG06Zxo1LT7T4WzeqdOzl//Qb5eXm4u7jQqE5tnn5wELWDgszi7z1+nAVr1nE1Ph5PV1f6derIk4MGYlNFx0ylVvPb30vYGLWDzJwcwkNDefGxR2nXonmp6a7evMl/mzZzOuY85y5dQqPR8O+cXwiwMC1kbl4ec/76m+379pGekUmgnx+PPDiQ4VU857uw3oQJE3j66adp06YN7dq1Y/r06eTk5DBmzBgAnnrqKYKCgszGDMydO5ehQ4fi7e1tEp6dnc3nn3/OiBEj8Pf35+LFi7z77ruEh4fTr1+/KstHhSr/OTk5Ji3+RVJTU6t8blJ7D3cixj5LTnwCGRcu4Nu6lfWJFQq6fj0Fj+Bgzi1chCollbojhtHz55/Y8sxzZF+/YYzq37EDnb+eQtLRYxybNh33unVoNOZpHLw8OfrN91WQM5g0/Ue27d3L6MEPERIQwLpt23hz0hf8PPkLWjRuXGK6kzHnWL5uPb6+voQGBxN7+bLFeGHBIXz25niz8A1RURw4Fl3mQ0ZFfTHjR7bt3cfohx4kJDCQdZHbmDDpS2Z9OamMfMWwfP0GQ76CiL18xWK8wsJC3vhsEucuXGDEwAGEBAZy4Ngxvp09h6zsbJ4Z+XCV5OvbRYvZFX2c4T27E1SzJpsPHOTDX+bw3euv0aRunRLTXY6Lw9XJiaHdu5Hp4IhzXi6bDxxg3HfTmDFhPHWDzW90AL/8+x82SiXqKsmNqSm/zWXH4cOM7NuHID8/Nu7ezXvTfmD6++/SrH79EtN9N28BXh4etGzZkuYhwfob39ZI9h8/we+TPsPB3t4YNzs3lzemTOVWahoP9uhOkJ8vGVlZnIiJRa3RVEnlf/LPvxB14CCPDBxAsL8/G3bs4O2p3/DjJx/RvJTK8Te//Ya3hyctW7akZZ3aXLlxg383bWb/sWj++HqKMV+nzsfy65KldGzZkqeGD8PGxoYdBw7w6YwfuXLjBs9VwcN1cVqtljfefIPY2FiefOJJPDw8WL58OS++/CJ/LviTWmU8MCYlJfH8i8/j4uLCq6+8Sm5uLosWL+LihYssmL8AOzs7AHJzcxnz3Bjy8vIY+fBI/Hz9OB97nmX/LOPwkcMsWrgIpfLu55P4cuYstu8/wKhBAwkOCGD99ije+moKMz/7lOaNSj5eX8/5FR9PT/p27UI2CsjNYcWGjew7eoz533yNg8Pt83Df0WO8/823tIxozJvPjuHitWvMX7GCtIwM3nnh+bvOQ0mmzv2DHYeP8HCf3gT7+bFx9x7e+2EGP7z7Ds3q1ysx3XcLFuLt4a6/xoKD9NdY5Db2nzjJb599YjwXQwMC+OD5sWbpt+zdx6HTp2lbxkNGRX2zYCE7jxxlRK8HCPL1ZdO+/Xzw00y+f+tNmoaHl5ju0s2buDg50aVLFxr6eJGRmcWGPXt5dcrX/PTeu9QNud3YeODUKT75ZQ7N69dj3OhRXL55k8XrN5CelcX4xx+rknx9+eNPbNu3n1EPDiIkMIB126KY8OVkZk36nOalPNicionhn3XrCQsOwtfXl7i4OIvxCgsLGT/pC85duMiIAf0JCQzgwLFovp3zG5nZOTzz8IgqyZcon1GjRnHr1i0++eQTEhISaNGiBRs3bjQOAr527ZpZ2RcTE8Pu3bvZvHmz2fpsbGw4ceIECxYsID09ncDAQPr27csXX3xRpfVphU6n05U30cCBA2ndujVffPEFrq6unDhxgtDQUEaPHo1Wq2X58uXl3pFlHbpYFU9pZ4e9qyv5qal4NmxAn/lzrW75D+71AJ0mT+LgwYNceft9UKlw8PBgwLK/id+3nwOffm6M2++vP9FqNGwdM9bY0t/kxedp9PSTbHz0CbKuXrNqf/su+M2qeKfPn+fZt99l3JhneGLYUAAKVCoee+11PD3c+f2br0tMm5GVBQoF0TfiuHr6FLMWLLTY8l+SES++jEKhYPnsn62KD2DtaXP6/Hmee+c9xj3zNI8Xy9fj497A092d376ZWmLajKwsFAoF0TfjuXLqJD8v/NNiy3/knj18+M13fDjuVR4qNgXXxKnfsPfIEf77bQ5e5WiJzLpW9turc1euMu77H3hh6GBG9noA0LcMPf/V13i4ujBjwvgy11Go03EiX00zRzsys7J59ONP6d+xA+NHP2IW99DZs3z66+880qsXizdtrlDLv72bu1Xxzl68xEuTvuDlUY8weuAAAApUasZ8+BEebq78/PFHJaY9dvYcTRvU58itFFrX9MZWqWTj7j1M+e133hnzDA/26G6MO23BQiL3H+D3SZ8RULNmufJSnI2jo1Xxzly4wAsffswrTzzOY4YWzwKViqfefhdPdzdmfzGpxLRHT5+hWaOGHLx+k3YhQdgqlWzYsZPJP//Cey88z0OGcyAuKQmlQoF/sfzodDrGfzmZkzHnWff7r9Swcn8da5dcASzJli1bmPjhRKZOmUrvXvprIS0tjeEPD6dTx05M/nKyxXQajYadu3eyf99+1q1fx4p/Vhj7sB44eIBXX3uVDyZ+wPBhwwHYuHEjH33yEdOnTadLl9tl95xf5/Db77+x6M9FNGxQcuVcde1SmXk5E3uBsRM/4LUnn+CxIYMB/fF6YsJbeLq58+tXX5aY9uip07RqEoFGq2X/lWt0CKvFlp27+GLmLN5/6UUG9749iO7x8ROwtbVh7tdTjS39c/5ewsJ//2Px9GmEWWh1LjFfWVlWxTt76RIvfzGZlx4ZyWjD28kCtZoxH32Cp6srsz76oMS0x86do1n9+hxJSaO1tyc2SiWb9uxlyu9zefuZp3mwe7dSt/34exNRKBQsmvqV1fkqLPaRotKcu3yFV6d+zYsjhvNI3z6Avlx87vMv8HB15af33il9Ozod0ZnZtHBzwUahIDUzk9HvTWRAl868WaxS/+xnk7C1seGXD943tvT/sXIVf23cxB+ffUKtMvpfF3Gy0PpuyenzsYx9731ee/opHh86BDDcx954U38fK+VvmZGVha2tLQ72DkydN59169ZZbPmP3LOXj777ng9efYWHip2fH3zzLXuOHOW/ObPx8rCuDAfwatzE6rj3ys5xr/6vd8Gibj/N+l/vwj1XoaaZb775hl9//ZUBAwagUql49913adKkCTt37uTrr0uupFYGrVpNfmpqhdKG9OxBXkqqcYAyQEF6OtcjtxHUrQtKQ6uWW1gY7nVqc2nVapMuPhdW/ItCqST4gZ53lQdLtu3Zi41SydB+fY1hDvb2PNSnNyfPxZB461aJad1dXXGuUaNC2z19/jw34uPpX8YNo6K27d1Xcr5iYki8lVxiWndXV5ysyFf06bMA9Ona1SS8T9cuFKhU7Czl09sVtSv6OEqlkoGdOhnD7O3s6N+xPWcuXyEpLa1c6/NwdcHB3p6cvDyzZZrCQn5Z/h/DuncnwMfbQurKFXX4MDZKJQ/17GEMc7C3Y2C3rpy+cJGkUuYfbmmhNbab4e3c1WLXXVZOLht27eahHt0JqFkTtUaDSl217zSi9h/ARqlkiKGiDvpz8cGePTh1PpbE5JLz1SrC/A1V93ZtAbhy86YxLNDX16TiD/qvWnZt0waVWk1cUtJd5qJ0kdsi8fby5oGet/Po6elJ79692bFzh8mXJi3ZHrWdrl26mgxea9+uPbVq1WLr1q3GsOycbED/AZviil5pOzpY94BT6r7s368/Xn1uP9A72Nvz0AMPcOr8eRKTSy47WlnontatvX6GjeLH6/L1G1y+cYPBvXubdPEZ3q8vOp2O7fv233U+LNlx+AhKpZKHij0MO9jZMahrF05fvEhSSsn3uJYW3lB1bdUSgGvFrjFLzl66xM2kJHp3aF/BPS/djqNHUSqVDOp6+4HQ3s6OAZ07cebSJZLKee/2dHXF0d6e7NxcY9iVuHiuxsczqGsXky4+g3t0R6fTsfPI0bvPyB227zPcxwwPNGA4F3v34lRMTKnnorX35+Nni+5jpg2hvbt0QaVSsasK7mOi+qpQ5b9JkyacP3+eLl26MGTIEHJychg+fDjHjh2jbt26lb2PlcajQT3SY2PNwlPPnMG2Rg1ca4UY4wGknT1nEi8/OYXcxEQ8S3klW1HnL10mJCgQlzu6U0UYtnW+hK48d2vjjp0A9OvevYyYFXP+0mVCAgNxviNfjetVXr7UGjU2SiW2tqa92Iq6jcRcuHjX27jThRs3CPatiXMN00pOg9BQAC7euGkpmYns3Dyys7O5HBfHtL+WkJufT0sLXWr+3b6DrLxcHiv2AFWVYq9eJdjf3+yG1aiOvitT7LXr5VpfakYGAO4uLsawk7HnUanVBPn58clPs+j3/Iv0ff5FXv1iMrFWvlUrr/NXrhASEGB2LjYydEWIvXqlXOtLSU8HwMPVtey4RX8DK+LejZjzMTRo2MDstXNE4wjy8/O5dq3kv21GRgZpaWk0amTehSEiIoKYmBjjv1u1bIVSqeS7ad9x8uRJEhMT2b1nN/PmzaNH9x6EhYXddV7OX75MSKD58WpcdLyuXCnX+lItHK+i8qfRHfetml5e+Hp7l9iF8m7FXr1GiL+f2TXWsE5tAC5cL981kJqRCZheY5ZsNTzM9O7YoVzrt9aF69cJ9vM1z5fhfLhQrGttSfLy8kjPyuLSzZt89+cicvLzaVXsgefCdX35U1TWFvHx8KCmp6dxeWXSn4uW7mPhxuV3S6Uu6T6m78Z17mLZb8uEsFaF5/l3d3fnww8/rMx9qXKO3t7cOnHSLDzP0OLn6ONDxsVL1PD2MQm/M66jj0+l71tyWho+Fj7n7O2pb1m7lVq+lmRrFBYWsnXXbiLq1yOklIGmdyMlLRUfL/N8FeU1uYJvcYqrFRRIoVbLqZgYkzEE0WfOAJS7tckaqZmZeLm5mYV7G8KKKnulGT9tOjcMLcE1HBx4vF9f+nc0bZFLzcxk8aZNvDB0iNmDRlVJTc/A28Lr5aKwlPTynYt/rVuPjVJJj7ZtjGE3EvRTpf32z3ICfX2Z+MJYcnLzWLBqFW9+/Q0LvvoS70oaNFokJS0db0/zdRaFJZfzGlu8ao0+X2W0omZmZ7N22zaaN2xo8RqvTMnJybRs0dIs3MdQZt26dYvwEvpdZ2ZmmsQ1Se/tQ0ZmBiqVCnt7e+rUqcMHEz9gxo8zGPPcGGO8Bwc9yEcfltwtrDyS09Lx9rBUJhaVHeU7XotWrsJGqaRnsYpviuENXUnnxa1yvsGzVkpGOt7uFq4xd/1+JKell2t9f63fgFKppHubNiXGKdRq2XbwEI3q1CbYyi6h5ZWakYG3he6FXoa8WlMuzpw5k1uGN901HBx4YuAABnS+/Ya1qDHBy928/PVydyM5vextlFdKaprxvCvOp4LnoiWhgfr72OmY8yZjCKLP6N8I3Eqt2i++3hPyHaj7RoUq/ydOnLAYrlAocHR0pFatWlU+8LcibBwc0KrUZu87tIZX4TaGfbYxPGlr1eavyLUqFbYWZou4WwWqAuNguuIc7PVhlj41fbcOnThBanp6lQ2IBX2/SEv5si/Kl5V9SUvTr1s3/li6jMk/zeTtF18gJCCQg9HRrNign3a2oODut3GnArUaO1vzy8feTh9mTReWCY8/yunMbGpkZrDlwEEK1Gq0Op3J6fn7qjX4e3szoIpa6iwpUKlKyFvRMbO+e86WfftYt3MXjxoG2BbJKzqfFTDtvXdwMvSDrxcayitffMl/WyMZW8kD3ArUKuxsLZyLhnyV1SWmuM2797B2+3YeMwzOL4lWq+Xzn2aSnZPL+DHPlHufy6ugoAD7YoOqizjYOxiXl0Sj0QBgb2chvcPt9EXr9/X1JaJxBJ07dybAP4Bj0cdYsnQJHh4ejH9j/N1mhQKVynhsiqtI2bFl927WRG7j8SGDTY5X0TosllF29uTm5ZqFVwaVSl3quVhQji5wW/ftZ/2uXTw6oD/B/iVX6o+eOUNaZiZPPDio/DtspQKVGju7UspFK47ZI488QpBSQWJKMhv37jMrF4v+NhbLKFs7cvPzK56BEujPxdLKxLu/x/Tt1pU/lv3D5JmzePuF5/UDfqOj+XfjpkrbhhBFKlT5b9GihfFLvkUDP4t/2dfOzo5Ro0YxZ84cHC0MbisoKDC7CaltbbEr7+wQRQW2jS1YuOHdqbBAhdLREVT5JvGVhsp8YWEh2NsbP6msdHaGHNPCX+noqB/8ZMX2QN9f2xr2dvaoVGqz+EUFmZ2dXanr0hRqAdBq9cejUKstc9sbtu/Qt4R16mj1fhaxdsCvPl+qEvNla2tber60hnzpivJVaBbf3c2Nqe+/zxczfuQNw6BtZycnxj/3LJN/mkkNR4dy5a/QirzZ29mh1mjM4uYZKsa2dnZlrqdBWCiaAg0RDrZ0b92SFyZPRYeO5w0Dys5evsLWQ4eZ+urL6BQKCnU6tIa0Wp3Oqv0sruhvWWbe7O1QqdVm8XMND1G2tralrqvQsCz63Dm+mTuPtk2aMGb4MJM0RTfujs2bY29vb1zWoE5tAmr6cDL2gtX7q7M2X3b2FvNV9CBia2dnVb6OnTnL1NlzaNusGc8+MrLUNNP/mMeB6ON88MpL1K4VYnWe4HZl3BK1Wm1sqS/i4eGBg4MDBQUFZmnzDGNJbG1tLa5Xo9EYuxvk5+ebp8/Xp7exsUGj0XD8xHHenPAmv//6u7GbUJcuXahRowZz/5jLoIGDqF27dsl5s+Lv4GBvR4FaVeHjVbSdy5cvM/f332nXvDnPjR5lksbWcA/JKygwW5e+wmdfrmNWaPW5qL/G7oyfp9Lnzc7WttR1FRrK+ehz5/lm3nzaNolgzLChpabZvG8/SqWSbm3aWL2fxu1ZW97b26FSm5eL+VaWi4U6HaGhoTR1dcZGoaBb6zaM/XwSOp2OFwyNAUVlR75abbYulVqNvRVlb5Gi+2bZ+bKnQKU2i5+bX3S87MpcV/HzSFOoNYvv7ubOlPff48sff+KNz/WTDzg71WD8s88xeeZMHB0crd5fIcpSocr/f//9x3vvvcc777xj/EzxwYMH+f777/n000/RaDS8//77fPTRR3z33Xdm6adMmcLnn39uEjZq1CgeffTRcu2HvaFbgG3/PjhElD2HdYG2EOdWLWD/fhzGvWwMdzXMmlI4qD8O3TqjMXy/wG3cK2gN/USLOIWFkpaWhsNbb1i1j3tiretvbuvoyPXERLP4sYYxCrfyC6xa1zVDF5fDl6/ilVHyzBNqtZrt+/ZRNzycs7dS4FbVvFLU5yuJvRdM+ysW5Su5QGW2zJLrhteqR65cwysz2zyCgyNvvv02CQkJqFQqAgICjJUjZQ0nq7ZRHvYursSlZ3Ai37SFLjZZ//fPquFstqwkpws0oLQjtG5dNh86Qvv+AwH4ZeVqwsLCSHNxIypO300mJl2fp6PJacTbOZrNvV6qfOuOsZ2TMzdTUjlyxzlR1Bc/XWljtuxOcXFxzJkzB18/PwaPGkV0arrJ8kwbfdFTYGdvti67Gk4kZWaWuY3ysqtRgxu3bnHwuul4jNhY/VcUUwu1ZsvuZJKvkSM5GpdQYtwtW7awZctWBgwYgEdYnTLXbaaU+BcvXmTOnDkmYe+//z5OTk6cjz3Pzt07TZYdNAwWvHr9KiqN5RZEN0OXtUNHDuHsavp28+zZszg5ObH/oL7P+JIlS3B2duZWyi1u7b49GYGzizM6nY7l/y6nffu7G1Rq61iDG0m32H/FtP97UdmRotaYLbtTXFwc8+fPx9fPj4cefpjDd/xN0zT6RoEdZ86ZTYMan5xMSEhImduoCDtnZ26mpnIkxbS7SOw1fZ/4dBtbs2V3Mr3GRhOdnlliXLVazc4jRwkPD+eyppDLZay7ouydXYhLSyP6jjI6Nl5/nWTaO5gts+RkVo7x/0Pr1GHTgYO066uf8zzL8BZrf1wCtWxNG+ES0tMJCQmxahv6HbIunq2jIzeSkth3ybRvv/E+plKZLSvN0WvX8crOMV/gWKPE+5iNk1O5tjGkaenfwvhfUFTC9L+iclSo8j958mRmzJhh8gGCpk2bEhwczMcff8zBgwdxdnbmrbfeslj5nzhxIhMmTDAJWzNwMAXfzyjXfqga1Ifu3dFs3EKB4dVYadLcPPBp3hSAgp9+AcNrNLe3J6Bp2JDUyV+jVau5FRYGC//A5cgxEleuNqZ39PamxpAhXFz8NwULF1m1jw/M/tGqeMcaN2LZmrW0CDId4HbheDQAgzt3xK+UsQaaQi0HLl2mlmH2jTa1Qy1+RKTI1t17KCgoYNSAfnSuV/5B2ta2/Bflq3mgv2m+oo8B8FCnDqXnS6vl4KUrhBjGDbQOq1Vqvqh/uz/zv4ZuP0O6d6VdeMnz7t8p+0bZA8aahQTz38WL1NUVmvTFPxOvr1z0ql2Lmo7mr/WLK9TpOG1o+bdRKFipLUSVn08zQ7qcjHSSUtOYOtV8OtT58+fjXMORFV9PMVtWEjtX8z6ylhyuW4flm7fQ0MXJZODeuQP6il+/JhH4enuVlJzrCQl8MXcu3m5uzHjnbTzczAe5+jZtwt9/g21BPq1rms5glJ+dTUiAv1l4Sayd6vNIg/r8s34DEd6eJufi+SOHARjYphW+3iVv83p8vD5fHu7M/PhDPCyM+Sjy3+bNbNmyhYcH9Oe1p8r+oqMljqElX5ctmrUgorHpjDbNmzXn4IGDRB+PpkunLiaDfvfs3oOjoyPDhgyz2C1Io9Gwd/9ePDw8KMgvoFsX09m/Zs6cSeNGjY3hK5avwNbW1ize6TOnAahbp67ZsuJUN66UuKzI0YYN+Gfdepr6+pgcr9ijRwAY1K5NqWXHzYQEps6fj7OzMz9+8hE+FsaQ+NkoWLJkCXZ5uXQIu135T05NJSMjg4f79TUJL4vayqk+D9epzfItW2no5Gh6je3XP0j1i2iEr4WxUkWuJyTevsbenlDmoPPtBw9RUFDA8K5daO1d/nEnhVZ2Q2oeFsq/kduoZ2djkq+zSfrGi971w/F1K3lQcqFOx8msHGPLP8BKnQ5Vfj4tDOk86oezBCD5Fi2a3B7jlZKeTkZGBkO6dTXGLUsNH+umGD7aqCH/rF1HM38/03PxmP4+9mCH9qWei6C/l+3Yof//VrVCSr+Phd++9v8z1G0Gd+1Kuzolv00Tojwq9Bh28uRJQu8YaQ8QGhrKyZP6AbUtWrQwmVKzOAcHB9zc3Ex+dhqNvjJenl9RgVRontbR1RXXAH8UhYXGsBuRkdTw8tJ/MtkQZl+jBiE9uhO3ew/anBxQqcg8f57MK1eo8+AgFMX2K/yhQei0Wq5vjbR6H21tbKz69e7ShUKtljVbI41hWq2W9du2E1G/PkF+ftja2JCcmsqN+HgL69AfSqVSX2DaKJWlbm/rrt04OjjwQKdOVu9jRX69OnemUKtl7Z352h5lXb4MFRiloihf1m03Kzubv1auIjwsjA4tW5Zrn20UijJ/3Vs2R6vVsmnfPmNYoaaQzQcO0jAsFH8vL2wUClLS0rmZmGSSNjM72/j/ADYKBbdSU4k+f576tUKMy94cPYrPxj5r8hvaXT+d6QtDhzDxqSet2tein61SadWvZ7u2aLVaNuzYaQzTFhayafduGtetQ2BNH2yVSlLS0riZkGiSNiMzi4nTpqNQKPj67Qn4eLhb3EbtoEDCa4Ww91g02Tk5xvBjp8+QlJpK2yZNrN5fa38PdOiAVqtl3fYok3xt3LGTxuHhBNasia1SSXJqKjfj4+/IVybvTf0GhULBtxPfx8fDo8Tt7Nh/gJ/mL6Rvl8688fRTFd9nW9sSf15eXnTq2Mnk5+zsTO/evUlNTWXnrp3GuNnZ2Wzbvo2uXbvi5ORkDE9ISCAhIcH4b4CePXuye89uklOSjeFHjx7l2rVr9O7d2xgWGhpKamoq0cejTfaraDrQxo0al7r/1uS/V8eOFGq1rIvcZnK8NkTtIKJePYJ8ffXHK8VQdhQ/XhmZvDV5CkqFgrFjx5Z4vOqFhhIaFMTayEgUOozhq7dsRaFQ0KtTx3IdMxsrfz3a6q+x9Tt3GcMKCwvZtHsvjerUIcDHBxulkuS0NG4kJpqkTc/KYuL0GfprbMJ4vN3dy9ze9gMHcbS3p1ub1lbvo8nPyjKmR+tWaLVaNu7eU6xc1LB53z4a1Q4jwNsbG4WC5LQ0biYmmpaLWVkmZaKNQsGtlFSiY2KoHxpqDKsbFEQtf3827N4DOp0xfN3OXSgM+2B1mWijtOrXu3Mn/X0sMtIYptUWsiFqOxH16xHk54utjZLk1BRuxMdZXo/ydnXL2u1mZWfx16qVhIeF0qFlc6vTFdUHhChJhVr+GzZsyNSpU/n111+NrUhqtZqpU6caPyF/8+ZN4xfPKlv4w8Oxc3WlhuFJO7BLZ2oYnqIvLFuOOieHpq+8SO1BA1k77GFyDa8cb2yLIvnUaVq1aoXT009SkJpK+PBhKGyUnP5trsk2jv/0M12+nUq3GdO4vjUStzp1CH94OJdWryXrStkfgSqvJg3q06tzJ35e+Cdp6en6r1lu2058UhIfjXvNGO/zH6Zz9NRpDqxeaQzLzslhyZq1XEtJJcMwe8w/69bj6uyMq7MzI+8Y4JWRlcW+o0fp2bGjVfPoV0q+/lxEakaG4cvF+nx9WOyDH59Pn8GxU6fZv+o/s3xdT00j3dBytHz9elyK8jVooDHuyx98SJMGDQgOCCAlPZ1VmzaTl5/Pdx99WClfGr1To7AwurVswdzVa0nPyiawpg+bDxwiMSWVtx673X3t6z8XceLCRbb8NN0Y9sKUr2lZvz51ggJJt3PgYHoqm/YdQFOo5bnBDxnjtbEwZ362oe92s3p1y/2RL2s1rluXHm3b8uvyFaRlZem/0rl7DwnJKbz37LPGeF/9+hvR52LYsWCeMezd778n/tYtevTowcnzsZwxdKkB8HR3p22x+ddffexR3v7mO8ZN/oqHevQgJy+PZRs3EeLvz5Aq+JZGRL1wenZoz5y/l5CekUGQvz8bd+wk/tYt3n/xBWO8L2f9TPSZs+xe+rcx7K2vphKXlKTP17kYzpw/b1zm5e5O22b6V+xnLlzgy1k/4+bqSusmTdi8e7fJPjQxPPBWlV4P9KJpk6ZM+mISly9fxsPDg3+W/4NWq+XFF140ifvyq/quj2tWrTGGPfPUM2zbto2XXn6J0aNGk5eXx5+L/iQ8PJzBDw02xnvkkUdYs3YNE96awKhHRuHv78/Ro0fZtHkT7du3p0mTu//AUET9ejzQsQO//PU3aZmZBPn7syFqB/G3bjHxlZeM8b74aSbHzpxh7/JlxrAJkycTl5jIo4Mf4sqVK2zOzjI2jHi5e9Cu+e0uEa89+QTvfv0N47/4kt6dO3Hp+nVWbNzIQ70eICz49ldlK1PjunXo0bYNv634l/Sia2zPXhJSUnj32WeM8b76bS7HY2KImnf7/vTu9z/cvsZiL3C62FTGXu5utLnjy72Z2dkcOHmSbm1aGwfWV5VGtWvTvXUrfv9vpb7sqFmTzfv3k5CcwttPPmmM9/W8+Rw/H0vknF+MYWMnfUnLhg2oUdOXOE8P4m7dYsOevWgKC3l++FCT7bwwYjgf//wL703/kZ5t23A5Lo5V26MY2LkzoaUMwK+oiPr1eaBTR35ZtJi0jAyCA/xZvz2K+KRbfPDqK8Z4k2b8xLHTp9n33wpjWHZODv+s34BWq+PCBX15+M/6Dbg6O+Pi7MTIgcXuYx9+TNMG9W/fxzZvITc/n28//KBK7mP3WvGxoeJ/q0KV/1mzZjF48GCCg4NpZrjpnTx5ksLCQtauXQvApUuXeOWVV0pbTYU1ePxRnItd4ME9exDcswcAVzduQp1joS8d+oGBu96dSKtffqLeiOHYONiTevYcB7+YTNYdc5fH79nLnvc/JOK5MbScMJ6C9HTOLfiT03PnWVx3Zfj0zfH4L/6LDVE7yMrOJjwsjGkff0RLCx+sKS4zO5vf/vrbJOyvlasACPCtaVb5j9yzF41GQ7/uph/FqiqfjH8D/8V/sdGYr1C+/+hDWpbxefnM7Bx+/3uJSVhRvvx9a5pU/hvUrcu2vXu5lZKKs1MN2jZvwYuPP0qQlV96rIj3nnyc+V6ebD10mKzcXOoEBvLFS8/TLLz0blQPdenMgdNnOHT2HLn5+Xi6utK6YQMe69eH2oGBVba/5fHBC8/zx7//snnPXrJzc6gTHMLUN9+gecMGpaa7YLiOoqKiiIqKMlnWomEDk8p/q0aN+ObtCcxd8R+/LV+Bo709XVq14qVRj1RZJeWjV1/h92X/sGnXbrJycqhbqxbfvPsOLYpNrWfJhav6B36L+WrcyFj5v3LjJmqNhvTMTKbMnnPnavjg5ZeqtPJvY2PDjOkzmPHjDJYsXUJBQQGNGzfms08+Iyw0rMz0fn5+/Dr7V36Y/gMzZ83Ezs6OLp27MP6N8SbdhcJCw/hz4Z/88ssvrN+wnpSUFGrWrMmTTzxp9pBxNz4e9xr+S5ayccdO/fEKrcW3E9+jZbEpfS2JNTTQ/L16jdmylo0bm1T+O7dpzVfvvMUfy5bzwx/z8HBz46lhw3i2CmdBA5j4/Fj8/v2PzXv36fMWEsKUN16neYPSr7GL10u+xpo3aGBW+Y86dBhNYWGVfdjrTu+PeYZ5XqvZuv+AvlwMDmLya6/SrIzv4wzu3o39J09y/dRpNhUU4OHmSpvGjXhsQH/q3PGV5Y7NmvLZSy/w59p1/LRkKR6urjw2oD9PVuFMRp+88Tq//vU3G3fsICs7h7qhoXz34cQy72NZOTn8esf9+e9V+u7E/jVrmlT+G9atw7a9+7iVmopzjRq0bdGcFx4dXaX3MVE9KXTWdt6+Q1ZWFosXL+a8oQWsQYMGPPbYY7hW8CM2yzp0KTtSZbC3x+GtN/TjC+7B1Fl9F/xW5dsA/axCe2Iv0rleXZMvVVaVCp425aYpLGTvhUt0Cq9zT/IFkHWt8t/sWFKo03EiX00zRzvj6+6qZG9h/u2qoNFqOXIrhdY1vU1edVcVa/v83y2NVj8guF1I0D3Jl2Ptyv+YYEk0Gg07d++kW5duZh8Zqgqqa/fmg0UarZb9V67RIazWPTlmKiv7/N+tQq2WIylptPb2xOYe5KvwHk0zWajTEZ2ZTQs3l3tSJjqV1u++kmkKtey7dJmOdWrfk245Xo3v/u1bZdv9pnUTpdxrXX4o33jT/wsqXMq7urrSrVs3wsLCjHP3bt++HYDBgweXllQIIYQQQlQnSun2c7+oUOX/0qVLDBs2jJMnT6JQKNDpdCZ9uQrLOWe8EEIIIYQQoupV6N3TG2+8Qe3atUlKSsLJyYlTp06xY8cO2rRpY9YHUQghhBBCCHF/qFDL/759+9i2bRs+Pj4olUpsbGzo0qULU6ZM4fXXX+eYYe5bIYQQQgghFIr//2cs+r+iQkeisLDQOLDXx8eHuLg4QD/Pf0xMTOXtnRBCCCGEEKLSVKjlv0mTJhw/fpzatWvTvn17vvnmG+zt7fn111+pU8f6L6kKIYQQQggh7p0KVf4/+ugjcgxz6U+aNIkHH3yQrl274u3tzdKlSyt1B4UQQgghxP/fFDLbz32jQpX/fv36Gf8/PDycc+fOkZqaiqenp3zBTQghhBBCiPtUpX3NxcvLq7JWJYQQQgghhKgCVf8pRyGEEEIIUb3JbD/3DTkSQgghhBBCVBNS+RdCCCGEEKKakG4/QgghhBCiSslsP/cPafkXQgghhBCimpCWfyGEEEIIUaUUMuD3viFHQgghhBBCiGpCKv9CCCGEEEJUE9LtRwghhBBCVC0Z8HvfkJZ/IYQQQgghqgmp/AshhBBCCFFNSLcfIYQQQghRpWS2n/vHfVP577vgt3uyHU1hIXtiL/LA7B+xtbGp8u1tfvr5Kt8GAPb2OLz1Btteeh1Uqirf3OA1K6p8GwAajQa4RA0vL2xt783pqs7Ovifb0Wi1EJ+Ig6cXtsqqLxQ9Gzaq8m0AqDUa2LETr8YR2N2DY5affKvKtwH6soPrN3F0d78nZceOY1erfBtFdDotALtPXL8nN+hmqrgq3wZAoU4HQG5CPDaKqu9v7BFer8q3AYZzMSUNJz+/e3IuqnNyqnwbYCgTM7Nx9Lo3ZaJrSK0q30YRtUYDly7jEhx8T8pFIUojj2FCCCGEEEJUE/L4KYQQQgghqpbM9nPfkJZ/IYQQQgghqgmp/AshhBBCCFFNSLcfIYQQQghRpWS2n/uHHAkhhBBCCCGqCan8CyGEEEIIUU1Itx8hhBBCCFGlFDLbz31DWv6FEEIIIYSoJqTyL4QQQgghRDUh3X6EEEIIIUTVUki3n/uFtPwLIYQQQghRTUjlXwghhBBCiGpCuv0IIYQQQogqpVBKe/P9Qo6EEEIIIYQQ1YRU/oUQQgghhKgmKr3bj06nQyEjuoUQQgghhIHUDe8fFWr5f+aZZ8jJyTELv3LlCt26dbvrnRJCCCGEEEJUvgq1/B8/fpxmzZqxaNEiOnbsCMCCBQt4/fXXeeCBByp1By1RqdX8uvgvNkRFkZWdQ3hYKC8+/jjtW7YoNd3VGzdZvmEDB06c5KO4OFRqNf/9NodAPz+TeEdOnuSVDz8ucT0vPfE4Yx4ZWRlZMWFbowYNHn8Ur4gIvBo3wsHdjYNfTObKug3Wpbe1pcnbEwjq2hlbR0dSz5wl+seZpMecN4sb2LUzEWOfxS0sjPy0dK6sXceZeQvQFRZWdrZQqVTM+n0u6zZtJjMri3p16/LaC2Pp2LZtmWmTbt1i0aJFTPr8c3Q6HW1bteSdceMIDgo0iZeSmsr02XPYtXcfubm51A4L5bknnqDvAz0rPT9FVGo1c5evYNPuPWTl5FC3VgjPj3yYtk2blppux6FDbNt3gLOXLpGcno6/tzedWrbk6WFDcHV2LjHdzcREnnpvIiq1mt+++JyGdepUdpaMVCoVM2fPZs269WRmZVE/PJxxr7xMpw4dykyblJSkP2aTJqHT6WjXpjXvTphASHBwiWmOHovmqbFjAdi1dSuenh6VlRUTKpWK2Qv/ZH3kNrKyswmvXZuXn36KDq1blZruyvUbLF+7ln3Hoo1lx+oF8wn09ys13Y24OB554SVUajULf5pB4/r1KzM7FuXl5rB2xUJORh9ErSogJCycwSOfIbhW2efL/l1bOXpwF0kJN8nLy8Hd3Yu69SPo++AjePn4mm4nL4et61dwKvoA6WmpuLq6Ua9RM/o++AieXjUrJS8qtYYF69ez9eBhsvPyqBMYwDMPDqJ1wwalptt9/ARrd+/hclw8GTk5eLq40Kh2GE8O6E/twACTuL+s+I8TFy6SmJqKSq3G18uTHq1aMrLXA9RwcKiUfFjMm0rNnD//ZP227YZzMYyXn3qK9q1alpruyo0bLF+7jv3Rx43n4qr5f5jdxwAGPz2G+KQks/DhAwcwcdxrlZaX4lRqNb8tWcqmnbvIzMkmvFYoLzw6mnbNm5WaLmr/Abbs2cPxmPPkZGfj5+NNp9atGfPwCLNyceuevew+fJgzsRe4kZBAy8aNmTXpsyrJTxF9mTiHNeuLlYkvv0ynDu3LTJuYlMTU779n1569fK5U0q5NG96d8GbpZWJ0NE+NfR6AXVu34OnhUVlZEaJilf+DBw/ywQcf0KNHD9566y0uXLjAhg0bmDZtGs8//3xl76OZSdN/ZNvevYwe/BAhAQGs27aNNyd9wc+Tv6BF48YlpjsZc47l69bj6+tLaHAwsZcvW4wXFhzCZ2+ONwvfEBXFgWPRZT5kVJS9hzsRY58lJz6BjAsX8C2jQmJCoaBDhw641XAiZvFfqNIzqDtiGD1//oktzzxH9vUbxqj+HTvQ+espJB09xrFp03GvW4dGY57GwcuTo998X+n5+njyFLZGRfH4IyOpFRzM6g0beO3td/ntxxm0KuWGkJuby4tvvkVqejrPPvE49vb2LFq6jGfHjWPZvD/wcHcHIDsnh2deeZWU1DQeG/kwPl5ebN6+nXc++RSNRsPAvn0qPU8AX835laiDhxjZvx8h/n5s2LmLd779nh8/nEizBiVXTr79/Q+8PT3p3bkTuTa26LIy+XfLFvYfP87cyV/gYG9vMd1PixZjc49mS/jws8/YsjWSJx57jNBaIaxcs5ZXXn+DP+bMoVUp539ubi7Pv/IqqWlpPPfM0zjY27Nw8V8888KLrPhrMR4WbmBarZavvv2GGjVqkJeXV3WZAj77fhqRu3bz2LChhAQFsnbzVt74+BPmfDOVFk2alJju5NmzLFu9Bl9fX8JCQjh/6ZJV2/t+zq/Y2NiAWl1ZWSiVVqvl95mTibtxlR59huDs4sreHRv5+ftPePODb6jpF1hq+pvXL+Pl40tE87bUcHImNTmJA7u3cubkEd76+HvcPbyM25kzfRKJ8Tfo1L0fNf0CSU6KZ++OTcScjubdz3/E0bHGXefn20WL2RV9nOE9uxNUsyabDxzkw1/m8N3rr9GkbskPM5fj4nB1cmJo925kOjjinJfL5gMHGPfdNGZMGE/d4CBj3Jhr12hStw79OrTD3taOCzdusGRLJEdjzjPtjXEoq+ia+3zaNCJ37+HRoUMICQxk7datvPHJp8yeOoUWTSJKTHfy7Fn+WbNWfx8LCSb2kuX7WJH6derw+IhhJmGhQUElxL57X86cxfb9Bxg1aCDBAQGs3x7FW19NYeZnn9K8UcMS030951e8PT1p2bIlrcPrcvn6dVZs2Mi+o8eY/83XODjcLhf/27SZmEuXaBhel4zsrCrLS3EffvY5WyIjeeKxRwkNCWHl2rW88sYb/DFnNq1atCgxXW5uLs++9DJZWVk88MADNKoXzuIlS3nmxRdZsbiUMvGbb+9JmXhPyWw/940KVf7t7Oz49ttvcXJy4osvvsDW1pYdO3YY3wJUpdPnz7Nl1y7GjXmGJ4YNBWDgAz157LXXmTl/Ab9/83WJabu2a8fGRe2JvhHH1dOnSqz8e3t6MKBnD7Pw35csJSQwkMb16lVCTszlJ6eweuBg8lNT8WzYgD7z51qdNrhHN7y9vdn78Wfc2LIVgOuR2xiw7G8ixj7HgU8/N8ZtPu5V0i9cZOcbE4wt/eqcXBo9/SSxS/8h6+q1SsvTyTNn2BgZyYRXXubpxx4F4KH+/Rjx1DNM/+UXFs7+pcS0S/9bybUbNxg3bhxPjxiGra0tXTq0Z8RTz7BwyVJef/EFAJavWs21Gzf5dcYPtG/dGoBHhg3liRdf4vtZs+jTswd2dnaVlieAMxcvErlvP688NppHBw0CoF+XLjz9/kR++XsJv3z2aYlpv3jjdVo2boRGq+VQfCJtA/xoVKcOk2fPYfOevTzUs4dZmgMnTnDwxEkee3AQC1auqtS83OnkqVNs2LSZt954gzFPPQnA4EGDGPrIKL7/8UcWz/ujxLRL/vmHa9evM27cOJ554nHsbG3p0qkzw0aNYv6ixYx/7VWzNP/8+y8JCYmMGDqURX//XWX5OnUuhs1RO3hj7HM8OfJhAAb17s2oF17ix9//4I/p00pM261DB7YsW8KRS1e4HnPOqsr/vsNH2H/kCE+NHMncv6ouX8WdOLqPKxdjeOqFt2neWl8et2jTiamfjGPTmqU8MfbNUtOPeOx5FArTG3STFu2Y/tW7HN4fRa/+wwG4evk8169cYNjosXTpOcAY19cviKULZxF79gRNW5bdIlqac1euEnX0GC8MHczIXvo3yn3ateX5r77mt1WrmTFhfIlpnxzQH4BCnY4T+WqaOdoxqFNHHv34U9bs3sP40Y8Y405/8w2z9AE+Pvy6chXnrl6jce2wu8qHJadjYti8YyevP/csTz48AoBBvXsx+qVX+PGPP/hjWsmNMN06dGDzkg4cvXKNa+fOlln59/XxZuA9eCMPcCb2Alv37OW1J5/gsSGDARjQvRtPTHiLWX8u4tevviwx7eS3JtCscSP2X7lGh7Ba2CqVNKxThy9mzmLTrl0M7t3LGPeT11+jppcXSqWSx998q8rzdfLUaTZs3sxbb7zOmCeLlYmjRuvLxD9KKxOXc/XaNRb9MZe45BT6dOtK965dGTZqNPMXL2b8q5bKxP9ISExkxNAhLPp7SZXlS1RfFXoMU6vVvPXWW3z99ddMnDiRjh07Mnz4cNavX1/Z+2dm25692CiVDO3X1xjmYG/PQ316c/JcDIm3bpWY1t3VFecaFWuNOn3+PDfi4+nfverGNGjVavJTUyuUNqR7d/Lz87mxc5cxrCA9neuR2wjq1gWlofLrFhaGe53aXFq12qSLz4UV/6JQKgmu5G4yW6N2YGNjwwjDjQDAwcGBYQ8O4vip0yQkJpaYdktUFBENGxASEmIMqx0aSrvWrdi8bbsx7Ojx43h6eBgr/gBKpZJ+PXuSnJLK4ejoSs0TQNSBg9golQzuefum6mBvz6Du3TkVe4HElJQS07Zs3MgsrFsb/b5fvRlntkyj0fDjwkU83K8vgb6+Zssr2+bISGxsbBg5/HZroYODA8OHDOH4iRPEJySUmjaicWOTY1andhjt27Zl05YtZvEzMjL46edfeO2ll3B1dancjNwhcvdubJRKhg28XVl1sLdnSP9+nDh7loSkUsoON1ecnZys3pZGo+G7X2YzeuhQggMCyk5QSU4c3Yerm4dJxdvF1Z3mrTtx+vghNBV4A+HlrT/n8nJvj/MqMLRGurp5mMR1c/cEwM7O8tur8tgVfRylUsnATp2MYfZ2dvTv2J4zl6+QlJZWrvV5uLrgYG9PjhUtqf7e+jcc1sStiMjde/Tn4gDTc3Fwv76cPHuOhLLuY+U4F0F/z87Lz6/w/lpr+/792CiVDOnT2xjmYG/PQw88wKnz50lMTi4xbSsLbzu6tW8HwJWbN03C/Xx8quyNjCXGMnHYnWXiYI6fOFlmmdikcWMiivVKqBNWVCZuNYufkZHBT7/8wmsvvYiri2vlZkQIgwpdPW3atGH16tVERUUxefJkoqKiGD9+PMOHD+eVV16p7H00cf7SZUKCAnG5o/CLqK9vjT9fQmv+3dq4YycA/bp3r5L13y2P+uFkZGSATmcSnnrmDLY1auBaS18Z82ig/zulnT1nEi8/OYXcxEQ861fuW41z52MJDQnG5Y4+m00a6SvA52IvWEyn1WqJvXiJRha6zzRp1IjrN2+Sk5sL6PuYOlrom+vo6AjAmXMxd5UHS2KvXiXY3x9nJ9OHyUZ16wJw4erVcq0vJSMDAHcLFeBlGzeRlZPD00OHVmxny+lsTAyhtWrh4mK6L00NN+eY8+ZjSEB/zM7HXqCxhVf7TSMiuH7jhtlEAT/9MhsfH29GjhheSXtfspgLF6kVHGR2LkY00PfDP3/pYqVt66//VpKVnc1zj46utHVa4+b1ywTVqm1WMaoVFo5KVcCtJPOHS0tysrPIyszg+pULLFkwE4B6DW930QsOq4u9gyMbV/9N7LmTZKSlcPH8adb+u5CQsHDqNSq9f7c1Lty4QbBvTZxrOJqENwgNBeDijZuWkpnIzs0jOzuby3FxTPtrCbn5+bS0MO6isLCQjOxskjMyOHz2HPPWrsPJ0YEGobXuOh+WxFy8SK2gIFyc77yPGc7Fi9Z1K7PGoeMn6Dp0ON2GjWDw02P4uwrfHJ6/fJmQwACzh5PG4eEAxF65Uq71paanA+Dh+r+tBJdYJkZYUSZeuECEhQafphGNLZeJs2fj4+3NyOFVXybeawqF4r78VUcV6vbTpk0bfvzxR5wNN1GFQsF7771H3759edLwSqyqJKel4ePpaRbu7alvqbmVWr7WIGsUFhayddduIurXIyTw3rXilYejlzept8wHduUl61ugHX18yLh4iRrePibhd8Z19PGp1P26lZKCj7e3WXhR2K0SWoIyMjNRqVQW09Yslta5Vi3CatXiwOEjxCUkEOjvb4x39PgJAJJKaW2qqJT0dLwtDEr1NvTfTE5LL9f6Fq9Zi41SSQ9DS1fx7Sz4byWvPv6o2YNGVUlOTqamhfOgKCyphFbJjIyiY1Z62tqGciMmNpZ//v2Xn2fM0PeLr2LJqan4eHmZhReF3Uqp2Fs3S9uZ+9dfvPH8WLMHjaqWmZFOnXrm456KWuQz0lMJCAotcz2T3nsejUb/lsDJ2ZWho56jQePmxuUuLm48+fwE/vnzF2b/8JkxvEHjFjz94tuVcjxTMzPxcnMzC/c2hBU9MJdm/LTp3DAMeK3h4MDj/frSv6N5d6SYa9d5Y9p0479DfH2Z9MJY3Kro+CWnpuFdyrmYXME3wHcKrx1Gi4gIQoODyMjMYu3WrUyb8yvJKSmMe+7ZStlGcclp6Xh7WLo/68OSy3l/XrRyFTZKJT07lj3RQFXSl4kW7kXGcq30+1hZ5alpmfgfP8+Yfk/KRFF9VajyP3eu5b7oLVu25MiRI3e1Q2UpUBVY7L/tYK8PKygoqPRtHjpxgtT0dJ4x9BO+H9k42KPVas3CtSqVYbmDMR6AVq2yGNe2km92BQUF2Fs8Xvr9KFBZPl5Fx9FSWntD2nxDnOEPPsg/K1fxzsef8s7rr+Ht5cXmbdvZtmuXyboqU4FKjb2t+eVjPA9V5n/fkmzdu491UTt47MFBhBR7eAGYvWQpgb6+PNijx13tb3nk5xdgb1/y372kv2d+Qb4hnoW0DuZpp3z7LV06daLzPbqxl1R2lJWv8vpp7h8E+QcwtH//SllfeahVKmxtzfNoa+iGo7Zw3Vvy/OsfolarSYq/wZEDO1GpzLuMuLi4ERRSm849BuAfGMLN61eI2rySJQtm8fSLb99dRoACtRo7C9eYvZ0+TGVFF6YJjz/K6cxsamRmsOXAQQrUarQ6ndkr71B/f75+9WXyVSpOX77MsZjz5BVYfw2XV0nlYtG1k19J5+K0O8YePdS3D69//AmL/1vJI4MH41ezcht7ClSqUvNVnnJx867drIncxuNDBhNyD7vOWZJfUIC9ha5st8sOy12q8g1drSyndTCkLV4mfkeXTh3pbMWsakLcjQp/5OvPP/9k9uzZXL58mX379hEaGsr06dOpXbs2Q4YMKTVtQUGB2Y02Jy+vxFlOirO3s0elUqO5Y0rKXMNFZmdnZ7asOE2hvoKs1eq7xxRqtaXGB9iwfYe+9aFTxzLjmu9wBfu+FhWgNrZWraNQpdK/6r8jrtJQmS8sLAR7e/1/i8Jzck3jOjpSqFJZtT2NRmNNLnCwt6dApTKLn5un37adrZ3FddnY6E/Noptg8b97Ud9VWxsbNBoNdcJCmfzRh3w17Qeeflk/eMrby4u3Xn2FKT9Mx9HBwer9BdBYeIi6k72dHQVqjVncXMP+2trZlbmeQq2Wy5cvM/f3ubRt2pRnHx5hkubMhQts2r2H799/Dy36V8haXdF5q7NqP4tTW3vMHBwoKFCZxc/J1fd/trW1s7guG0NFLT/fcMyKxSmascLG1ha1RsOmLVuIPn6C5X//ZVxX0cOrulBj9b4CVl+TDvb2qFQqs/h5Vpcd+mWFhv3UaAvN4p86d471kduY+dVktDod2sJCY/zCwrLLmuJ0upKPr0ajJjcn2yTMxdUNO3s7NGqVWVq14SHbztbO4nqLwor+W7e+vjtDw4gWNG7ehu8mTcDe3sE4uDflViI/T/uUR595jWat9BWViOZt8PT2YemCWZw5eYRGTUqesrLwju6Jltjb6c+zO+PmqfSVfls7uzLX0yAsFE2BhggHW7q3bskLk6eiQ8fzQ03vUY6ODjQ3dP9q37QJ2w8f4dNff2fmu29Rpxwz45TnXCyohHNRazy3zM/FkowaPJj9R45y6Hg0/XtaN8bL2rLGwd6OArXKLH6eleVi0bKjp8/w1c+/0K55c54bPaqM7evQUf7yEMpZJqoKzMtEQ7lma1d6mZhXkG8sD4v+a14mbiX6xAmW/7XYvEzUlK9MBKjcKS4qiUJm+7lfVKjy/8svv/DJJ58wfvx4Jk+ebKxQenh4MH369DIr/1OmTOHzzz83CRs1ahSPPvpo2Tvs6Mj1xET2xJr2z42NjQXgVn6B2TJLrhleqx6+fBWvjJKnClOr1Wzft4+64eGcvZUCt0oeyGmJw1vmM0lYw97QfcS2fx8cIkqeHq1IQWEhjo6OOIx72STctZa+z2rhoP44dOuMxjCvsNu4V9Aa+lMWcQoLJS0tzap9jjx42IpcgNLOjqs3bprFLzpecalpFtel1WqxtbXlZMx5whtHsOPIMeOywydPAXD6yjUuJuhf6SucnHnv/feJj49Hq9USFBTEJcOMLHmFWqv311p2Tk7cTE7mULzpgOXYi/oxJ2k6zJbdKS4ujvnz5+Pr58fgRx7haJLpq+NfFi4iLCyMJB1sOn0WgFNx8QDsv3yFq/kFeFroAleiMvaniNLGhivXrrHFMM6lSNExu5mYaLYMbh+zE6dPU7d+fbbv2WtcdvCo/vidPBdD7JWrTP3ue5o0acL+I0fZf+QoAKcNYzNWrd+Ai4sL7oapXCuLjb0D1+IT2HnqjMV8JWbnmC2z5KphYPDBmFi87igPfvnlF8LCwriekcn1nbsBOHlev/4d0cc5n5hUvmNWgssXLzJnzhyTsPfffx9XFxcyUuLQZpqOfcpI1O+Di22u2bLidFlXubM67eUAQYGBHN23lU6t9WXRwahNaNQqGoZ5m6yvUW39/P6Xz+ynQS2PErdzoqwMAvYursSlZ3Ai37SFPzZZX3Zn1XA2W1aS0wUaUNoRWrcumw8doX3/gaXGd2vQCB3wz8EjDBhQjkH2Z86VHQf9m9jrCQnsuiN+0bmYlJNrtsySq4buJgdjL+KVYl2XmsRM/f3uWOxFnP0qt0Xd1rEGN5Jusf+K6YxxRflKUWvMlt0pLi6OOXPm4Ovnx0MPP8zh66WP7chVqVHkF5S5XousTKMvE6+zpdiEGlC8TEwyWwa3y8Tok6fYvncfgPG/B48ZysSY88RevcbU7w1l4tFj7DeUl6djDGXiho3lLhPLqoeJ6q1Clf+ffvqJ3377jaFDhzJ16lRjeJs2bXj77bJf906cOJEJEyaYhGVdumBVy/+xxo1YtmYtLYJMBxVdOB4NwODOHfErpd+6plDLgUuXqWXoW9mmdigBpcygsnX3HgoKChg1oB+d69Utc//utO2l18udBkDVoD50745m4xYKNm4qM36ahxc127elYOZsKPZWxe3tCWgaNiR18tdo1WpuhYXBwj9wOXKMxJWrjfEcvb2pMWQIFxf/TcHCRWVub+DSP63Kx8kjh/nrn+W0j2hk0v/56nl9oTZyYH/8S/j7L6xblwzDQ1r31i2xNfSBXLFsKUGBAQzq1qXUbc84cRyAp0YMI7TY7DNlybx+vcw4R+qF88/GTTT2cDOZQSrm0EEABrRohq+F8QpFbiYmMnXePJydnZn+3jvGsQLFfZ+VRWJyssk1VmT+/Pk4Ozmxdk7JU6XeyaN+6R9GKnLq+HEWL1lCx9atcXG5fcyuXdY/TI0aPgx/Cx8UAlhYrx4ZhofKnp07YWto+fp3+XKCg4J4yDBL17vvvkt0dDTRFmZimjFjBvXr1WPpIuvOsYIU68Z0HG/WlCX/raR1nTCTsuPSaf3D5LCe3fGrWfLHqTSFhew9G0Oorz5Ouwb1zD6sNC0nh4SkpBKPmYuzM1v/WWrV/u6+VvJMM0H1a/LCG6bXjXtQQ4JC63H5wllwCTUZ9Hs9YRN29g741WlrnPmrOJ1Oiy7rKgrXULOpPgHUWgUatQalW20AclSGQXIutVDa3x5sr0PfD19n52qMa0kT1Y0SlxVpFhLMfxcvUldXaDLo90y8vjLYq3YtajqW3r5ZqNNx2tDyb6NQsFJbiCo/n2ZlpMvRadDpdDirVWXGLc69jnX3iOimTVi6chWtwmqZnIsXT+kfi4Z271rmubgvJpZQQ7eddvXqElDCNXmn3YZ58Vs3qEfXxmU3LAGoc3PLjgQcbdiAf9atp6mvj0m+Yo/quwMPatem1Pvz1bh4vpg7F28PD37+7BM8LIz5uJOTvR1ujg50CCv/4GzXWmWPfwE4dTyaxUuW0rF1K5P72DXDJAGjhg0ttUzMzEinZ6eObN+7j56dOmJra3u7TDR8h+bdd9PLLhP/XFjOHAphWYUq/5cvX6ZlS/NXug4ODmYj1y1xcHDA4Y7ZWbRWTsHZu0sX/l61mjVbI43z/KvUatZv205E/foEGS7AhFu3yC8oIKyEL+gplfqbl41SaaxUWrJ1124cHRx4oFOnUuOVqBx9HE0U9Wct1Jitw9HbGzsXZ7Jv3DRO13lj+3ZCuncluEN74zz/9u7uhPToTtzuPWgNxyXz/Hkyr1yhzoODuLT8X3SG14rhDw1Cp9VyfWukVftsa6EvriV9H3iAP5cuY9W69cZ5/lUqFWs2bqRp48YEB+o/OhSfkEh+QT61Q28Xxn169mDG7Dlcv34d23ZtsLW15cq1axw+Fs1To0eVug9Xr19nxeo1dOvUibq1S66EWMybFVPI9WzfjqXrN7A+Kso4z79KrWbTzl00rluXQMONOzE5mXyVitDA2x9XSklP591vvkOpVDB27Fi8PTwsbvPd554l/44xEUdPn2HF5i28+tij1AoMtGpfi1jqP21J/z59WLh4MStXrzbO869SqVi9dh3NmjQhxNANIj4+gbz8fOoUmwe9X+9e/PDTTP0xs7XFztaWy1eucOjIEZ554gnjPsz47juz7W7YvImNm7fw1aTP8ff1s3p/C628Lvt068riFf+yeuMm4zz/KpWKdVu20qRhA4IM4y0SkpLIzy8grJblB8aiD63ZKm3MyoSPxr9u1l/7UPRxlq5azfjnxxIWEmJ1OWKpEl7E2cWNBo1bmIU3a9WJE0f3cyr6kHGe/+zsTE4c3U9EszbYFauoJ9/ST0/oU1Ofb01hIercXJxdTCtc1y7HknDzGi3bdTXuU02/IHQ6HceP7KNdp9vT3UYf3gNAUEjdUvffxooZNrq3bM6KbdvZtG+fcZ5/lVrD5gMHaRgWir+hAScpNY18lYpaxb62nJaVhWexGWJsFApupaYSff489WuFGLefnZuLo4OD2THZtO8AAA2KxbWGtce2T9cu/PXvf6zetNk4z79KpWb91m00aXDHuVhQQFgJjRdFD3g2NubnYkZWFi5OTiYDRzUaDYuWr8DO1pZ2LVpYvb86K8uZXh07smTNWtZFbjPO869Sq9kQtYOIevUIMjT0JNxKJl9VQFixLlUpaem8N2UKCoWC7z+ciI/VX7RVoEBRrrKwSPnKxL/0ZeKTxcrEdetNy8QEQ5kYFmZM269XL36YOZMYw1sCW1tbbty4YSgTHy9WJn5rtt0NmzazccsWvvr8c/z9fK3e3/uVQlk9Z9a5H1XoTKpduzbR0dGEhpo+NW/cuJFGjcyntKpMTRrUp1fnTvy88E/S0tP1XxDctp34pCQ+Kva58s9/mM7RU6c5sHqlMSw7J4cla9ZyLSWVDMMMEP+sW4+rszOuzs6MfHCQybYysrLYd/QoPTt2xKmC3wcor/CHh2Pn6koNQ+tIYJfO1DAUmBeWLUedk0PTV16k9qCBrB32MLnx+hv4jaidpKam0nbiu7iFBFOQkUH48GEobJSc/s10gPbxn36my7dT6TZjGte3RuJWpw7hDw/n0uq1ZF0p3xSVZWkW0Zi+PXvy45xfSU1PJyQoiDUbNxIXn8Bn779njPfRl5M5HB3N8d23u5OMGj6MFavXMG/ePJTqAuzt7flzyTK8PD15arTpFIrDnniSPj174u/nS1xcPMtWrsLdzY2P3qmaD8BEhIfTs3075iz9h7SMTIL9/diwczfxycm89/xYY7wvZ88h+uw5di2+3Yr99tffEpeUxOhBA7ly5Qpb0lNRGipKXu5utG3aFIB2zZqabTfbME6jRaOGNKxT8hdO70azpk3o17s3M2bOJDUtlVohIaxau5a4uDgmffKxMd7ETz/h8JGjnDpyu0vV6JEjWf7fSubNm4eNToeDgz0LFi3G28uLp598whivV88eZts9Z3gb1LVTZzwtzKR0t5o0bEjvrl2ZOW8+qRkZhAQGsHZLJHGJiXxc7INRn3z7HUdPnOTwpg3GsOycHP76byVXk26RYZg9atnq1bi4uODq7MwoQ0WnQ7FvTRTJytY/eLdq1pTGFqaZrEzNW3dgV2R9li6YSWL8dZxd3Ni7YyNarZZ+D40yiVs0S89HX80G9JWZyZ+9RIs2nfEPCMHewZH4m1c5tHc7jjWc6DPw9oQHbTv2JGrzKpYvnkPc9cv4BYRw8/plDuzein9gCE1bms5aVRGNwsLo1rIFc1evJT0rm8CaPmw+cIjElFTeeux2F9Gv/1zEiQsX2fLTdGPYC1O+pmX9+tQJCiTdzoGD6als2ncATaGW5wY/ZIx3PPYCs1b8S7cWzQmqWRN1YSGnLl5i9/ET1K8VQq+2be46H5boz8UuzJq/gLSMDIIDAlgXqT8XPxp/u9vlp99N4+jJkxzasM4Ylp2Tw98rV3H1VjIZyfouaMtWr8HVcC4+Ysjfzv37+ePvpTzQpTNB/v5kZGWxKSqKi1eu8sozT1uc+epuRdSvxwMdO/DLX3+TlplJkL8/G6J2EH/rFhNfeckY74ufZnLszBn2Ll9mDJsweTJxiUn06NGDk+diOF1s+kwvdw/aFfsa/LEzZ4g+o+8KmZ6ZSX5BPvOWrwCgReNGtGxsPuPV3WjWpKhMnEVqahq1QoJZtXadvkz8+CNjvImffMrho0c5dfiQMWz0yIdZvnIlr094iw4dO5IUd5NFfy/Rl4lPFCsTLUzqcC5G/zfo2rkTnlY/DAlRtgpV/idMmMCrr75Kfn4+Op2OgwcP8vfffzNlyhR+//33yt5HM5++OR7/xX+xIWoHWdnZhIeFMe3jj2hZyifRATKzs/ntji9t/mWY8zjAt6ZZ5T9yz140Gg39unet3AyUosHjj+JcbGaD4J49CO7ZA4CrGzehLuHNik6rZf/+/TTU6qj3yMPYODiQevYcB7+YTNY1024s8Xv2suf9D4l4bgwtJ4ynID2dcwv+5PTceVWSpy8/+oBZv/uxdtMmMrOyqVe3Dj9+8zWtS/kkOoCzkxO/Tv+B9774kt//XIxOq6VNy5a88/preN1ROaxfN5xV69aTkpaGh7s7fR/oycvPPWucYq4qfPjSi/gtX8GmPXvIzsmlbkgIX789gRalfMIe4MI1fT/TJevMP4rXolFDY+X/f+mrSZ/z0y8BrFm3nsysLOrXC2fW9Om0adWq1HTOzs789vPPvPPhh/w+bx5anY62rVvz3lsT8KrCY2Gtz999m4AFC1kfGUlWVjbhtWszfdLntCrjb56Zlc2vf5p2h1u04l8AAvx8jZX//zWl0oax4z5kzYqF7Nq2Ho1aRUhYOKOffg1f/9IHrtrZ2dG+cy8unD/NiSP7UatVuHl40qJtF/oMfBgvn9vdjJxdXHnzg2/YuGYJp08cZu/OzTg7u9Ku0wMMGPa4xRmHKuK9Jx9nvpcnWw8dJis3lzqBgXzx0vM0Cy+9e81DXTpz4PQZDp09R25+Pp6urrRu2IDH+vWhdrG3cLUDA2lRrx57T54iNSMTHRDo480T/fsystcDVdrS+tnbb+G/8E/WR27T38dq1+aHzz+lVdMmpabLzM7m10WLTcIW//sfAAG+vsbKf3hYGLVrhbBx23bSMjKws7Ojfp06TPngfXp3rbp72sfjXsN/yVI27thJVk4OdUNr8e3E98qskMcaGp6ioqKIiooyWdaycWOTyv+Rk6f445/lJnF+W6LvTvfsyIcrvfIP8NXnn/FTgD9r1hvKxPBwZk3/waoycd6c2Uz9/nu2bdtGVFQUbVu34r0J90eZKKonhU5nxbQLFixevJjPPvuMixf1fd6CgoL47LPPeO655yq0I+kxZyuUrrw0hYXsib1I53p1K9aNp5w2P/18lW8DAHt7HN56g4LvZ1S8q1E5DF6zosq3AfrX1JEHD9PL0O3nXsgs5we6Kkqj1XIoPpG2AX4VemVdXp4Nq/atXBG1RsOWHTvp073bPXlNnZ9c8tdQK5OmsJCdp87QrUnje1J27LhiXT/ryqDTadFmXkbpVrvU7jqVpZmq7HE1laFQp+NEvppmjnbl6r5TUR7hlfuRxJJoCgvZdeYcXRs3vCfnYkmNTpVNo9Wy/8o1OoTVuidloltY+bqE3g21RsOWnbvo063rPSkX7VzLHi9xr0V/b9616X7Q4q13/te7cM9V6AzMy8tj2LBhPP744+Tm5nLq1Cn27NlDcAn964UQQgghhBD/exV6tB4yZAgLF+pHnatUKgYPHsy0adMYOnQov/xi/ewjQgghhBBCiHunQpX/o0eP0tXQZ3D58uX4+flx9epVFi5cyI8//lipOyiEEEIIIf4/p1Tcn79qqEKV/9zcXFwN06ht3ryZ4cOHo1Qq6dChA1fvUX9pIYQQQgghRPlUqPIfHh7OypUruX79Ops2baJvX/2He5KSknCz4qMcQgghhBBCiHuvQpX/Tz75hLfffpuwsDDat29Px476j8ls3rzZ4se/hBBCCCFE9aVQKO/LX3VUodl+Hn74Ybp06UJ8fDzNmzc3hvfq1Ythw4ZV2s4JIYQQQgghKk+FJ5v19/fH3/AJ8iLt2t39Vx2FEEIIIYQQVePefDVJCCGEEEJUW4pqOrPO/ah6dnYSQgghhBCiGpLKvxBCCCGEENWEdPsRQgghhBBVq5rOrHM/kiMhhBBCCCFENSGVfyGEEEIIIaoJ6fYjhBBCCCGqlMz2c/+Qln8hhBBCCCGqCan8CyGEEEIIUU1Itx8hhBBCCFG1ZLaf+4YcCSGEEEIIIawwa9YswsLCcHR0pH379hw8eLDEuPPnz0ehUJj8HB0dTeLodDo++eQTAgICqFGjBr179yY2NrZK8yCVfyGEEEIIIcqwdOlSJkyYwKeffsrRo0dp3rw5/fr1IykpqcQ0bm5uxMfHG39Xr141Wf7NN9/w448/Mnv2bA4cOICzszP9+vUjPz+/yvIhlX8hhBBCCFGlFErFffkrj2nTpvH8888zZswYGjduzOzZs3FycuKPP/4oOd8KBf7+/safn5+fcZlOp2P69Ol89NFHDBkyhGbNmrFw4ULi4uJYuXJlRf/UZZLKvxBCCCGEEKVQqVQcOXKE3r17G8OUSiW9e/dm3759JabLzs4mNDSUkJAQhgwZwunTp43LLl++TEJCgsk63d3dad++fanrvFv3zYBfnU53T7ej0+nuyTYHr1lR5dsA0Gg0RB48zMClf2JrW/WHdfVDI6p8GwDY2+Pw1husH/UkqFT3ZJOt33njnmynEMDWnuzr17G5B9u7V9eYRqsFIC3mHLbKqm9f0BUWVvk24Ha+chIT70m+bG08qnwbRXQ6HSrA1kaB4h4MyitIz6jybYDhGnOoQUFG5j25xuL27L4HWzHky82T+P377km+7Fxc7sFWDPlS2pFx6eI9ydeVdWvvwVb0tEolNGjM6d/moDSUJVWp9fsfVvk2/q8oKCigoKDAJMzBwQEHBweTsOTkZAoLC01a7gH8/Pw4d+6cxXU3aNCAP/74g2bNmpGRkcF3331Hp06dOH36NMHBwSQkJBjXcec6i5ZVBWn5F0IIIYQQVUqhUN6XvylTpuDu7m7ymzJlSqXkuWPHjjz11FO0aNGC7t278++//1KzZk3mzJlTKeuvqPum5V8IIYQQQoh7aeLEiUyYMMEk7M5WfwAfHx9sbGxITEw0CU9MTMTf39+qbdnZ2dGyZUsuXLgAYEyXmJhIQECAyTpbtGhRnmyUi7T8CyGEEEKIqqVU3Jc/BwcH3NzcTH6WKv/29va0bt2ayMhIY5hWqyUyMpKOHTta9ScoLCzk5MmTxop+7dq18ff3N1lnZmYmBw4csHqdFSEt/0IIIYQQQpRhwoQJPP3007Rp04Z27doxffp0cnJyGDNmDABPPfUUQUFBxm5DkyZNokOHDoSHh5Oens63337L1atXGTt2LKCfCWj8+PF8+eWX1KtXj9q1a/Pxxx8TGBjI0KFDqywfUvkXQgghhBCiDKNGjeLWrVt88sknJCQk0KJFCzZu3GgcsHvt2jWUxSaESEtL4/nnnychIQFPT09at27N3r17ady4sTHOu+++S05ODi+88ALp6el06dKFjRs3mn0MrDJJ5V8IIYQQQlQpxT2YJe1eeO2113jttdcsLouKijL59w8//MAPP/xQ6voUCgWTJk1i0qRJlbWLZfq/cSSEEEIIIYQQZZLKvxBCCCGEENWEdPsRQgghhBBVS6H4X++BMJCWfyGEEEIIIaoJqfwLIYQQQghRTUi3HyGEEEIIUaX+r8z283+BHAkhhBBCCCGqCan8CyGEEEIIUU1Itx8hhBBCCFGlFDLbz31DWv6FEEIIIYSoJqTyL4QQQgghRDVhdbcfLy8vzp8/j4+PD56enqW+vklNTa2UnRNCCCGEEP8HyGw/9w2rK/8//PADrq6uAEyfPr2q9scqKrWaX//6m43bo8jKyaFuaCgvPvEY7Vu0KDXd1Rs3WbFhAwdOnuKjuDhUajX//jqHQD9fs7i5eXnMWfwX2/buIz0jg0B/Px558EFGDOhfRbkClUrFrN/nsm7TZjKzsqhXty6vvTCWjm3blpk26dYtFi1axKTPP0en09G2VUveGTeO4KBAk3gpqalMnz2HXXv3kZubS+2wUJ574gn6PtCzqrKFbY0aNHj8UbwiIvBq3AgHdzcOfjGZK+s2WJfe1pYmb08gqGtnbB0dST1zlugfZ5Iec94sbmDXzkSMfRa3sDDy09K5snYdZ+YtQFdYWNnZQq3R8OfWSLYdiyY7L48wf3+e6tObVvXCy7Wej/+YR/SFizzYoT2vDH7IbPmmw4f5d9ceEtLSqOnuzuCOHRjcqWNlZcMilVrN3BX/snn3Hv01ViuEsQ8/TNumTUpNt+PQISL3HeDEhQvkZGfj6+VFx5YteHroEFydnU3iPjJ+AgnJyWbrGPxAT95+dkyl5qeISq3mj3//Y/Peffp8hYTw3IjhtG0SUWq6nYcPE7n/ICcuXrydrxbNeWrwYFydnczi5+blsWD1GqIOHiIlPR13FxciwsP54IWxODo4VEnejNvOzWH18gWcOHoAtaqAWrXrMfSRZwgJrVtm2n07t3D4wC4S42+Sl5eDu4cX4fWb0H/wKLx9bpeTB/Zs4695P5W4nifHjqdNh+53nRe1RsOiyG1sP37CcI358WSvXrQMLzsvxX0yfwHHL15iUPt2vPzgIJNl6w8e5Pily5y/cZNbGRn0atmCN4cPu+t9L4tao+GvHbvYfvIUOfn5hPrW5Ike3WlRp3a51vPJ4r85fvkKA9u04sX+/UyWDflyisU0T/bswcOdq6YMUWs0/LllK9uOGsrFAH+e6tunzHJx76nTrDtwkAsJieTl5uLu7EzDWiE83rsXYf5+JnHzCgpYuHkru0+eIiMnhwAvLwZ37sigDu2rJE8AChsbArt2wyuiKbaOjuTdSuLmzh1kXblcarqALl0J7NKtWMgQALQaDce++9okrq2TM0E9euJeNxwbe3vyU1KI37eH9JhzlZ0dUc1ZXfl/+umnLf7//8IXM35k2959jH7oQUICA1kXuY0Jk75k1peTaNG4cYnpTsbEsHz9Bnx9fQkNDiL28hWL8QoLC3njs0mcu3CBEQMHEBIYyIFjx/h29hyysrN5ZuTDVZKvjydPYWtUFI8/MpJawcGs3rCB195+l99+nEGr5s1KTJebm8uLb75Fano6zz7xOPb29ixauoxnx41j2bw/8HB3ByA7J4dnXnmVlNQ0Hhv5MD5eXmzevp13PvkUjUbDwL59qiRf9h7uRIx9lpz4BDIuXMC3dSvrEysUdOjQAbcaTsQs/gtVegZ1Rwyj588/seWZ58i+fsMY1b9jBzp/PYWko8c4Nm067nXr0GjM0zh4eXL0m+8rPV/Tlq9g96nTDO3ciUBvb7YePcqnCxYydeyzRISFWbWOkydPcu7a9RKXrz9wkJmrVtM5IoJhXTpx6spVZq9dR4Fazcju3UpMd7emzPmNqEOHGNmvL8H+/mzYtYt3v/ueGR+8T7MGDUpM993ceXh7etCyZUtahNbiyo2b/LdlK/uPH2ful1/gYG9vEr9eaC1GDRhgEhYc4F8leQKY8ttcdhw+zMi+fQjy82Pj7t28N+0Hpr//Ls3q1y8x3XfzFuDloc9X85Bgrt68yX9bI9l//AS/T/rMJF/Zubm8MWUqt1LTeLBHd4L8fMnIyuJETCxqjaZKK/9arZZfZ3zJzRtXeKDfUFxcXNkdtZGfvv2Ytz/+Dl+/wFLT37h+BW8fP5o0b4eTszMpyUns27mF0ycO895nP+Du4QVA3fqNeeK5N8zSR21ZQ9yNK9RvVHJ5VR4//Psfe06fYUjHDvpr7Fg0n/25iK+efYaI0FCr1nHy5EliipUTd1q+aw95BQXUDw4iNSurUvbbGjNWr2XvuRgeateWQC9PIk+cZNKSZXz5xGM0rhVi1Tr2n4sh5sbNUuO0qB1Gz2ZNTcLq3FGZrkzT/lnB7pOnGNrFUC4eOcan8xYw9YXnSi0XryQk4lKjBl26dCHcyZGMrCw2Hz7Km7N+4fuXX6ROYAAAhVotH/0xn9gbN3mwYweCfLw5cj6WWStXk52Xx6iePaokX2GDHsKzQUMSDx+kIDUN76bNqDdyFDF/LyLnRsnnlzF/mzeS4l0Tz/ibKHQ6dFqtyXKlvT0NnngKO2dnkg4fQp2TjWfDRtQdNoJLq1eSduZ0leRLVE93NdtPUlISSUlJaO84iZs1q5yC35LT58+zZdduxj3zNI8PGwrAgJ49eHzcG8yav5DfvplaYtqu7dqy8c8FRN+M58qpkyVW/qP27+fkuXN8OO5VHurdG4ARA/ozceo3zFv2D4P79MbLw6NS83XyzBk2RkYy4ZWXefqxRwF4qH8/Rjz1DNN/+YWFs38pMe3S/1Zy7cYNxo0bx9MjhmFra0uXDu0Z8dQzLFyylNdffAGA5atWc+3GTX6d8QPtW7cG4JFhQ3nixZf4ftYs+vTsgZ2dXaXmCyA/OYXVAweTn5qKZ8MG9Jk/1+q0wT264e3tzd6PP+PGlq0AXI/cxoBlfxMx9jkOfPq5MW7zca+SfuEiO9+YYGzpV+fk0ujpJ4ld+g9ZV69VWp5irt9gx4mTPDegPyO6dgGgV8sWvDzjJ/7YuInvX3qxzHWo1GrWrl3LiG5dWbw10mx5gVrNwi1badugAR8+rj8n+rdti06n4+/tUfRv1xbXGjUqLU9Fzly8SOT+/bz86GgeHTQQgH5dOvPM+x/wy5Kl/PLpJyWmnfT6OJo2bMDhhCTa+Ptiq1TSoHYYX835lS179vJgzx4m8X08PenbpXOl58GSsxcvse3AAV4e9QijB+ofOPp17syYDz9i9tJl/PzxRyWm/fy1V2naoD5HbqXQuqY3tkol9cPCmPLb72zZu48He9xu5f71n+UkJKfw+6TPCKhZ0xj+2CALK65kx4/s4/LFc4x56R1atOkEQMu2nfnyw1fZsGoJT78wodT0Ix9/HoXCxiSsWYv2fPfl2xzcu50+A0cA4FPTH5+apg9pKlUB/yz+lXoNm+Lm7nnXeYm5cYOdJ0/xbL++DDecIw+0aM6rM39m3qYtfPfC2DLXUXSNDe/Smb+2bbcYZ+pzY6jp7o5CoeDhLybf9X5b4/zNOHadOcszvR5gWEd9a3XPZk0ZN+c35m/bzjfPPFXmOtRqNfO3RDK8Uwf+2rGrxHiB3l70KOONXWWJuX6dHcdP8NzA/ozo1hWAXq1a8vL0H/lj/Sa+f6XkcvGx3g9QCJxV2tFIq8YG6Ne2LU9N+Zp1Bw4wznC/33vqNGevXmP8iGH0bdsGgEEd2jN50V/8Hbmdfm3b4OHiUqn5cgoIxKtxBDe2bSXx4AEAUk6doPHYFwju0YuYRQvKXEdazDlu1CpAG3MG5R11JoCaLVrh6OXF+b8XkXX1KgC3jh6h4VNjCHmgN+nnzpo9MPz/Rmb7uX9UqAPWkSNHaNKkCQEBATRr1owWLVoYfy1btqzsfTSxbe8+bJRKhvbrawxzsLfnoT69ORkTQ+It824ERdxdXXGyorIUffosAH26djUJ79O1CwUqFTsPHqzg3pdsa9QObGxsGDFksDHMwcGBYQ8O4vip0yQkJpaYdktUFBENGxAScru1qHZoKO1at2JzsRve0ePH8fTwMFb8AZRKJf169iQ5JZXD0dGVmykDrVpNfgXHgYR0705+fj43dt6+uRWkp3M9chtB3bqgNDysuIWF4V6nNpdWrTbp4nNhxb8olEqCK7lb0+5Tp1AqlQww3HwA7O3s6NumNWevXedWenqZ61ixcxc6nY5hhoeHO524dInM3Fwe7NDOJPzBDu3JV6k4dC7mrvJQkh0HD2GjVDK45+2/mYO9PYN6dOd07AUSU1JKTNuycSOzsG5t9Ofblbg4i2nUGg15+QV3uddlizp8GBulkod69jCGOdjbMbBbV05fuEhSaflq1NAsrJvhDdbV+HhjWFZOLht27eahHt0JqFkTtUaDSq2utDyUJfrIXlzdPGjWqoMxzMXVnZZtOnMq+iCaCuyLl4/+ASYvN6fUeKePH6YgP4827SvnjdSe02dQKpX0b3O7vLK3s6NPq5acu36dWxkZZa7j39170Ol0DC3lAdPXw+OeV0r2njuHUqGgX6sWxjB7W1v6tGhOzI2b3MrILHMdUVFRaHU6hlrR1aVArUal0dzNLltl98nT+nKx3e2uqvpysQ1nr12zqlwszsPFGQc7O3Ly8o1hp6/oK8bd7ngb3r15M1QaDfvPnK14Bkrg2aAhOq2WW9HHjGG6wkJSjh/HJTgYO0OX6LLY2pbc3uoSEoI6J8dY8S+Sdu4Mdi4uuNSy7k2XENaoUMv/s88+S/369Zk7dy5+fn73tOA8f+kyIYGBODuZ9rNtXK+efvnly/jV9Lmrbag1amyUSrMLteh1fcyFi9DXUsqKO3c+ltCQYFzu6BfdpJG+MnUu9gL+fuavarVaLbEXLzHYwliEJo0ase/gIXJyc3F2ckKlVlvscuDo6AjAmXMxVo0vuJc86oeTkZEBOp1JeOqZM9QdNgTXWiFkXLyERwP98U87a9o3Mj85hdzERDzr16vU/boYH0+QtzdOhr9dkQbBwQBcik+gZilvh5LS01m+cxcPjxyJQwlvWy7G6SuV9YKCTMLDAwNRKhRcjI/ngZYtKp6JEsRevUqwvz/OTqYPyo3q1AHgwtVr+Hl7W72+FEMlzcPCDfLombP0fXYshVot/j4+jOzfj5F39FuuLMZ81bCcr9hr1/EtR75SDflyL9bKeDL2PCq1miA/Pz75aRa7jx5Fq9MRUbcu4596knqhtSohJyW7ce0ywbXqoLxjYF2t2vXYu3MzSYlxBAaXXYnIyc5Eq9WSlprMpjXLAMrsynP4wA7s7O1p1rpy+pJfKuEaq1/8GjN0abQkKT2dFbt2l3qN/a9cSkgk0NsLpzvK43qB+m5ZlxMTqenuVmL6WxkZREVFMe7BgWXmbdvxk2w4fBQdEOzjzSNdOtO9jDEuFXUxLo4gHwvlYojhmMXFl1ouAuTl5ZGhLiAjO4tVu/eSW1BAi2JjPNQaDUqlEjsb0zdURX+H2Js36U/l3sec/PzIT01Bq1KZhOfExxmW+5NRRpexZi++TEt7Bwr79CH9fAw3tkWiKfZArbCxQWvhAU2r1oc5+fuXOb5ACGtVqPJ/6dIlVqxYQXh4+QY2VoaUtFR8vMxfKft46sOSK2GmoVpBgRRqtZyKiTEZQxB95gwASVUwm9GtlBR8LFQ8isJuWRgYCZCRmYlKpbKYtmaxtM61ahFWqxYHDh8hLiGBQP/br+yPHj8BQFIJ2/hfcvTyJvVWkll4XrK+ldbRx4eMi5eo4e1jEn5nXEefu3sgvFNaZhZeFiqzRWEpmaW33P2+fgN1AwJo0aIFaFQW46RmZaFUKs1eYdvZ2uLq5ERqGduoqJT0dLwt3KC9PfVhyWlp5VrfX2vWYaNU0r2d6Q25TkgIzRrUJyTAn8zsbDbs3M1PixaTnJ7Oy6NHVXT3S5SanoG3h3llsSgsJb2c+Vq3Hhulkh7F3v7cSNC/ofvtn+UE+voy8YWx5OTmsWDVKt78+hsWfPWlxb9tZcnMSKNuffNxT0XdcDLSU62q/H/y9lg0Gv1bAmcXV0Y8OpaGES1KjJ+TncXZU8do1qI9jo6V0xUtNSsbT1fz7htehrDUrNLP/7kbN1EnwF9/jRXkVco+VZa07Gy8LHRN8XQpylt2qennb91GYGAgXSJKHuMG0DA4iC6NG+Hr4UFqVhYbDh9l2srV5BYUMKA8Y6+slJZVRrloxZiKmTNncuvWLQBq2Nsz+oEe9C329ieopg9arZZz16+bjCE4deWKfhtWvDUpLzsXF9TZ5sekKMyulG5Ghfn5JB05RFZcHCl+AdRSKvBr2QrnwEDOzv/D+EBRkJqKW1ht7N3cUBUr210Mb/TtrXy7cD9TyGw/940KVf579erF8ePH/yeV/wKVymK/dHt7O+Pyu9WvWzf+WLqMyT/N5O0XXyAkIJCD0dGs2LBRv42Cu9/GnQoKCrC3kK+igYQFKsvdIgoK9OGW0tob0uYb4gx/8EH+WbmKdz7+lHdefw1vLy82b9vOtl27TNZ1P7FxsDcbUwIYC0wbQ8uZjYM+r1q1+bHRqlTY3vFG5W4VaNTYWXiFa2enDyvtFfvxi5fYc/oM3738IqXNQaRSq81at4rY29pSoK6a1/gFKrUxHybbNJxjBRb+xiXZsncv63bs4NEHBxHib9pHfOpbb5r8e2C3brzzzXcs27CREX364OvtVYG9L1mBSmXxmBnzpbK+S8yWfftYt3MXjw4cQHCxfOUVXUMKmPbeO8YW0HqhobzyxZf8tzWSsQ+PuItclE6tUmFra14WFJWZaiuP3UvjP0atVpEYf4PD+3dSUJBfavzjR/ZRqNHQukPlDULXn/8WjpfhGKpKOf9PXLrM3jNn+faF57kfe0mr1BqL17a9rT5MpSn5XDxx5Sr7z57jtXHjytzO13eMHejdojlv/T6PP7fv4IFmTSv9jUiBWmO5XDQes7KvsUceeQTfvBySUlPZcvgIKrUGrU5n7KPco0Vz/o7czg/L/+WVIYMJ8vbmaGws6/bp++JXRfcmpa2dxRnjilrqlaV050k6fEgfV6kkXguKmDPkxt2kzuCh1GzVmsT9+wBIPh6NT8tW1Bk6nOuRW1Dn5ODVsDEe9RsY90GIylKhyv/vv//O008/zalTp2jSpIlZZXzw4MElpNQrKCgwq2jm5OWZzQRiib2dPSqVCs0dF2Juvv7mZGtra7asOI2hIqk1dCMp1BaaxXd3c2Pq++/zxYwfecMwoNTZyYnxzz3L5J9mUsPRodRtmGzPyoLIwd6eApXKLH5uXi4AdrZ2FtdlY7g5FlXwi+9XXtHfxMYGjUZDnbBQJn/0IV9N+4GnX34VAG8vL9569RWm/DAdRwcHq/cXK46VRUXnio2tVesoVKn0XRjuiKs0VOYLCwvB3l7/36LwnFzTuI6OFKpUVu+zNUfW3tYOlUZjFjffUCGxtbW1uJ7CwkJmr11HzxbNqRsczPli29PdsW07OzvUhYUW16PSaLC3s7yNkmisHCxmb2eHSq02i59rOMfsbO1KXVehYVn02XN8/dtc2jZtwrMjhlu1/RH9+nLw5EmOnDlDn86drNpfawfB2duXlC99hdjW1ta6fJ07xzdz59G2SRPGDB9mkqaoktOxeXPs7e2NyxrUqU1ATR9Oxl6w+jjodKWUYxo1uTmmLZEurm7Y2dujUavM0qrVBcY8WlqvTqc1+W94A32LcqMmLWjSvA1ffzYBBwcHuj4wwCwt6Lv8ODm70Ciiean7XcSqa8zODnWh+TWWZyijbEs4/wsLC5mzbj09mjejTnAQFyj5GrPEmjglsTadnZ0tKgvXdr5GH2Jra2c5b1otv23aQremTQgJCUGbefttlTX7rbSxoX+b1szZsJHY+AQaWTmrkLXttfZ2tpbLReMxs5yvIoVAaGgo9Q0Dfrs0a8bL06ajBZ4bpD/33F1d+eipJ5i2bDkfzZ0HgJODAy8Ofogf/lmOg7291cdBa2VLdKFGg8LW1jy+odGxsLCwzHUVLdcqlaScO0vwA71xDatNvGEAcU5KMpfWrCK0b38aPvkMAKrsbK5t20pY3/5o1Gqr91eIslSo8r9v3z727NnDhg3m87QrFApjRawkU6ZM4fPPPzcJGzVqFI8++miZ27Z1dOR6YhJ7L1wyCY+NjQUguUBltsyS66n6QvPIlWt4ZVp4xergyJtvv01CQgIqlYqAgAAyDa/ilDWcrNqGnnXxlHZ2XL1xk8iDh03Ci/IVl5pmtgz0ff5tbW05GXOe8MYR7Dhye0DS4ZOnADh95RoXE/RdZxROzrz3/vvEx8ej1WoJCgri0iX9PuYVai1uwxKHt8yn+bOGvaHLg23/PjhEmA+ivFNBYSGOjo44jHvZJNy1lr7vdOGg/jh064zG0A/YbdwraO8YVOYUFkpaWprV+2zNcDEHd3cSMjI4a2v6QBGbq+9ekOvpZbYM4NCxQ9xITmbQiBHsN5x3+w3LEtQa9mRm4+Lioq84unug1Wo5lK/CpdhrZY1GQ2ZuLjp3D4vbKFGCefcpS+ycnLiZnMLhO+LHXroCQBoKs2V3iouLY86cOfj6+TH4kVEcu1XyYNrikgxDO07HJ+Bp5f5ay87JmZspqRy5Y19iDbNApSttzJbdySRfo0YRnZpusjzT8DBeYGdvti67Gk4kZWaWuY3bSo538eJF5syZYxL2/vvv4+riTHryTVRppuVOapz+mxhOyhyzZcWp06+YhbnZQWBgAIf2bKF9S/NpXtPS0rgUe5Z27dpRmHXNqopXjEPZXYOKrrE748bm6x/W8rx8LK7n0KFD3EhJYdDDD3MwJw9y8iiaoiFRU8i+nDzjNXYnLZChtLFq/yzvtHXpHD08SczI4IKbaRfW2ER918sCP3+zZaDP283UVB4cOZLU1FSKd0BN0ik4qNGVmLciKn/9lJnnFTbYWdjG3XBwM5SLStMGwdhsfYNMrrun2TJLzhfFcbEjLDycyOjjdHrodqOiTXh93nr/fYv3Z8eavlZtA4AGpXebKhKq01HDy5u4O+L7GLqTJrh7kmjluhLq6e974Wo1Cg9Pk3XGAWe2bsXdMPtUeno6Pj4+hAGJdvZm2///jkIeXu4XFar8jxs3jieeeIKPP/4YPwuDUMsyceJEJkwwnXIu82KsVS3/xxo3YtmatTQP9DcZ9HvBMAr/oU4d8Culf7dGq+XgpSuEGMYNtA6rRYCv+Ue+jOrf7tr0r6Hbz5DuXWkXXqfMfQWo4WVd14WTRw7z1z/LaR/RyGTQ79Xz+hldRg7sj38J+7mwbl0yDOMQurduia3hdfKKZUsJCgxgUDfLs8kUmXHiOABPjRhGaIh1LUHrRz1pVbw7qRrUh+7d0WzcQsHGTWXGT/Pwomb7thTMnA3F3ha5vT0BTcOGpE7+Gq1aza2wMFj4By5HjpG4crUxnqO3NzWGDOHi4r8pWLjIqn1s8cbLZcZp4u/HqosXCc3ONBncdvKqfkBWN18falroy38sJZnCwkJ+/vlns2VHjhzhyJEjfPDEYzRv3JhsP182AYqrl2lUbG79s1evodPpaOPvS6MSxgtY4mx4QCrL4fC6LN+0mUburiaDY2MMLVT9mzctdWDs9YQEvpg7F293N358/1083EoeuHinfYYBdE2DAmnjX8p1WYy1H3A7XLcOyzdvoaGLk0m+zh3QP371axJRalcjY77c3Jjxztt4uJn3wfVt2oS//wbbgnxa1zT9G+VnZxMS4G8WXpKTmpIHs4Y28uXlN03LXu9aDQkOq8el2HPYuoeZDPq9mbgZe3sHguq1w9ZCVw+dTos6/Qp2HmEoLNygNVoFGk0h9p7m5d7J/f+h0+lo122QxeWW1E4oe87yCN+arL54kZCMNJNr7MRl/cNLFx8valroy380+VaZ19jER0fT1MLMVErAXVtIgwqOESgso3tUkcbeXqy5cIHAWwkmg36jY/UPaZ1cnfHJNB+Dcjghvsy8vTdyBO0blPzNivNx+jnpGyq0hFvYhiWl9WkvrkmAoVzMzTItF69dAaCbf01qakvu+lOIvuJf1PIP4KgqoCA/n0YW0kX4355Kd915/WQPD9StbTGuJRmGxrWyFAb44dKmHcGXL5gM+g3w1A9ur3HsMIFljGfQKpUk1GuIf+w5lFotLr17k5uUSGDMmRLT1ACCu+tnXVMc3E9gWnnGGw4pR1xR3VSo8p+SksKbb75ZoYo/6KewdLhjloNCK+cr79W5M3+vWs3arZHGef5VajXrt0cRUb8+QYZ9Srh1i/yCAsJKqPAoDTMU2ShtjJXl0qRlZPDXylWEh4XRoWVLs9k0SlLa1F7F9X3gAf5cuoxV69Yb5/lXqVSs2biRpo0bE2yYBSI+IZH8gnxqF/vATZ+ePZgxew7Xr1/Htl0bbG1tuXLtGoePRfPU6FGl7sPV69dZsXoN3Tp1om7tcnxZsqJjK4r6fBZqzNbh6O2NnYsz2TduGit0N7ZvJ6R7V4I7tDfO82/v7k5Ij+7E7d6DNkc/W0Lm+fNkXrlCnQcHcWn5v8auIOEPDUKn1XJ9a6TV+1z22QBdm0Tw367dbD502DjPv1qjIfLIMRqEBONveMORlJ5OgUpNiK/+JtWjWTPqGj5WowVuKG0J1mr4atFftG1Qn35t29AwOAQboGXdOrjWqMGGAwdpX6zyv+HAARzs7OjQoIFV+1rE1spz9oH27Vm2YSPro3YY5/lXqdVs3LWbxnXrEmiYuz4xOZl8lYrQwNsfjkpJT+f9775HoVDwzTtv41PC4NbM7GycnZywKbZPGo2GJevWYWdrS5uIxlbvr+6OmaBK0rNdW5Zt3MSGHTuN8/yr1Go27d5N47p1CDTMEpaYkkJ+gYpQw3HS5yuDidOmo1Ao+PrtCfhYGDgMUDsokPBaIew9Fk12To5xhqNDJ0+RlJrK8D69rc7XnfPtF+fs4k7DCPNplVu07szxI/s5eeyQcZ7/7KxMoo/sI6J5W+zsb1fIkpP0s0n5+Bo+nlRYiCY3F2cX07xdvXSe+JvXaN2+m8V9OnpwD55eNalbv4nVM79ZdY1FRLByz162HD5inOdfrdEQefQYDYKD8TfM9JOUnk6BWk2I4bzs3rQJdQ3jMLTATTt7gtQqpvy9hDb169GvdWsahASXuA8KK/fvbnRu1IBV+w+w9Wi0cZ5/tUbD9uMnqB8UiJ9hpp9bGRkUqDUE++gfGLtHNKauvx9aIL6GMwF5OSiBKf+soHV4Xfq2bEH9wEBsgIycXNzv+Pp0bkEBaw8ews2pBvUCAqzOp7XxujZpwn87d7P54CHjPP9qjYbIw0dpEBJSYrkIkJ6djavhIcPG8EtMTeP4xUvUCwoqdR8ysnNYsWMXtf39aR1e1+puSpbm27ck/exZAtp1wK9Zc+M8/wobG3yaNCP75k00GRkoATs3N5S2dhSk3n5rZ1vDCU3e7a6oSq0Wv+YtsXN2JvPSxVL3wcHTE98WLUm/EIs6Jblic7MLYUGFKv/Dhw9n+/bt1K1bvk+sV4YmDerTq3Mnfv5zEakZGYQEBLBu23bik5L4cNyrxnifT5/BsVOn2b/qP2NYdk4OS9as5XpqGulJ+lk5lq9fj4uzM67Ozow0VHQAXv7gQ5o0aEBwQAAp6ems2rSZvPx8vvvoQ6sr/uXRLKIxfXv25Mc5v5Kank5IUBBrNm4kLj6Bz95/zxjvoy8nczg6muO7dxrDRg0fxorVa5g3bx5KdQH29vb8uWQZXp6ePDV6tMl2hj3xJH169sTfz5e4uHiWrVyFu5sbH73zVqXnqbjwh4dj5+pKDcNbmcAunalheJNxYdly1Dk5NH3lRWoPGsjaYQ+TG58AwI2onaSmptJ24ru4hQRTkJFB+PBhKGyUnP7N9GNhx3/6mS7fTqXbjGlc3xqJW506hD88nEur15J1xXTu5LvVMCSELk2aMH/TZtKzsw1f+D1GYloab/w/9u47LIqjceD49w64ozeRjqKgIDbsvcXejSYaY6Ipmm40ppc3xRSNiSam2WIssST23gv2rthRQbHRe+fq7487To474FDO1/fnfJ6Hx2R2ZneGXWZnZ2dmhw4xxJu+chXnb8Sz5btvAAjyrmm44amBy7YyQ++9j4cH7UutLiW3s+P5nj34Y8NGvlu2nOb16nExPp690WcZ06sHLmWWu60uEaEhdGvdmrkrVpKVk6P7Eu6BgySlpfHhuJcN8b6dPZfomBj2L1lsCHt/2o8kpqTStWtXzl+9xqVrsYZtHm5utNJ/bOjQ6TMsXreeLq1b4VezJrn5+ew8fIQbd+7wyvCnrbIiTkRICF1btWLuqtVk5uYS4O3N9oOHSEpL58OXXjLE+27uPKJjrrBv0QJD2AfTp5OYWkG5Si2d+OazI3lv2o+M//Y7BnbtSn5hISu2bSfI15fB1fy9ibIiW7Zj3676LFvwK0mJt3FyduXg3q1oNBr6DjauC36f/gUAX3w/F9B1Nnz75Ws0a9UBP/8gZHJ7Eu/c5NihPdg7ONJrwNMmx0u4e5OEO/H06Du02pd8DgsKpGPDhizauYus/Hz8PT3ZHR1NSlYWE56816s5Y/VaLsTHs+lr3VDSoJo1DQ8CanRDjEp68n08PGhXpsf/WMwVbiTp6huVWk18UjL/RO0DoE14GHXKTFSvlrIFBNChQTh/740iuyAfPw8P9pw7T0p2NuMH3LsP/bx+Exdu3WL9Zx8DuqU6A71qoAZiXT0Izck0NIp93N1oW6rHf8vJUxy7epVW9UKp6epGRl4eu8+eIzU7m4mDB5a7mMCDCK8VRMfGjVi4bQdZefn41/C8Vy8Oe9IQb/q/qzh/4wZbpt77qNobP/9Ck5AQnAMCuWUvIzEtnR0nT6JWq3mxr/Ha2h/MmUeDWrXwq+FJZm4e246foFCh4MsXnrfK/bkgMYGMy5cI6NINW0cnijMzqdG4MXI3N25u3WSIV2fAIFxq1eZUqXI1fuMtMi5foiAtFVmNmgTWC8WzQQQFyUmknjltdJyIsa+QGRODIicbuZs7NZs3R1VUyK1tpkOs/xdJpOIjX4+K+2r8169fn48//piDBw/SuHFjkwm/b7/9drVkrjyfT5yA79JlbIvaR25eHqHBtZn+2ac0a1jx2sU5efn8ufwfo7Bl69YD4Otd06jxHxYSwp7Dh0lNz8DJ0YFWTSN5ddRIAqxwIyjxzWef8PufPmzavp2c3DzqhdTll2nf0yIyssJ0To6OzP35Jz78+hv+/HspWo2Gls2a8f7bb+GpX56xRP2QUNZv3kJ6Zibubm70eqIbr7/8EjU8qnfsZ1lho0bi5HevJzWwW1cCu3UF4Oa27SjzzX9ASKvRcPToUcI1WuoNfwobuZyMyzEc//pbcm/dNoqbeOgwhz76lIYvv0izSRMpzsoiZtHfXJy/wOy+H9R7Tw/j713u7ImOJq+wiDq+Pnw5+nkaV+UNSiUGtG2DrY2UNQcOcfRyDDXd3Hilfz8Gt6+etdTL88lrr+CzajXbDx4ir6CAukFBfP/uO0SGVzxPI/aWbvx8VFQUUVFRRtsiw8MNjf+6QYHUDghg56HDZOXmYmtrS71atfhq/Ft0a9O67G6rzSevjOOvNWvYcegweQX51A0MYuo7E2gabjqWvbRY/bVmvlxhRo3/5g0aMO29ScxfvZZ5q1ZjL5PRsXlzXhsx3GT98+omldrw6oT/sH7lIvbv3oxSoaBWcCijXnobH9+ACtPa2dnRtmN3Yq9c5OypIygVCtzcPWjeuhO9BjxNDS/TYVinjuo6IVpU04e9ypo07EmW7HZjb/RZ8oqKCPbx4fPnRtGo1BKPD+rwpUvsPhNt+P+4xETi9B9u83J1tUrjH2Di4IEsjdpP1PkL5BUWEezjzWcjnqZhNX0LokFQIDF37rAz+iy5BboFNer5+zF+QD+a1AmulmOY897wp/h75y72nDlzr158YTSN61ZcL/Zr04bjV65w9+o1thcX4+7sRPN69RjerYvJOQgNCODA+Quk5+TgKJfTrF4oz/fsgV81rxBWWvymDSg6d6FGo8bY2NtTmJJC7KoV5N2+XWG69IsXcA4IxCMsnEA7OxTZWSQfPULikUNoyyywUZiSglfjJtg6OaEqLCTz8mUSDu5HVVBQzt4F4f5ItJa+My+lTgWNG4lEYphAWhWZMeWPe6tOKrWaw7HXaR9a16LhPg/KoQofDXoQKpWK3cdP0l0/7MfaNgy03nKFRmQy5O9OoHj6zPsfalRFLd6/v8nMVVW659/6VyI417LuB6ZKqDQaTial0NLX2+IhLg/C0jH/D0ql0XAqNZ0WNWs8lHJFK92tfowSWq0aReZ1ZB51KxxuVF1CEs9Z/Rhg3PP/MP7GLB3z/8DHwbTn35osHfP/oNTAZakdDUqN+bemrCvW+Uq6ORqplISwCPyvXLJ4uNGDaPHRp1Y/RlVd+3fZfzsLZtUb8ex/OwsP3X21Em/cuPeVuZJnh4f9eXRBEARBEAThf4RY7eeRcd9nYv78+TRq1Ah7e3vs7e1p1KgRf/75Z3XmTRAEQRAEQRCEanRfPf+ff/45M2bMYPz48bRrpxt7fOTIEd555x1u3brF5MmTqzWTgiAIgiAIgiA8uPtq/M+aNYt58+YZfZRr0KBBNGnShPHjx4vGvyAIgiAIgmAgVvt5dNzXsB+lUknLli1Nwlu0aIGqzOx1QRAEQRAEQRAeDffV+H/++eeZNWuWSfjcuXMZNWrUA2dKEARBEARBEITqZ/Gwn0mTJhn+WyKR8Oeff7Jjxw7atm0LwLFjx7h16xajR4+u/lwKgiAIgiAI/7MkYrWfR4bFjf8zZ84Y/X+LFi0AiIuLA8DLywsvLy8uXrxYjdkTBEEQBEEQBKG6WNz437t3rzXzIQiCIAiCIAiClVn/U7CCIAiCIAjC402s9vPIEAOwBEEQBEEQBOExIRr/giAIgiAIgvCYEMN+BEEQBEEQBKsSq/08OsSZEARBEARBEITHhGj8C4IgCIIgCMJjQgz7EQRBEARBEKxKIlb7eWSInn9BEARBEARBeEyIxr8gCIIgCIIgPCbEsB9BEARBEATBusRqP48McSYEQRAEQRAE4TEhGv+CIAiCIAiC8Jh4ZIb95N66+VCOo9ZqAci7cxsbifVnnivz8qx+DACVRgNAzu3b2Eqt/0zX4v0JVj8GgBq4DEROeB2bh3JEOPXDzIdzIJkM+bsTiJ45CxQKqx+uy6/TrX6M/wa5u/tDOY6NWg2p6cjd3LC1sf7VWN/B0+rHKKFWq7iUCaGBHtjYWP+24CirbfVjgL5eTEnDOSjoodSL+XfuWP0YcK/Xzs7R6aHVi/8fOQcGPrRjqfX/Ovn7P7bnTPIQ/gYFy4gzIQiCIAiCIAiPCdH4FwRBEARBEITHxCMz7EcQBEEQBEH4f+ohDLUWLCN6/gVBEARBEAThMSEa/4IgCIIgCILwmBDDfgRBEARBEASrEqv9PDrEmRAEQRAEQRCEx4Ro/AuCIAiCIAjCY0IM+xEEQRAEQRCsSiIVq/08KkTPvyAIgiAIgiA8JkTPvyAIgiAIgmBdEtHf/KgQZ0IQBEEQBEEQHhOi8S8IgiAIgiAIjwkx7EcQBEEQBEGwKjHh99Ehev4FQRAEQRAE4TEhGv+CIAiCIAiC8JgQw34EQRAEQRAEq5KI1X4eGeJMCIIgCIIgCMJj4n+y51+hVLFoyxZ2HT9JXmEhdf39eGFAf1qEh1WY7uDZc2w8eIhrdxMoKijAzcWZBsHBPN+3D3X8/cpNl5CaxtjvpqJUqfjt/UmE1apV3UUCQKFUMn/VarYfPERufj4htYIY9/RTtGrcuMJ0+06cYNeRo5y7Fkt+Xh7eNTxpH9mMMU8OxsXJqdx0d5OTGf3hxyiUSuZ9/RXhdetWd5EAUKpU/L1rN3vORJNXWEiwry+je/ageb3QKu3nk78WEB0bx4C2bXhj0ECT7dtPnmTNgUMkZWZS082NQe3aMqh9u+oqhglbBwfCRo3Es2FDPCMaIHdz5fjX3xK/eatF6e2cnWjatCm+G9ZgK5eTceky0b/8RtaVqyZx/Tt1oOHYl3ANDqYoM4v4TZu5tGARWrW6uosF6K/F1WvYUepaHPvUU7Rq3KjCdPtOnGD3kWOci9Vfi56etGsWyZghlV+LYz76BIVSydzJX1rtWlQolcxdtpxte6N05apdm1efe5Y2kZEVprt55y6rt27l2PkLfJaQgEKpZM3cOfj7eJvELSgsZM7SZew5fISs7Gz8fX0YPmAAw/r2sUqZysrLy2X+vNkcPnyA4qJiwsLDGffKm4TWq19p2itXYtizawdXYi5z40YcarWarTv2mY2bn5/HP8v+5vChA6SlpeLu7kFksxaMev4FvL19qqUsCqWSv9asZcehw7rzFRTEy08NpVWjiq/D/SdOsufYcWJuXCctKxufGp60j4xk9OBBZq/DgsJCFq3fQNTxE6RnZeHm4kzD0FA+eWUc9nJ5tZSlrPutFw9fvMTm48eJTUqmsKAANycnwoOCGNX9CYJ9jX/vhcXFLN65i4MXLpKdn4+fpyeD2rWlf9s2VimToVw7d7HntL5cfr6M7tWz8nJduMjmY2XKVSuIUT26my/Xjl0cPH/hXrk6tLN6uZZG7Sfq/AXyiooI9vZmVLcuNKtbp0r7+XLJMs7eiKdfyxa81rd3ufEu3brNR4v+BmDJuxNxdXR8oPwLQmn/kz3/PyxZyuo9UXRv1YI3hj2JVCrl01lzuBB3vcJ0NxIScHF0pGPHjrw5/CkGdOxA7J07jP9xBnF37pabbtaatdhIrf+r+m7OXP7duo2eHdozYfRz2EilvP/DdM5duVJhuh/+/ItbCQk0a9aM8c+Pok2TJqzZuZPXv5xMsUJRbrpflyx9KOWasWo1aw8eoltkU14d0B8bqYQvFi3mYny8xfs4fOEiMbdul7t9y7HjzFyzjlre3rw+sD/htYKYvWkzK/ftr4YSmCdzd9M3yGuTHRtbtcQSCZ2+n0JgYCCxa9Zx7rdZyD086PbHrzgHBRpF9W3Xlg7fT0GRm8eZGT+TsH8/DV4cQ7N3J1ZfYcqYMmceK7Zuo2f7drz9/HNIpVI++LHya/HH+Qu4lai7Ft96bhStmzRh7c5dvP5VZdfisodyLX498xeWr99A7y6deWfsy9hIpUya/A3Rly5VmO78lSus2rKV4uJiagcGlBtPrVYz4cvJrNm6je4d2jNx7MvUDgjgh9lzWLhyVXUXx4RGo+GLzz4iau9uBg0aysvjXiMrK4sP3p/A3bt3Kk1/8sQxtm/bjEQiwdfPv8LjfPLRu2zauJ72HTrx+psT6NKtOwcORDFp4psUFBRUS3mmzPuTFdu207NdW8Y/NwqpVMqH03/inJkH5NJ+XLCQm4kJdG/XjkGDBtGqcWPW7trNG5O/MbkO8woKGP/td2zdf4Du7dryzpjRDOvZE4VCiVKlqpZymHO/9WJ8UhLO9g507NiR1wcPpH+b1sQlJvDOrNlcT0w0xFNrNHy2YBGbjx2nU+NGvNq/HwFeXvy+YSP/RkVZr1wrV7P2wCG6NWvKqwP7YyOR8sWCRRaUKxlnB325hgyif9vWxCUk8s7vs7ieUKZcfy1k89FjdGrSmFcH9iegphe/r9vAv3utV66fN2xi/bHjdGnckLG9eyKVSpi8/F8uVXBfKuv8+fNcqaCtUUKj1TJn2w7s7eweJMuPHqn00fx5DP3P9fzHxN8k6vQZXhkyiKe7PwFAz9atGPfd98xbv4GZkyaWm/b5vn1Qa7WcK1LSxN4OG4mEfu3aMfI/X7Dx4CEmPjPcJM2Jy5c5FRPD8O7dWbp9h7WKxaW4OHYfOcobzz7DyP79AejdsSNjPvqYWcv/YdaXX5Sb9usJb9M4PIwTicm08vPBViolrE4dvp09hx2HDjOwW1eTNMfOneP4ufM8O6A/i9att1Kp4MrtO+w7d56X+/ZhWKeOAHRvFsnrM3/lr23bmf7aq5XuQ6lUMn/rVp7q3Iklu3abbC9WKlm8cxetwsL4dNRIAPq0aoVWq2X53ij6tG6Fi4ND9RYMKEpLZ0O/QRRlZOARHkbPhfMtThv4RDe8Gjfi+PHjxC9cDAoFt3fvoe+K5TQc+zLHvvjKELfp+DfJio1j/4RJhp5+ZX4BDcY8z7V/V5J781a1lutSXBy7jx7l9ZHPMLJ/PwB6d+zACx99wqx//mXWF5+Xm3by2+NpHB7GyaQUWvp666/FYL6bM5edhw4zoFtXkzTHz53jxPnzjOzfj8XrN1RrWUq7ePUqOw8cZPwLYxj15BAA+nbryqjxE/h94WLmTZtabtpOrVux7e9FRN9NJP7Cea7diDcbL+roUc7HxPDp+DcZ2KMHAMP69uHjqdNYsGIlg3r2wNPdvXoLVsrBA1FcunSBTz77ik6du+ry3rkb414axZLFf/Hhx+WfO4B+/Qcy4pnnkMvl/PHbz9y9Y75hE3P5ElevxPDGWxMZOOhJQ3hgYBA/Tf+eM6dP0qFj5wcqy+W46+w5eozXnxnBM/36AtC7Q3te/OQzZv+7gj8+/6zctF+Nf5NmDRqg0mg4lZJGC28vwuvUYcrceew8fIQBXbsY4s5dsYqktHT+/Por/GrWNIQ/O6D/A+W/Ig9SLz7b/QnUwGVbGQ1UCmyA3i1bMvr7aWw+dpzxQwYDujcEl2/dYuLQJ+nVsgUA/du24duly1m+J4reLVvi7uxczeW6zb6z53i5Xx+Gde6kK1fzZrz+8y/8tWU709+ooFw99OWS2tFAo9SVq1UrRk/5ns3HjjFe/zd7+MJFLt+8xcRhT9KrVct75VqyjOW799K7VfWX6+rdBA5cvMSLPZ7gyXZtAXiiSWPemj2Phbv3MO3FMZXuQ6FSsWnTJp5s347llXRKbT99hrScHHo2i2Tj8RPVUgZBKO2+H3l2797NgAEDCAkJISQkhAEDBrBr167qzJtZB6LPIpVK6de+vSFMZmdHn3ZtuHQjnpTMzCrtz93FGblMRn5hock2lVrNrFVrebJLF/y8ajxw3isSdew4NlIpg7o9YQiTy2T079KFC9diSU5PLzdts4gGJmGd9ZX9zbsJJttUKhW/LF7CU7174e9tOmyhOh28cAGpVEpffSUNuvPVq2ULLt+6TWpWVqX7iIqKQqvVGm6SZZ27fp2cggIGtG1tFD6gbRuKFApOxFTcW32/NEolRRkZ95U2qFtXCtMzSCzVU1eclcXt3XsI6NwRqb7HxzU4GLe6dbi+foPREJ/Y1WuQSKUEPtHtgcpgzr7jJ/TX4r19y2Uy+nftwsUHuBbjE8q5Fv9eylO9exHgUz1DRcqz5/ARbKRShvTuZQiTy2QM7NmD81eukJyaVm5aNxcXHC14gIy+eBmAnp06GYX37NSRYoWC/ceP32fuLXPwwD48PDyNGt7u7u506tyNI4cPoajg7QuAh4cncguGuRQU5Ov37WEU7umpqyct2Udlok7orsPSnRdymYx+XTpzMTaWlIquwwZmrsMWzQG4Weo6zM3PZ+uBAwzs1hW/mjVRqlQolMoHzntlqqNeLM3d2Qm5nR35hUWGsJKe9s5NjIeNdmnSGIVKxdHLl+87/+U5eP6irlytWxnCdOVqyeVbt6qpXDcB6Ny0iVHcLk2b6Mp1qfrLdehyDFKJhN7NmxnCZLa29IxsSsydu6Rm51S6j7WHj6DVahncruKhSbmFhSzZu49RXTvjZG+dIWeCcF+N/z/++IM+ffrg4uLChAkTmDBhAq6urvTr14/ff/+9uvNoJPbOHQK9a+LkYG8UHla7NkCFw3dKFBYWkpWbx42EBGYs+4eCoiKa1TcdD7tm7z5yCwt4tlRjwVqu3bxJoK8vTo7GDYwGISEAxN68WaX9pWdnA+DmYtoDsmLbdnLz8xkzZMj9ZbYK4hITCahRA0f7MucrUDe05XpiUoXpU7KyiIqK4oXevZGX8wo0Tv9KuF6A8XCMUH9/pBIJcaUa2I8K97B6ZF27ZhKecekStg4OuNQKMsQDyLwcYxSvKC2dguRkPOrXq/a8lXst6sfhx1bxTUPJteju4mKybaX+Whw9ePB95tZyV6/fIMjfH6cyY2cj6ul+h1dv3HjgYyhVSmykUmxtjV+qlowbvxIb98DHqEhc7DVCQushLfMqOyysAcXFRdy9a/kQhYrUqx+Gvb0Dfy+aT/SZ06SlpXLuXDTz/5xN/bBwmjVv8cDHuHbzlu46dDB/HV67VbXrMMNQJ967Ds9fvYZCqSTA25vPf/2N3mNfodfYV3jz62+4VsU6tyoetF4E3X0sOy+fG0lJzFyzloLiYiJD782VUapUSKVS7GxsjNLJZbp69JqZjqEHFZeQQICXmXLphzKWHr5THqNyrS4pV4hhe7nlsispV+VtgKq6npREQA1PHMs81NYP0M0VvJGcXGH61Oxs1hw6Qr9+/cq9j5VYGrUPD2cnoweN/y8kEskj+fM4uq9hP9999x0//fQTb731liHs7bffpkOHDnz33Xe8+eab1ZbBsjJycvB0dTUJr6EPK2loVOS3334jNTUVAAe5nFG9e9GnzNN4Rk4OS7dv55Uhg00eNKwhPSuLGh7uJuE19EME0jKzqrS/pRs3YSOV0rWNcW94elYWi9au481RI00ad9aQmZOLp5lGX0lYek7FPSZ/bdmKv7+/SS9PaRm5uUilUpNXvXa2trg4OpJRyTH+G+xr1CD13HmT8MI0XW+mvZcX2XHXcajhZRReNq69l1e15y09K8tw3ZVWcn2mVfHt2rKNm7GRSulSqjew5DiL1q3njWcfzrWYnpmBl6eHSbiXhy4s7T7f4pRWK8AftUbDhStXiIyIMISXzClIqYZjVCQjI4NGjZuahHvU0PXIZ6SnU6dOiMn2qnJzc+fjT79g5k8/8PGH7xjCW7Rszaf/+QobmwcfUZqRlUUNdzeT8JKw9CrWics2b9HViaV62+/oG23zVq7C39ubj18ZR35hIYvWreOdqdNYNOVbs38LD+pB60Uocx+TyXimW1d6tbj30BVQsyYajYaY27dpGBxsCL+g7zm35BhVlZlbSblycyvdh0m5nuhqGLYEEFDTq5xyxeuOYUEvfFVl5uXhYWYoUUlYRiXlmr9zN3V9fYmMjITcrHLj3UhOYdupM3wxcsRDmQMlPL7u6+rKysqiTx/TlSt69epFtgWN7wdRrFRiZ2t6Y5HZ6cIseWU7fPhwvnn9Vd4e/hS1fHwoVirRaLVGcf5cvxHfGjXoqx/fZ23FCiUyM+Uq6aWpaLJkWTsPHWZz1D5G9OtLkK+v0bbZ//yLv7c3A7p2faD8WqpYZf582ZWcrwom1J2Nu87hi5cYNGhQhcdQKJUmvUAlZLa2FCutN2nvftnI5WgUpteqRn+ebfQ9TDZymS5caXr+NQqFIV51KlYoDeenNJm+x6rYTF7Ks/PwYTbv28fwCq/FLuWkrl7FCgV2ZnrdZPfxN1ae3p074+zkyLe//sax6GgSklNYt30Hq7du0x2j+MGPURGFoth8Ge1k+uMXV9ux3NzcCQmtx5gXx/L5l9/y3PMvcuH8OWb8WP7ciaooViqwszVXlqqfr91HjrJ5336G9+1DYKnrsLBIP5xEImHGRx/Qs307hnR/gm8mvE1ufj5rzcwxqg4PUi+WGD58OF+9MIY3Bw0kyLsmijL3sa5Nm+Bkb89Pq9dy+losyZmZbD1+gs1Hj+mOYYXhTcVKlfly2Vbt/vzVSy/w5pBB+nKpjMsV2VRXrlVrdOXKyGTrseNsPqIvlxUmaStU5stVcs8uruCY5+LjOXI5hpd696j0OPO276BFaAjNQqyz2pkglLiv7plBgwaxdu1a3n//faPw9evXM2DAgErTFxcXm9yECooVhoZuRWR2dihVKtRlGuuF+oaUrZ2dybbS1FottWvXpqHcFhuJhE7Nm/HKt1PRomWcfqLU5Rvx7Dpxkqlvvo5WIkGt1aLRp9dotRXuvyyVRlN5JH25ipUqk/gF+t+TrZ1dhftS67dFX45h6rw/adW4MS89NcwozaXYWLYfPMT0jz5Eg27FjpJKVa3RWpxXAEsXmJTZ2qFQqUziF+kb5La2tmb3pVarmb1pM10jmxIUFIRade9Gry1zfDs7O5Rqtdn9KFQqZHbmj1F+pmVViV2SCd2/NrYWpVcXK5Da24OiyCi+VL8MoVqtBplM929JeL7xCipSe3vUCoXF+a3KtahQKsu9Fu1sLb8Wv583n1aNG/HSsKEm1+KOQ4f58cMPDNeiWqvRp6/atSi1cLlTmZ0MhUKBqkz8An0D0NbW1mRbaSV5uvc3ozaJ7+bqytSPPuLrmb8wQT9p28nRkYkvv8S3v/6Gg728wmOUplaX36BQKpXkleltdHVzQyaToVAUm6QtKtLNabK1szW735LrTF0qb5qS82EmflJiAh++P5FJ731omF/Quk1batasyU8zpnHs6CFatip/bLMl51dmJ6vwOqysTgTdtXjjxg3m/7WAVo0a8eLQJ43SlDwotYtsikwmM2wLq1sXv5penL927ZGqF0sfp3bt2tTXT/jt2LQJr/80Ew3wsn5ytJuLC589P4oZK1fx2YKFADjK5bw6cAA/rVqNXCavWr1oSbnsbM2XS984trWzs6xc+gm/HZs04fUZP+vK1b9UuUY/x4wVq/hs/oJ75Ro0kJ9WrkIuk1lcLkvj2dlWXC678u5jGg1zt+2kS5PG1PX353qpY5a9jx28eImY23f4+bVxRnFK8mmdRZ0fLol4m/HIuK/Gf0REBN9++y1RUVG0a6dbR/3o0aMcOnSId999l19++cUQ9+233zZJP2XKFL766iujsBEjRjBy5MhKjy1zdiEhK5tzRcY9CNfSdK/Tcx2cTLaZc7FYf0OT2lE7JIQdJ07Rpo9uZZNZ6zYQHBxMprMrUQm618JXsnSvEk+nZZJoZ4+Hh+nwAbMSKx4LWMLO0ZG7aWmcKBP/WpxuHHKmFpNtZSUkJDBnzhy8fXwYNHw4p1OMJzDOWryE4OBgUrSwXT8x8YJ+DObRG/HcLCq2vFy2ljU45W5uJGVnc7lM/GsFusZIgYenyTaAE2dOcCctjf7DhpGRkcHRUtuSlCoO5eTh7Oysu2G7uaPRaDhRpMC51KtZlUpFTkEBWjd3s8coN8/vTrA4bgmZfmiAbZ+eyBuGVxq/WKPGqXkkHD2KfPzrhnAX/Tck1P37IO/cAZV+DLDr+DfQlJks5xhcm8zMTIvzezIpxaJ4umsx3ST+tevxAGQiqXRfxtfiCM6kGg9bmvX3UoKDg0lFwo5LuvkMFxN045yPxd/kVrHC8msRy8pla2/P7eQUDscaLwl8TT/3Iq1YYbLNnNsZumFPp+Jv4ZmTZxpBbs87771HUlISCoUCPz8/cvRDLKQOjhYdozJxcXHMmTPHKOyjjz7CycmJWzdvcOn8KaNtF8+fBiArPdlkW2lXLkUb/jszXTf0wlz87du3o1AU4+IkN9ru5qqbT7E/aheO9g829MfO0ZG76emcKlOPXYvXjfXPkkhNtpWVkJDAwoULddfhiBFEpxsPWcuR6t4YFtvamezLzsGRlOycSo9hxMr1YllXS+K4yAgODWX32XO0H3Rv/oxNvTDe/ehjs9eivbd3lepFS8hd9eWSGnfkXcvTdVwUuHmYbDPnakkcZztduaLP0n7gvTfANqH1efejj8yXq6a3RccAwMXdomj27h4kZ2dzrUz8a0m6v5Eib1+TbQAnTpzgbkYGA55+mpNKDWRkUDLwL0ULx5Qaw31s/p4oGjVpwh1XD+4odQ+cd/XPnadVWpw1EtzcTIfBlSei8ijCY+y+auf58+fj4eHBpUuXuFRqfWx3d3fmz7+33KFEIjHb+P/444+ZNGmSUVjCvr0W9fw3CQpkbVwcIVq10Vj8S4m6ST7d69Sipn35+1FrtVwsVhl6/gHWadQoiopook+Xn51FSkYmU6eavr5euHAhTg72rP5+SqV5BZB7eFoU71S9UFZu206Eu6vRBLcrJ3Srg/SNbIJ3jfJXHLqdmMTX8+dTw82NXz/+EHcz8yKm5+aSnJZWfrkcHdk0Z5ZF+c27bdnEwUa+PqyPi6N2Xo7RJLDzN3UPNZ29vaipMn19fyY9DbVazR9//GGy7dSpU5w6dYpPnnuWphER5Pl4sx2Q3LxBg7B7H3q7fPMWWq2Wlr7eNDBzjPJEz7Tsd1CaIqw+dOmCattOirdtrzR+pqs7Xk11q3AU/zoL9EMYXN+bhCo8nIxvv0ejVJIaHAyL/8L51BmS191bBtO+Rg0cBg8mbulyihcvsSiPHX741qJ4J0NDWLV9Bw3cXIyvxeO61+p9mjau+FpMKrkWXfnlow/MXosFuTkkp6VXcC06sHG2ZedBZuGyfmciGrBi4yaa+vsaTfqNjT4DwMD2bfGpYA6FSqPh+PV4gvTzBloE18KvotWy6t/7qNEa/bCfwV060TrUslf6WQ7lP/zUCq5PUG3jsfsRDRtz4OBhLl48T3jDZkaTfnfv2Ydcbk/nrr2wM/OmSK1Wc+VSNGERkdjoh9DtO3BIt9/GppN39+zVffirfoOm2Jf6u87K0jWuPWt4m01XwiG58sm0J0NCWLVjB+EuTkbXYcwxXVdA78aN8K5Rfv2akJLC1AULcHJyYsZ775qdP+DdpBHLl4NtcREtvI3PfVFeHkF+fibhFSkws6KVOfdbL5ZQo2v4l/T8A9griikuKjJb1zUsVYbNV3QP20/UDba8XpRaNimykZ++XAW5xuW6FQ9AZ9+a1NSU3zmnRtfwL+n5h1LlMpOuoe+9pVk3X9WXK6SO2bjmqPLzLYoX4eXJxthYAtKSjSb9no3VfW+ig6szXmbG8p9KTqz0PvbR08NoEx5GVlYW0dHRREdHm8SdOXMmwT7e/PTKWIvyKwiVua/G/41Sq2Jo9a/AqzJjWi6XmywFlyW3rAeiS7OmrN6zl+1HjhjW+VcoVew4dpzw4Nr4eupuBikZmRQpFNQq9WXAzNxcXPUNBRuJBBuJhKT0dKKvXqV+rSDDw8A7z4wwGU8afe0a6/Yd4JUhg6nl422IWxlbC19zdWvTmn+3bGVLVJRhnX+FUsn2/QeICAnBX7/+dHJaGkUKBbX9732AJz0ri49+/BGJRMIPH7yHVzkT1D54+SWKFMbDrU5fvMTqHTt589mR1PL3tzi/5kfYm+rUqCFrDxxkx4mThqU6lSoVu0+dISwoEF99XlOysihWKAny1pWza5MmhPj7oQHuSG0J1KiQAt8sWUarsPr0btWS8MAgbIBmIXVxcXBg67HjtCnV+N967BhyOzvahoVZnF/A0BCvkpKxrGqVSXr7GjWwc3Yi785dw3Kdd3bvJqhbF/z8/IhXKEChQObmRlDXLiQcPIRGf1PKuXqVnPh46g7oz/VVa9DqhyCEDuyPVqPh9q7dFufX0nP7RJs2rNi6jS1R+wzr/CuUSrYdOGjhtTgdiUTCtPfLvxbff/klk/Hvpy/prsU3nh1JbT8/i/NrW858j7K6d+jA8vUb2LRrt2Gdf4VSyZa9UTSsX9+w1GhSaipFxcUEBwaa3Y9U/7dvI7Wx6NiZ2dksW7ee0OBg2jZrZrIST3kqmjTr5u5Bi5amw2o6de7GoYP7OXrksGGd/+zsLA4d3Eebtu2xd7j30JOQoOsw8fe/t0qWjY2N4bhSibTcfAQG1Uar1XL40AF69uprCD+wX/dQEFovrML8W3Juu7VpxYpt29i6b79hnX+FUsn2g4eICKmLf01dgzY5LZ0iRbHJdfih/jocO3YsNdzdzB6zTkAAobWCOHwmmrz8fMOKVCfOXyAlI4OhPXtYfB2C9etFgKy8PFxK7mP6n+TMTM7GXadegH+FecjOy2f1/v3U8fWlRUhItX/ls1OjRqzdf5Adx08Y1vlXqlTsPnmasKCgqpcro6RcAZWXa98BXblCLS+XpQN4OzYIZ/2RY+w6fcawzr9SpWLP2XPUD/DHx03XwZGanU2xUkmgvhOhS8MIQvT1igZIcHDCvzCfqStX0zI0hF7NIqmvL9snTw8zOe6Bi5c4cOky7wweSA1Xl6rdxx5Fj+nKOo+i+34vO3/+fH766SfDK/N69eoxceJExo617pNpg+BgOjeLZP6GTWTl5uFf04sdx06QnJ7Bu8/eGzb0/d9LOBcbx85ffzaEvTLleyLr18fRx5e7rs4kpqax9chRVGoNLw8aaIjXsoHpsI08/XcAmtQLIUw/NKM6NQwNpVub1sz5dyWZ2TkE+vqwdf9BEtPS+HDcvd/pN7PnEH05hgNL/zaEvff9DySkpNK1a1fOX73KxWv3vjbr6eZKq8a6HubWZdZ7BsjTjyOPbBBOeN3qn2QUHhREx0aNWLh9B1l5efjXqMGu02dIzsxkwtAhhnjTV67i/I14tnz3DQBB3jUJ8q5p8jEbAB8PD9qXWklFbmfH8z178MeGjXy3bDnN69XjYnw8e6PPMqZXD1ys+Fn00KeGYufigoO+svfv2AEHfW9w7IpVKPPzafzGq9Tp349NTz5FgX4Jvzt7oki7cJHmzZvjOOZ5ijMyCB36JBIbKRfnGX8s7Oyvf9Dxh6l0njmD27t241q3LqFPDeX6hk3kxlf/coQRoSF0a92auStWkpWTQ4CPD9sOHCQpLY0Px71siPft7LlEx8Swf8liQ9j7034k0XAtXuNSqWvRw82NVo0bAdC6sZlrUf9V2MjwMKtci43C6tO9Q3v++HsJGdnZBPn5sXnPXhJTUvh0/L0Vyr76eSZnLlzk6Pq19/KWn88/GzdxOyOTrBTd8LtVW7bg7OSEi5MTT+sfkgBe/+RTGoWFEejnR3pWFuu376CwqIgfP/vU4ob//erYqQvhDSL4afpUbt2Kx83VjU0b16PWaHh+9ItGcT/+UPf2ddHf/xrCUpKTidqrm+R69aru+xjLl+rOr7ePD9179AagZ68+rF71D7/MnE5c7DVq1Q4mLvYa27ZupnbtOrTvYPydg/sRERJC19atmLtyFZn663D7Qf11+PJLhnjfzZ1LdMwV9i1eaAj74MfpJKSkMqJfX+Lj49mZkW7osPFwc6VVo0aGuG8++yzvTfuB8d98y8Bu3cgvKGDFtu0E+foyuPu9765Up/utFwHemPkrTUJCcA4M5JbcjsS0dHacPIVarebF3r2NjvPB3D9pUCsIvxo1yMzNZduJkxQqFHw5+nmrXIvhtYLo2LgRC7ftICsvH/8anvfKNezex+Cm/7uK8zdusGXqvbeRb/z8i65cAYHcspfpy3VSV66+xsttfzBnHg1q1cKvhieZuXlsO35CV64XrFOusIAAOjQIZ/GeKLLyC/Dz9GDP2fOkZGUzvtTH4H5av5ELN2+x4T+fABDo5WV4EFAD11zcqad/Q+Dt7k7b8HudVaX/u8R1/WpULUJDcLXifUx4/NxX4//zzz9nxowZjB8/3jDm/8iRI7zzzjvcunWLyZMnV2smy/rw+VEs9PRg14mT5BYUUNffn69fG0eT0JAK0w3s2IGjFy9x59JlthcX4+7iQovwMJ7t3ZM6pXqN/ls+fe1VfFatZvuhQ+TlFxASFMT3700i0szDSGmx+vWuo6KiiCrz2fbIBuGGxv9/y3tPD+PvXe7siY4mr7CIOr4+fDn6eRrXqVNtxxjQtg22NlLWHDjE0csx1HRz45X+/Rjcvl21HcOcsFEjcfLzM/x/YLeuBHbrCsDNbdtRlvNaWavRcOCDj2k+61fqDRuKjVxGxuUYjn/9LbllPhefeOgwhz76lIYvv0izSRMpzsoiZtHfXNRPdrOGT157RXctHjxEXkEBdYOC+P7dd4gMf4BrMTzc0Pj/b/l84gR8ly5jW9Q+cvPyCA2uzfTPPqVZw4YVpsvJy+fP5f8YhS3Tfxnb17umUeM/LCSEPYcPk5qegZOjA62aRvLqqJEElFntyBpsbGyY/M005s+bxYZ1ayguLqZ+WDiT3v+IwKDKOy2SkhNZvMj44bPk/xs3iTQ0/l1d3fjlt7n8vegvjh09zObNG3B1caVX77688NI4sysO3Y9PXhnHX6vXsOPQYfIK8qkbFMTUdybS1ExDqbRY/d/Qv1u2mmyLDA8zavw3j2jAtPfeZf7qNcxbuQp7mYyOLZrz2ojhJuvVV6f7rRf7tWnN8StXuXvtmu4+5uxE83qhDO/ahTplrrHQAH8OXLhAek4ujnI5zUJDeL5nD/w8LRuOel/lGv4Uf+/cxZ4zZ+6V64XRNK5bWbnacPzKFe5eLV2uegzvZq5cARw4f4H0nBxdueqF6spVwTCwB/XOkEEsjdpH1Pnz5BUWEezjzX+eGU6j2tXfGSgI1ibRaquwdI1ezZo1+eWXX0wm6C5fvpzx48eTllaFCVJ6t3aYVtLWoNZqOVekpIm9ncVDdx6Evad1vwxcQqXRcCIxmVZ+PlV6TX2/cq34AZzSzPX8W9upH2Y+nAPJZMjfnUDx9Jn3N9Soirr8Ot3qxwDdtXgyKYWWvt4P5VqUmVlX3BpUajWHY6/TPrSuxUONHkSmg/UaMmWp1SounT9FROMW1bJGf2Uckx78g2qWUGk0nEpJo4W310O5FvPv3LH6MeC/UC9aOOb/QamBy1I7GpQa829Nlo75rw6le/4fRtnCnhvzEI5SNYmHD/63s2CWX/uO/+0sPHT3VRsqlUpatmxpEt6iRQtUVlhjVxAEQRAEQRCEB3dfjf/nn3+eWbNMV+KYO3cuo0aNeuBMCYIgCIIgCIJQ/Sx+v1t6aU6JRMKff/7Jjh07aNtWN/P92LFj3Lp1i9GjR1d/LgVBEARBEIT/WeIjX48Oi8/EmTNnDD/nz5+nRYsW1KxZk7i4OOLi4vDy8qJ58+ZcvHjRmvkVBEEQBEEQhP+K33//neDgYOzt7WnTpg3Hjx8vN+68efPo1KkTHh4eeHh40KNHD5P4L7zwAhKJxOinT58+Vi2DxT3/e/futWY+BEEQBEEQBOGR9e+//zJp0iRmz55NmzZt+Pnnn+nduzdXrlzB28xHH6Oiohg5ciTt27fH3t6e77//nl69enHx4kUCAu59Y6VPnz4sWHBvBb+y38KqbuIdjCAIgiAIgmBdEsmj+VMFM2bMYNy4cbz44otEREQwe/ZsHB0d+euvv8zGX7p0KW+88QaRkZGEh4fz559/otFo2L17t1E8uVyOr6+v4cfDo/wvvFcH0fgXBEEQBEEQhAooFApOnTpFjx49DGFSqZQePXpw5MgRi/ZRUFCAUqnEs8y3NqKiovD29iYsLIzXX3+d9PT0as17WdZf0FkQBEEQBEEQHkHFxcUUFxcbhcnlcpOhN2lpaajVanx8fIzCfXx8iImJsehYH374If7+/kYPEH369GHo0KHUqVOHuLg4PvnkE/r27cuRI0ewsdI3ZUTjXxAEQRAEQbCqR3W1nylTpvDVV18ZhX3xxRd8+eWX1XqcqVOn8s8//xAVFYV9qa+HP/PMM4b/bty4MU2aNCEkJISoqCi6d+9erXko8WieCUEQBEEQBEGwso8//pjs7Gyjn48//tgknpeXFzY2NiQnJxuFJycn4+vrW+ExfvzxR6ZOncqOHTto0qRJhXHr1q2Ll5cXsbGxVS+MhUTjXxAEQRAEQXgsyeVyXF1djX7MrbYjk8lo0aKF0WTdksm77dq1K3f/06ZN4+uvv2bbtm20bNmy0vzcuXOH9PR0/Pz87q9AFhDDfgRBEARBEASrklRxZZ1H0aRJkxgzZgwtW7akdevW/Pzzz+Tn5/Piiy8CMHr0aAICApgyZQoA33//PZ9//jnLli0jODiYpKQkAJydnXF2diYvL4+vvvqKYcOG4evrS1xcHB988AGhoaH07t3bauUQjX9BEARBEARBqMSIESNITU3l888/JykpicjISLZt22aYBHzr1i2kpeY2zJo1C4VCwVNPPWW0n5I5BTY2Npw7d45FixaRlZWFv78/vXr14uuvv7bqWv+i8S8IgiAIgiAIFnjrrbd46623zG6Liooy+v/4+PgK9+Xg4MD27durKWeWE41/QRAEQRAEwaoe1dV+HkfiTAiCIAiCIAjCY0I0/gVBEARBEAThMSGG/QiCIAiCIAjWJYb9PDLEmRAEQRAEQRCEx4Ro/AuCIAiCIAjCY0IM+xEEQRAEQRCs6v/DR77+v3hkGv8yV7eHchyVRgNF6di5uGL7EMafeYQ3sPoxAJQqFSQm414/DDtb659WrVZr9WOA/nwlpeAUGPhQzhdAl1+nP5TjqDQaTial0OGHbx9K2faNf9fqxwBAJkP+7gQOvf8pKBRWP5xDTQ+rHwNAa2cHY8Zw5D9fIFEqrX68Pkv+tvoxSihVKi4BAW72D6X+uLT2iNWPAaCRSCC4LqnHjyN9CHWWVCaz+jFAXy7/QApTUh5Kudzq1bP6MQBdWQqLsXNyxuYhNBTd6oZY/RglVBoN3LqDZ8NGD+1eJgjlEVegIAiCIAiCIDwmHpmef0EQBEEQBOH/J/GRr0eHOBOCIAiCIAiC8JgQjX9BEARBEARBeEyIYT+CIAiCIAiCdUlEf/OjQpwJQRAEQRAEQXhMiMa/IAiCIAiCIDwmxLAfQRAEQRAEwaokUvGRr0eF6PkXBEEQBEEQhMeEaPwLgiAIgiAIwmNCDPsRBEEQBEEQrEp85OvRIc6EIAiCIAiCIDwmRONfEARBEARBEB4TYtiPIAiCIAiCYFUSiVjt51Ehev4FQRAEQRAE4TEhGv+CIAiCIAiC8JgQw34EQRAEQRAE6xKr/TwyxJkQBEEQBEEQhMfE/2TPv0Kp5K81a9lx+Ai5+fmEBAXx8rChtGrUsMJ0+0+eZPfR45yLiyM/Lw9vT0/aRTZl9KBBuDg5msQvKCxk0YaNRB0/QXpWFm7OzjQMDeWTV8ZiL5dXf7kUCn6bPZuNm7eQk5tL/dBQxr/xOu3btq00bUpKCkuWLGHy5MlotVpat2zBB5MmERQYWG6a02eiGT12LAAHdu3Cw8O9uopiRKFUMn/1GnYcPKQ7X7WCGPvUU7Rq3KjCdPtOnGD3kWOci429d76aRTJmyGBcnJyM4g6fOImktDSTfQx6ohvvvfRitZanxIOUa8/RY8Rcv0FaVhY+NWrQvpxylXY3OZkxH32CQqlk7uQvCa9bt5pLpGPr4EDYqJF4NmyIZ0QD5G6uHP/6W+I3b7UovZ2zE02bNsV3wxps5XIyLl0m+pffyLpy1SSuf6cONBz7Eq7BwRRlZhG/aTOXFixCq1ZXd7EAkNraEjZqFIHdumHn7ExOfDwxS5aQFh1daVr/Dh0I7dIFl759URUWknzsGJcXLUKRk2MSN6hnT0KefBJHHx8K09K4sXEj8Zs2WaFEOgqFgt/mzGXj1q336o7XXqV9mzaVpk1OSWHqjJ84cPgwX0mlurrjnXcICggwiteotfl9TXzzDcaOGVMt5TBHYmODb7v2eIQ3wMbensK0VJIOHyLv1q0K0/m0bYdv23Y0KxOuUak4/9sv5aZz8vcndPgzAFyY/QfqoqIHLYJZEqkUn9ZtcA8Lx0Yupyg9jeRjx8i7c7vCdN6tWuPTqjVNy4RrVCouzp1t+H87Z2c8whvgUjsYuZsbWq2WoowMUk6dIP/OHSuUSEehVLJo8xZ2HT9BXmEhdf39eWFAf1o0CK8w3cGzZ9l44BDX7t6lqLAAN2dnGgQH83y/vtTx9zeKO2v1Gs5diyU5IwOFUom3pyddmzfj6R7dcbDCvbmkXH/+u4JtBw6Sm5dHaO1ajHtmBK2bNKkwXdSx4+w+fJjLcXGkZWbh6+VFhxbNeWHYUJP6ftfhwxw6eZpLsbHcSUqiWUQDfvvyC6uU579BIhH9zY+K/8nG/5R589l38iRP9+pJgI8P2w4e5MMZP/HzRx/QpH79ctP9uGARnu7uNGvWjKZBgdy8e5e1u3Zz9Ow5/pz8JXKZzBA3r6CACVOmkpqRyYCuXQjw8SY7N5dzV66hVKms0vj/9Msv2blrN889+yy1awWxbuMm3nh7An/NmUPzZpHlpisoKGDcG2+SkZnJyy+MQS6TsXjpMl545VVWL1uKu7u7SRqNRsN3P0zDwcGBwsLCai9LaVPmzCPqxAme7t2LQF9fth44wAc/TmfmJx/RJCys3HQ/zl9ADQ/d+YqsXYv4O3dZu3MXR8+eZf43XxudL4B6tWsxom9fo7BAP1+rlAketFwe9GjfjgJbO7S5ORWWq8SvS5Zh8xBem8rc3Wg49iXyE5PIjo3Fu0VzyxNLJHT6fgrugYHELF6CIj2DkGFP0u2PX9n5wsvk3b7X6PBt15YO308h5fQZzsz4GbeQujR4cQxyTw9OT5tuhZJB5MSJ+HXowPUNG8hPSCCoe3fafPEFRz79lIxLl8pNV7tvX5q88QapqalcXLgQB3d36gwahFu9ehx89100SuW9uH360OTNN0k4dIjr69bh2bAhjV99FRu5nLjVq61Srk8nT2bn7j08N/IZagcFsW7TZt6Y+A5/zfqD5pGR5aYrKCjgpdffIDcvjyeeeIIGoSEs/XcFL7z6GquXLMHd3c0ofrs2rRnUr59RWIP65V/r1SGoV2/cQ+uReuYMxVmZeEY0pO7gJ4lbvZL8hIRK0589exa3xAQM64xoNRXGD+j6BGqFApty/g6rS2D3HrjVDSHt3FmKs7PxCA8nuP8Arq9fR0FSYqXpz549i3tqClK0AGg1WqPtrsF1qNmsOTk3bpB5JQaJVIJH/XDqDhrCnT27yYy5bJVy/bBkKQfORDO0W1cCatZkx7FjfDprNj9OGE+jkJBy091ISMDF0YGOHTsS5uFGVk4u248eZfwP05n57iRCAu89jF65eYtGoSH09mqDzM6O2Dt3+GfnLk5fucqMiW8jtUI9+e3vs9h77BjD+/UlyM+XLVH7eG/K9/z6xX9oGl7+g820ufPw8vCgZ8eO5EukkJ/H6m3bOXLmDAu+n2pU36/bsZOY6zdoEBJCdm5utZdBEEr8zzX+L8ddZ8+xY7w+YjjP9NM19Hp36MCLn37G7H9X8Md/Pis37VdvvUnjsPqcSk2nRc0a2Eql1A8OZsq8P9l5+AgDunYxxJ27chVJaen8OflL/GrWNIQ/29865Tp/4QJbt+/g3QkTeHH08wAM6t+fIcNHMP2XX1i64K9y0/6zciW3bt9m/PjxvPDcKOxsbenYvgNPjhjBwiVLmfjWmyZpVq5ZQ1JSMsOGDGHJ8uXWKRRwKS6O3UeP8vrIZxjZX9do6N2xAy989Amz/vmXWV98Xm7ayW+Pp3F4GCeTUmjp642tVEpYnWC+mzOXnYcOM6BbV6P4Xh4e9OrYwWplKe1By9UsogEqjcZQtvA6dcotF8Dxc+c4cf48I/v3Y/H6DVYqlU5RWjob+g2iKCMDj/Awei6cb3HawCe64dW4EcePHyd+4WJQKLi9ew99Vyyn4diXOfbFV4a4Tce/SVZsHPsnTDL09CvzC2gw5nmu/buS3JsV9+xWlXu9egR06cLFv/7i+tq1ANzZs4euv/1Ggxde4NAHH5hNJ7G1JXz0aNIuXuRwbCySbduQKJVkxMTQ5vPPqdW7t6FXXyqTEf788ySfOMGpqVMBuLVjBxKJhPojRnBr2zaU+fnVWq7zFy+ydcdO3n17PC8+9xwAg/r1Y8jIZ5n+628snf9nuWn/WbWam7dvs+TPP0nIyKBnxw506diRJ0c+y8JlS5n4xhtG8YNr1WJgmQdsa3Lw8cUjLJyE/ftIPX0KgMzLlwh7fgx+HTsTu+KfSveRkJCA5moMUq220rg1GjfBzsWFjIsXqNmsCg+9VeTg7Y17vfokHj5EWvQZALKuxFDvmZH4tm/P9TWVPyQmJCRA/PVyy5V39y4xfy8yenORceECoSOewbt1a6s0/mPibxJ16jSvDBnM0z26A9CzTWvGfTuFeevWM/PdSeWmfb5vX9RaLecKi2niIMdGIqFf+3aM/OxzNh44yMSRIwxxf5400SS9n5cXc9euI+bmTSLq1KnWcl2KjWXX4cO8+dwonh00EIA+nTvz/Lvv88eSpcz55uty034zaSLNGzZEpdFw7NYd2tQKpEFICN/8/gfbDxxkUPcnDHH/89ab1PT0RCqV8ty771VrGQShtGp9PI6Li+OJJ56oPOIDiDp5EhuplIHduhrC5DI7+nXuxMXYOFLS08tN28zMa8fO+l7Nm4n3elpy8wvYeuAgA7t2wa9mTZQqFYpSPXvWsGP3bmxsbHh66JOGMLlcztDBgzl77hyJSUkVpm0YEUFQUJAhrG6dYNq0asX2nTtN4mdnZ/PrH7N467XXcHFxrt6ClLHv+AlspFIGdetmCJPLZPTv2oWL12JJruh8RTQwCevcsgUA8eX0+ClVKgqLih8w15V7mOVSqVT88vdSnurdiwAfn2rIfcU0SiVFGRn3lTaoW1cK0zNILPX3VJyVxe3dewjo3BGpnR0ArsHBuNWtw/X1G4yG+MSuXoNEKiXwiW5ld/3A/Dp0QKNWc2vbNkOYRqnk1s6deDZogL2Xl9l0rrVrI3N2JuHQIaPwlBMnUBUUENCpkyHMq3FjZK6uxG/ebBQ3fvNmbB0c8G7VqhpLpLNj9x5d3TFkiCFMLpczdNBAzp4/T2Jycvlp9+yhUUQEDUtdk3WDg2nTsiXbd+02m6aoqIjiYuv/jYHugU2r0ZB+4bwhTKtWk3HxPE7+/tg5W1Z/SS3oxbeR2+PbvgNJRw6jtnL53EJC0Wo0ZFy8YAjTqtVkXr6Mk6+f5eXS/z2ZU5yZYTJkSavRkHvzJjJnlwrT3q8D0dFIpVL6dWhvCJPZ2dGnXVsu3YgnJTOzSvtzd3FBLpORb8HbaV9PTwCL4lbV3qPHsJFKGax/oAFdfT/giW5cuHqNZDNDTks0b2g6HLlza109cPPuXaNwHy8vq7y1eFRIpJJH8udxVK1XWV5eHvv27avOXZq4dvMmgb6+ODk4GIU30I9/vnar4vGSZWVkZwPgVqqyPX/tKgqlkgAfHz7/9Xd6j3uVXuNe5c2vv+VaNfdGlrh85Qq1a9XCuUyl31g/j+HKVdPx0qAbvnP1WiwRZh5sGjdsyO07d8gv09P466zZeHnV4OlhQ6sp9+UznC9H8+crtoq/z3T9+XJ3cTHZdvrSZXq9NJbeY8cxfOIkVm7bfp+5rtzDLNfKbdvJzc9n9ODB95nbh8c9rB5Z166ZhGdcuoStgwMutYIM8QAyL8cYxStKS6cgORmP+vWqPW9udeuSf/cuqjKNgyz935ZbOb2FUlvdC1K1QmGyTa1Q4BYSAvqP17jphzVkxcYaHyMuDq1ajZsV5mlcvnqV2rWCTOuOCAvqjthYGjYwfRht3DDCbN2xbtNmWnXpSotOnRk0YgSbrfg3BuBQ05vizEw0ZX73BfrOEIea3pXuo2fPnjR9/U0avfEWtXr3xdbRdH4XgG/79ijz80k/f+7BM14Jey8virOyjIaLARToH9Tsa5h/EC2tZ8+eNB77ChHjXiGwR09sy9wTy2Pn6IhGqUSjUlU945WIvX2HQO+aJvfnsODaAMRZMNegsLCQrNw8btxNYMay5RQUFdEszHQ4r1qtJjsvj7SsbE5evsyCTZtxtJcTVrt29RSmlKs34gny88OpzLUTEar7e78Wf7NK+8vIygLAzUx9LwgPQ5WG/fzyS/mTpADulnmKtYaMrGxqlBmHChjC0rOq1rOwbPMWbKRSurZqaQi7k6SrgOetXIW/tzcfvzKW/IJCFq1fzzvfT2PRd99Qw8w4+geRlpZGTTM9jyVhKampZtNlZ+egUCjwMnOzKJ22jn5i0ZVr11i5Zg1/zJyJjY1NdWW/XOlZWWZ/VzX0k4vTqtgTtGzjZmykUrq0Nu5BrRsURJOw+gT5+ZKTl8fW/Qf5dclS0rKyeP2ZEeXs7f49rHKlZ2WxaN163nh2pMmDxqPIvkYNUs+dNwkvTNO9CbH38iI77joO+uu1JLxs3PJ64R+E3NOTIjPnpSTMvkYNs+nyExPRajR4hodzq1Rj2CkgALn+GrBzdkaZm4vcwwONWo1C/zBXQqtSocjNxV7fO1md0tLSqGn2719XnnLrjhxd3VESzzitvu5ISzPUHZFNmtC7R3cC/f1JSU3jn1Wr+PDzz8nNy+OZp4ZVV3GM2Do5mR0mVRJm61z+BHl1URGp0We4qVLjmZyIi38AXk2a4ujry9XlS40eKOy9vKjRuAnX160FC4YHPSg7RydUBablKgmzq2Div7q4iLTz54gvVuCVnoqzrx81GjXG0duH2JX/mjxQlCZzdcO1bgjZcbFWKWdGTg6ermbuz66uAKRnm06OL+u3334jVX/NOsjljOrTmz7tTBe9uHLrFhOm/2T4/yAfbya/8gquFfzu7ld6Vqahbi+thocHUPX6fsn6DdhIpXRrW/mEfEGwhio1/idOnIifnx+ycl6hKsz0jFW3YoUCO1vTbMv0rzCLFZYPz9l55Aib9x9gZL++BPremxhaWPLKVwIzPnwfR3t7AOrVrs0bX3/D2l27GVvNN7uiomJkMtPXsCW/6/JesxcVF+njmUkrN0075Ycf6Ni+PR3MVKbWUKxQYmdXwflSWn7N7Dx8mM379jFyQH+CfI0n8k599x2j/+/XuTPvT/uRFVu3MaxnT7xrVG+jqzrLtfvwkXLLNfuff/H39jaaj/Ios5HL0SiUJu8USxpaNvqJ8jb6a1Nj5vekUSiwtcIN3EYmM9swKslbeUNDFDk5JBw8SFDXruTGxJDk44ODqyuNXn0VjVKJ1M4OG5kMpf4Y2nJ6VDVKpaH81amouJy6Q3+s8usOXbjMzrTc5uqdJX/OM4ozdNBAho8ewy+zZjFkQH/s9fVkdZLa2ppd+UmrUhu2lyct+gwaiYS7wXWxib9O7rVrFCQlUbtvP7yaNCXl5AlD3ICu3ciJv0Herar14N4vSTnl0ujDJBWUK/3cOV25/AOxS7hDblwcBSkp1OrZixqNGpN65nS5x6zVuw8alYqkI0eqpyBlFCsrvj8rLKgXhw8fjp9WTUp6OtuPHqNYoUSj1ZoMU6jt68v3b71JkaKYi9dvcObKlXv37mpWrFBgZ2aY1L12RxXuYwcPsWnPXkYNGkiQn1+15fF/geT/8ZCm/zVVavzXrl2b77//nuHDh5vdHh0dTYsWLSrdT3FxsckNKb+oqNxVTkqTyexQKJWoNMYrNhQU6/74bG1tTbaVptZvi46JYdr8BbRq1IgXhz5plKak8mrXtCkymcywLaxuHfxqenH+WmyFxyhNaeGrVblcTnGxwiR+fkGhvlx2Zvdlo89rkX6cu6pUnJJVfGxsbVGqVGzfuZPos+dYtXyZYV8afTmUapXFeQUsLr/Mrrzzpcuvna2dZefrcgzfz5tPq8aNeGnYUIuOP6x3L46fP8+pS5foWWoManV40HKBrmw3btxg/vy/zJbrUmwsOw4d5scPP0CD7lyp9SuVqDVai8/BvUzfx+olJTc8G1uL0quLFUjt7UFRZBRfqm/Mq9VqkMl0/5aE5xcY7UNqb68bYmNhfrUWjl1WK5VIZTKT+BL9q3y1Wl3uvs7OnYvUwYFGrVrRaNYsAG5HRZGfnIx/u3YoVSq0dnaoVSpdw87MfqQyGSql0uL8Wlx3yGTl1B2636utXTl1h/7NX2FxkaHeKPm3sLDIEKfcfEgkDB82lG+n/cC5ixdp1rTs4pPl00gsG2erUamQ2NqYxtc/eKtV6gr3VbKt5N+Mq1fw79wF51q1STp1EgD3evVx9PMnZsliQzxtqfSW5hUwDP+qjEatAhtb032XDDFTV61cmbHX8GvfAaegIJL1E4jL5iu4V2/knp7c2LwRRWGBxXkFUFv4lkBmZ4dSpTSJX6jvlLO1tatwX2qtltq1a9PQXoaNREKn5s155Zvv0KJl3JNDjOLa29vTVD8cqE3jxuw9eZIv5s7jtw/ep26plYEqYmkdKreToVCY1vclDxt2dpXX96qS+v7PP2ndtAkvjRhecRqt7uVMlet5QbBAlRr/LVq04NSpU+U2/iUSCVoLKokpU6bw1VdfGYWNGDGCkSNHVprWztGJu+kZnEo1Hi5QMhY/S2pjsq2shIQE5syZg7ePD4NGjCA6I8toe46N7tdSbCcz2ZedgyMpOTmVHsNg336LokltbIi/dYudZeJf04+fvpucbLINdA1CW1tbzl28SEj9+uw9dNiw7fhp3U3gfMwVrsXfZOqP02nUqBFHT53m6Cld79DFmCsArN+yFWdnZ9zcTF/ZPgg7R0fupqVzMinFuFzX4wHIRGKyrSyj8zV8BGcs/N2n6C/Fi4lJeFRyjKqqrnItXLiw3HLN+nspwcHBpCJhxyXd2PiLCbqxzsfib3KrWIGH/rWzJeTvTrA4bgmZfliLbZ+eyBtWvE43QLFGjVPzSDh6FPn41w3hLrVqAaDu3wd55w6o9N+fcB3/Bhr9+NcSjsG1yczMtDi/lg5eKLK3x6FOHbRl1qSX64e4FEZGoi2nJ04JHE9IwGHHDhwdHSkoKKCwsJBOnTpRXFyM8umndceoUwepjQ1248YZvQmVSCTIXF0p8vMzOX55dh48VHkkdL3f8bdvm8Q31B0pqWb3VVJ3RF+4yN6jxwAM/x7Xf/fg/LVYrt0uf5x2QqpuouO+o8dIy82zKL8ABFs29yFAo8HB3YNbZeJ76c9ZgpMzyRbs607te/M5ghUKJK6uhn2Gde3G3YQE7vgFgJ+u0eiqn0uQEdaA4uJiiqp5rX8/lRoHNzfi/Y2/w1JSrrtye5LLbDPnlt+9Rm4thQKJs4vJPgEiIyNxrVWLU6dOcVcrAQv2baTQsh51mbMLCVnZnCsT/5r+Osl1cDTZZs7FIv3fjsSG2iEh7DhxkjZ9Kl5lyrV+OFpg5fET9LVgzgQAtyz73oGtgwN3UlM5ViZ+yd9Yukptsq2s0vX9wKee5tTdipdzLVAqkRQXV7rf8gxuVnlHrPD4qlLjf/LkyRQUFJS7PSIighs3blS6n48//phJk4yX/Eo9fdKinv+TIXVZtWMn4c6ORpOKYo4dBaB3o4YVDvG4nZTE1/PnU8PVlZnvv4e7q+mEG+/GjVi+HGyLi2hR03g8bFFeHkF+vibh5fGMqPjDYyUunD3L0n/+oV2LFjiXGsd668Z1AEYMfRLfclZ6WVyvHtn6BlS3Du2x1fcerVm1isCAAAb27gXABx98QHR0NNFmPmg0c+ZM6terx79L/rYov5lXYiqPBJwMDWHV9h00cHMxOl9XjusaGX2aNsa7nLHWUOp8ubnyy0cf4K4fO2qJI4m6lXMaB/jT0rfyiYFV8aDlupucwtQFC3BycuKnD94zO3+gIDeH5LR0puqXjCxt4cKFODk6sHH2LIvzfOj9Ty2OW0IRVh+6dEG1bSfFFkzuzHR1x6tpYwCKf50F+gaw63uTUIWHk/Ht92iUSlKDg2HxXzifOkPyuntLl9rXqIHD4MHELV1O8eIlFuXR3svdong5Wi1eAwdit2KF0aRfz2HDoEMHcubPR1LBKk1aOzsKn32WwvnzkSiV2Dk64tavH4lHjiBZtAiA7BYt4NNP8Th1ipTT94ZfeISFIRk0iJzNm5FYuChCj3lzLYp3IfoMS/9dQbtmkTiXGi51K0436XjE4EHl1x2hoeRkZdGtbRv2Hj1Gt7ZtsLW1Zc3KlQT6+zOw1Oom5qTr16Pv1r49TSv5uF1pVyysZ7SBATg3a05wwh2jMfo++vrX+eJ55HnlP3RoJBLu1K5D4M0bhiUxnXv2pDA1hVrxurrV0dERR0dHo9XSSnTt2pWC1BSuLFtqUX4tWVUIgIS7ODdpSt3UZKOhaN6+uvPkevUKDvkVl+uWXwC1Eu/eK5e9nKLUNIITjBuLfu3a4127NncPHsDu/DmCLcuhEdcK1ucvrUmtINbujSMELU4O94aBXdLXxd3rBlPTofyhb2qtlotFCkPPP8A6jRpFURFNKkgHkI8GrVaLk1JRadwSDqWW8a7I6bD6rNyylUZenkaTfq/q3x71b9kCbzNzZ0rcTUpm6kJdfT/zs0/wsmDOoKOdHa5yOW1qVfFB7VEmPvL1yKhS4z8iIgLQDSfRarU46v8Ibt68ydq1a4mIiKBXr16V7kculyMvM/a1wMLxot1at2LFtu1s3bffsM6/Qqlk+8GDRITUxb+m7ok/OT2domIFtf3v9eSlZ2Xz8YyfkUgkfP/eJLzMTBwGqBPgT2itIA6fiSYvP9+wAsuJ8xdIychgaM8e2Fo4ds3c+Edz+vTsyeKlS1m3YYNhnX+FQsGGTZtp0qiR4WubiYlJFBYVUbdOsCFt7x7d+enX37h9+za2trbY2dpyIz6eE6dO8cJzzxnyMPPHH02Ou3XHdrbt2Ml3k7/C19vH4vxaWv4n2rRhxdZtbInaZ1gPX6FUsu3AQSJCQvDXV77JaWkUKRTULvUlx/SsLD76cToSiYRp779XboWZk5eHk6Oj0QewVCoV/2zejJ2tLS0bRlicX0s9aLk+/OFHJFIJY8eOpYa7u9n8vf/ySxQXG48lPX3pEqt37OSNZ0dS28+vauW6nzk5JQ0TtcokvX2NGtg5O5F3565h/PKd3bsJ6tYFPz8/4hUKUCiQubkR1LULCQcPodFP1My5epWc+HjqDujP9VVr0OpfbYcO7I9Wo+H2rt0W51di4TK8iQcOEDpkCLW7dzes8y+1tSWoWzcyY2IoTkpCgq5BYCOXk2dmZRKt/ngSpZKIZ59FKpVyfd06Qx7ST59GkZNDcK9epB47ZkhXp1cvVEVFpBw9anF+La47evRg8bLlrNu40bDOv0KhYMOWLTRp1PBe3ZGkrzuCgw1pe3fvzk+//84VfQ+mra0td+7e5cTp07wwapQhDxmZmXiWecuUn5/PshUr8XB3p2mjhhbnF7BozX2AnGtX8WnRkpoNGxnW+ZfY2FCjQUPyExNR5+YiBexcXJDa2lJcauKljYMDSn2PvVSrRarVUqNJU+wcHUmJjzfk4cbG9SbHda8fhkdYOLe2bUWRl2dxfi0uV2ws3pHN8IpoaFjnXyKV4hkWTkFSEuo8fbmcnXXlKvV2zMbeHqV+uElJuTwbNsLOwZHUWzeN8uAV2QzvyGaknDpJxrmz9728n42FQ4S6NItk9e49bD982LDOv0KpZMex44QH1zYsx5mSkUGRQkkt33sPpZm5ubjqV6yykUiwkUhISk8n+upV6teqZchDXkEB9nI5tmUWrNh+RNcBGFa7lsX5tfg+1q4t/2zazOY9ew3r/CuUSrbt209EvVD8vXX1fVJaGsXFxdQu9XXs9Kws3psyBalEytixY/Eqp743IdGNzKrue5cgwH1+5Gvw4MEMHTqU1157jaysLNq0aYOdnR1paWnMmDGD119/vfKd3KeIkBC6tmrF3FWryczNJcDbm+0HD5GUls6HL71kiPfd3HlEx1xh36IFhrAPpk8nMTWVrl27cv7qNS5du7ccn4ebG60a3eulf/PZkbw37UfGf/sdA7t2Jb+wkBXbthPk68tgK6xB3qRxI3r36MHM334jIzODWkFBrN+0iYSEBCZ//h9DvI+/+JyTp05zQd/jAPDM00+zau06FixYgI1Wi1wuY9GSpdTw9GTM888Z4nXv1tXkuDFXdcN+OrXvgIeZ1QweVERoCN1at2buipVk5eTovsh84CBJaWl8OO5lQ7xvZ88lOiaG/UsWG8Len/YjiSkVnC99T+Oh02dYvG49XVq3wq9mTXLz89l5+Ag37tzhleFPV/vKTNVRroSUFJ7p34/4+Hh2ZmYYblaly9W6cWOT4+bp37xFhocRboVlI0uEPjUUOxcXHPTDEPw7dsDBW/f2JHbFKpT5+TR+41Xq9O/HpiefoiBRNxzpzp4o0i5cpHnz5jiOeZ7ijAxChz6JxEbKxXnGHws7++sfdPxhKp1nzuD2rt241q1L6FNDub5hE7lVXDrPEllXr5Jw8CANRo9G7uZGfmIiQU88gaO3N0dKrWQW+c47eDVuzMaBA0v9Pp7CJTiYDA8P6N0b31at8G7enJi//ya71NKmGoWCmKVLafL667T48ENSz5zBMyKCwG7duLx4McoKeqnvV5NGjejdvTszf/+DjIxMagUFsn7zFhISEpn86b2PHn785VecPH2aC8fvPZQ889QwVq1fz9vvvU/bdu1IuXuHJf/8q6s7Rj1riLd85Sr27NtH104d8fP1JTUtjbUbN5GYlMSUr740OxmyOhQkJZF19Qp+HTpi6+hIcVYWnhERyFxdub1rhyFerd59cA4M4uzPMwxhES+NJfPaVew0WtxcnXH2C8A9LIzClBSj5Txz4uJMjluyhGhO/A2TtfKrQ2FKMlmx1/Bt0xZbBwfdF37DwpG5uHB97x5DvMDuPXEOCOD8H78ZwsKfH0NWXCw2KjXuHu44+/rhVq8ehampZFy6aIjnWqcufu07UJyVRXFmBu71jZfLzLt922TZ2wfVIDiYzs0imb9hI1l5efh7ebHj+HGS09N5d9S9Yb3fL17CudhYdv527+/ule+mElm/Ho4+vtx1dSExLY2th4+gUmt4efC9v8Wz12L5fdVqOkc2JcC7JkqVmgtxcRw8e476tWrR3Qrf0mhYrx5PtG3L7OX/kJmTQ6CvD1v37ScxNZWPX3vVEO+b337nzKXLHCr18blJ304hITmFkQMHEh8fz47cnHv1vbsbrZs0McSNvnSZ6Mu6j69l5eRSVFTMwtVrAIhs0IBIM9+IEYT7cV+N/9OnT/PTT7oltlatWoWPjw9nzpxh9erVfP7551Zt/AN88so4/lqzhh2HDpNXkE/dwCCmvjOBpuEVf2Y+Vv8NgKioKKKiooy2RYaHGTX+mzdowLT3JjF/9VrmrVqNvUxGx+bNeW3EcMPqP9Xtu8lf8essPzZu3kJObi7164Xy+88/07J5xV+adHJyYt4ff/D+p5/y54IFaLRaWrVowYfvTjLprftv+OS1V/BZtZrtBw+RV1BA3aAgvn/3HSIr+CQ6QOwt3TwO8+cr3NBIrhsUSO2AAHYeOkxWbi62trbUq1WLr8a/Rbc2ra1SJnjwcv2zeYvJttLl+m8KGzUSp1Lj3wO7dSWwW1cAbm7bXu5XarUaDQc++Jjms36l3rCh2MhlZFyO4fjX35Jb5hsciYcOc+ijT2n48os0mzSR4qwsYhb9zcX5C8zuuzqcmTGDsOeeI7BbN+ycncmJj+f45MlkXLxYYbqc+Hh827XDp04dJPXrkxMfz8mpU0k8ZDqW/uaWLWhVKkKefBKfNm0oSk3lwrx53NhgvS8zf/flF/w6x5eNW7fq6o7QUH6fMYOWzZtVmM7JyYkFs/5g6oyf2LNnD1FRe2nVvAUfvjPRqO5o1rQJ0efPsXr9BrKys3F0cKBRRARff/YZbUotk2wNt7Zvw7ddBzwaNMBGbk9RWho3Nqwjv5KlpTNjYnD09yfM1RWbBg1Q5uSQevIEycePlbsi08N0Z/culK3b4F4/DBu5nKL0dOK3bKYg0fwHDEtkXbuKo68fYS4u2EilKHNzST1zmtRTJ43KVbJcrtzdnaAepm/kr69bi6qw+pfn/nD08yzctJldx0+QW1BA3QB/vn7tVZqEhlaYbmDHDhy9eJE7ly6zvbgYdxcXWjQI59levagTcO/NaR1/PyLr1ePw+fNkZOegBfy9vHiuT2+e7tG9Sm+gquKzt97A598VbN9/gNz8fEJq1eKHDz+otEEee1PXkbF840aTbc0iGhg1/k9duMBfq4y/7jzv3xUAvPTUsP/5xv/j+kGtR5FEa8kM3TIcHR2JiYmhVq1aDB8+nIYNG/LFF19w+/ZtwsLCKpwXUJ6ko4crj1QNVBoNp1LTaVGzxkN5nVajkWnvrTUoVSp27ttPzy6drVb5lZZx+ZLVjwG683UyKYWWvt7/715/Puyy7Rv/rtWPAYBMhvzdCRRPn3l/Q42qyKHmw3nA1drZoR0zBsmiRRYP3XkQfSwcF18dlCoVOw8eomfHDg+l/ri04C+rHwP0Y+OD61Ir/rrFQ3IehMVj/h+QRiIh3j+Q4IQ7D6VcbvWq/6N75qi1Ws4VFtPEQW7x0J0H4ehdvXPBKqLSaDh26w5tagU+lPreq2nFD/7/DXm3H85SulXlHFT9H4Z71N3XFRgaGsq6deu4ffs227dvN4zzT0lJwbUKEzIFQRAEQRAEQXh47qvx//nnn/Pee+8RHBxMmzZtaNeuHQA7duygWbNH72lTEARBEARB+O+RSKSP5M/j6L7e7z711FN07NiRxMREmpb6sEv37t158sknqy1zgiAIgiAIgiBUn/se3Onr64uvr69RWOvW1ptcKQiCIAiCIAjCg7H+zC5BEARBEAThsSb5f7Zox/8ycSYEQRAEQRAE4TEhGv+CIAiCIAiC8JgQw34EQRAEQRAE6xIf+XpkiJ5/QRAEQRAEQXhMiMa/IAiCIAiCIDwmxLAfQRAEQRAEwaoe1w9qPYrEmRAEQRAEQRCEx4Ro/AuCIAiCIAjCY0IM+xEEQRAEQRCsSiJW+3lkiJ5/QRAEQRAEQXhMiMa/IAiCIAiCIDwmxLAfQRAEQRAEwbrEaj+PDHEmBEEQBEEQBOExIRr/giAIgiAIgvCYEMN+BEEQBEEQBKsSq/08OkTPvyAIgiAIgiA8Jh6Znn8be/uHchytRmM4no3U+s8+RWmpVj8GgEqtBqA4PQ21jY3Vj6fVH8/qx9GfL61ajVarfSjHlLu7P5TjSNVqIAWZszO2D+GcOdT0sPoxALR2dmgBey93JEql1Y9XmJpp9WMAIJMhB4rSskChsPrhbqQVWP0YJdT6v+eb6YXYPIRrsTAlxerHANDY2EBwXQrT0vR/b9YV0P0Jqx8DQK3VQn4RbvVCsZFYvzdVamtn9WMAoNVCYTE2MtlDKZftQ2p3AKC//mzl8odS3wtCRR6Zxr8gCIIgCILw/5NErPbzyBBnQhAEQRAEQRAeE6LxLwiCIAiCIAiPCTHsRxAEQRAEQbCuhzCPQ7CM6PkXBEEQBEEQhMeEaPwLgiAIgiAIwmNCDPsRBEEQBEEQrEoihv08MkTPvyAIgiAIgiA8JkTjXxAEQRAEQRAeE2LYjyAIgiAIgmBdUtHf/KgQZ0IQBEEQBEEQHhOi8S8IgiAIgiAIjwkx7EcQBEEQBEGwLrHazyND9PwLgiAIgiAIwmNCNP4FQRAEQRAE4TEhhv0IgiAIgiAIViaG/TwqRM+/IAiCIAiCIDwmRONfEARBEARBEB4TYtiPIAiCIAiCYF1i1M8j43+u8a9QKvlzxUq2HzhAbl4+IbVr8cqI4bRq0qTCdPuOHWf3kSNcjosjLTMLXy8v2jdvxgvDhuLi5GSIl52by+a9URw6dZqbd++iUqup5e/PiP796N6+nXXLplAwe/HfbNm9h9y8PELr1OH1MaNp26J5henib99h1aZNHDkTzWcJCSiUSjYsWoi/r0+F6e4kJDD8lddQKJUs/nUmEfXrV2dxDBRKJX+tWcuOw0fIzc8nJCiIl4cNpVWjhhWm23/yJLuPHudcXBz5eXl4e3rSLrIpowcNwsXJ0SR+QWEhizZsJOr4CdKzsnBzdqZhaCifvDIWe7ncKuWau2w52/ZG6cpVuzavPvcsbSIjK0x3885d1m7bzoWrV4iJu45KpWLN3Dn4+3ibLdOcpcvYc/gIWdnZ+Pv6MHzAAIb17VPt5SlNamtL2KhRBHbrhp2zMznx8cQsWUJadHSlaf07dCC0Sxdc+vZFVVhI8rFjXF60CEVOjkncoJ49CXnySRx9fChMS+PGxo3Eb9pkhRLp2Do4EDZqJJ4NG+IZ0QC5myvHv/6W+M1bLUtva0uj9yYR0KkDtvb2ZFy6TPQvv5F15apJXP9OHWg49iVcg4MpyswiftNmLi1YhFatru5iGcnLy2PhX7M5cvggxcXF1A8L56WxrxMaWvHft0ajYfeu7Rw7eojrcdfIzc3Fx9eXzp2f4MlhI5DJZCZpdmzfzNo1K0hOSsSrpjcDBw1l4KCh1VoeiY0NQT164tWsObYODhQkJXJ75w6yY2MtSu/v70/4uFdx9PVFq1ZTmJLC7Z07yLkeZxTPztmZwB498QgLx9bREWVeHtlxsVxfs7pay1NCoVSyaNMWdh0/Tm5BIXUD/Hlx4ABaNAivMN3B6LNsPHCQq3fuUlRYgJuzCw3qBDO6f1/q+Psb4mXn5bPtyBGOnr/AraRkVGo1QT4+DHuiK91atrBKmUrKtXDDRnYePUZuQQF1AwJ4acggWkZEVJhu/+kz7D1xkvM3bpCfm0tNT0/aNWnM8/374exoXN8XFhUxf/0G9p86TXZeHn5eXjz5RDcGd+1i1XLNXbqMrVFR5OblExpcm1dHjaJNs8gK0928c5c127Zx4cpVYuLiUKlUrJ03B38f4/vzqfPneePT/5S7n9eeG8WLw5+ujqIIwv/esJ9v/5jFv5u30KtjRya8MAYbqZT3pk7jbExMhemmzZvHzbt36dmxI4MGDaJ10yas2b6D1z77nGKFwhDvwtVrzP3nX1ydnRk99EnGPTMCe7mML2b+wvwVK61ati+nz2DpmrX0faIb777+KjZSKRP+8znRFy5UmO785cus2LCR4uJigoOCLD7e9DlzsbGxedBsV2rKvPms2L6Dnu3aMn7Us0ilEj6c8RPnrpo2mEr7ccEibiYm0qxZM958diStGzdi7a7dvPH1N0bnDCCvoIDx301h6/4DdG/bhnfGPM+wXj1QKJUoVSqrlOvrmb+wfP0GenfpzDtjX8ZGKmXS5G+IvnSpwnTnr1xhxebNFBQW4e1t2uAvoVarmfDlZNZs3Ub3Du2ZOPZlagcE8MPsOSxcuaq6i2MkcuJE6g4Zwp19+7gwbx5ajYY2X3yBZyU38Np9+9Ly3XdRKpVcXLiQW9u349+5M22/+QapnZ1x3D59iHz7bXJv3eLCnDlkxsTQ+NVXCRk2zGrlkrm76RvktS1uPBpIJLRt25ZaPboTu2oN536bhdzDg25//IpzUKBRVN92benw/RQUuXmcmfEzCfv30+DFMTR7d2L1FcYMjUbD5C8+Yl/UbgYMfJIXX3qFrKxMPvnwHRLu3qkwrVKp5NeZP5CdnUWffoMY9+qb1K8fzrKlC/ny8w/RarVG8bdu2cCvM3+kVq1gXn39bcLDI5g7+1dWrVxerWUKeeppfDt2Ii36DPGbNqLVaAkb8yIutWtXmjao2xO0bNmS4pxsbm7ZxO2dOyhISkTm6moUT+bmRqM33sK9fhjJx49xY8N6Uk6ewLZUx1B1++HvJazavYcnWrXijaeHIZVI+eT3WZyPjasw3Y2EBJwdHenYsSNvjRjOwE4dib19h7e+/5G4O/fO8eUbN1iwYRMujo6M6tOblwYNwF5mx7d/LWTRps1WK9f3CxexcucuurdpzVsjhiOVSvn4l984f63iv7cZfy/hVlISzZo1441nhtO6YQTr9kbx1tRpRvW9WqPhg5m/sHHffrq2bMEbw58myMeHmcuWs3SLZQ/x92Pyz7+wbP0GenfpwjtjX0YqlfLO5K8tqO9jWLFpMwWFhRXW98GBQXz5zkSTn5KHi8oeMgShKiTasjV6JRITE9m9ezeenp706NHDqDcoPz+f6dOn8/nnn1c5I6nRpyuNcyk2llc+/Q9vPDeKZwcOAKBYoWD0ex/g4ebK7K8nl5v29MVLNG8YgUqj4fjtu7QOCmDngYN8+8csPnxlHAO7PwFAQkoKUokE35o1DWm1Wi0Tv/mW81eusvnPuTjY21tcLnt3d4viXYi5wgsTJjJh7Ms8//RThrKNeOU1PN3d+evnGeWmzc7JBQmcuh7P7Ssx/Dr/r0p7/o+cPMWkL79k9NNPM3/Z8ir3/OcnJVkU73LcdV6b/DWvjxjOM/366sul5MVPP8Pd1YU//vNZuWnPXI6hcVh9TqWm06JmDWylUrYdPMSUeX/y/osvMKBUL8+MRYvZffQYf07+Er9S5+5+yC04ZxevXuXl9z9k/AtjGPXkEH25FIwaPwEPNzfmTZtabtrs3FxsbWyRy2VMmb+AzZs3m+35333oEJ9O+5FPx7/JwB49DOEfT53G4VOnWDtvDp4WXl8AB9//0KJ47vXq0WnGDC7+9RfX164FQGpnR9fffqM4O5tDH3xgNp3E1pZef/9Nzs2bHIqNRbJoERKlEu9WrWjz+eecnzPH0KsvlcnouWABmVeucHzyvb/bZpMm4du2LbtefBFlfr5F+S1MzbQoXkk5ZC4uFGVk4BEeRs+F8y3u+Q/s3ZP2X33B4f98yZ2duwDdtdJ3xXISjxzl2BdfGeL2XvY3GpWKXS+ONfT0N3p1HA3GPM+2kc+Re/NWpceLXLrC4nKVOLB/L9OmTuajT76kQ0fd30d2dhavjnueFi1a8/6H5nsW1Wo1l84fR2rrRMNGxm9Rly9bxLIlC/n62x+JbKbrMS4uLubFMcMJC4vgi6+mGOJO/+Fbjh45yIJFK3B2cSk3nxnzf7GoPE6BgTR+4y1ubtlM4sEDgO46azphIsq8fC7OmVVuWuegIBq++joXLl4kd8U/SCt44xI25gUcatbkwu+/oyossChv5gTo7yOViYmP561p03nlySEM79kd0PUsj/3mO9ydXfjl/UkVpldrtZzNL6Kpkz02EgmZOTk888l/6Nu+HROffQaAxLQ0pBIpPjU8Dem0Wi0f/PIbF+Kus+aHqThY+EZUamtXeSR0DxxvTvmeV58ayohevQzleunLybi7uPDbR+brDoDoK1doXL8+Z7Jzaebmgo1Ewo4jR5m6YCHvPv8c/Tt1BCDq5Ckmz53H+6Ofp2/HDob0X86ew9HzF1g+5Vs8yjzclcfJ19eieBevXuWl9z5g/Isv8Fyp+v7Zt97Gw92NP6d9X27a0vX9d3/+xebNm832/Jdn2KuvI5FIWDX7D4vil3APa1Cl+A+DssCyOv1hs3O03kP+o6pKPf8nTpwgIiKCN998k6eeeoqGDRty8eJFw/a8vDy++uqrCvbwYKKOHsNGKmVwqQpWLpMxoFtXLly9RnJaerlpmzc07bHs0roVAPF37xrC/L29jRr+ABKJhE4tW6JQKklISXnAUpi3++BBbKRSntQ3kEFXtsF9enPu8mWSUlLLTevm6oKTo+kwmPKoVCp+nDWbZ4YMIdDP74HyXZmokyexkUoZ2K2rIUwus6Nf505cjI0jJb38c9bMzOvvzvohUDcTEw1hufkFbD1wkIFdu+BXsyZKlQqFUlltZTBnz+Ej2EilDOndyxAml8kY2LMH569cITk1rdy0bi4uODk6VHqM6IuXAejZqZNReM9OHSlWKNh//Ph95r5ifh06oFGrubVtmyFMo1Rya+dOPBs0wN7Ly2w619q1kTk7k3DokFF4yokTqAoKCChVDq/GjZG5uhK/2bgHMn7zZmwdHPBu1aoaS3SPRqmkKCPjvtIGdelCUVERd/YfMIQVZ2Vxe/ceAjp3NLzZcA0Oxq1uHa6v32A0xCd29RokUimBT3R7sEJU4NDBfbh7eNCu/b3ftZubOx07deXY0cMolYpy09ra2hLewHQoXrt2un3dvn3TEHb+3Blyc3LoP2CwUdz+A4ZQVFTEiRNHH7QoANRo1BitWk3KiXvXulalIuXkSVxq10bm5lZuWt8OHVHm5XH9+nVA98Bpjn3NmniEhZN4YD+qwgIktrZIpNZ9Kb7/dDRSqZT+HdsbwmR2dvRp145LN26QkmH5Ay2Au4sLcpmMvMJCQ5ifl5dRwx9097L2TZqgVKlIrOB+eb/2nzqNVCplQKm/dZmdHf06duDS9eukVPC3FxkWZhLWUd/bfatUZ9N5/Ru7bmXqiG6tdPfoQ2fPPkgRzNpz6HD59X3MFZJTK7g/W1jfm3Px6lXuJCbSp0vn+0ovWMfvv/9OcHAw9vb2tGnThuOV3ItXrlxJeHg49vb2NG7cmC1bthht12q1fP755/j5+eHg4ECPHj24du2aNYtQtcb/J598wpNPPklmZibJycn07NmTLl26cObMGWvlz8jV+HiC/PxMGroNQkMBuHYzvkr7S8/KAnQVZ6Vxs7MB3R+yNVyJjaNWYADOZV4zNwzT9cZfvV7xq+CqWLZ2Hbl5ebw88plq22d5rt28SaCvL04OxpVfg7p1ddtv3a7S/jJKzoOzsyHs/LWrKJRKAnx8+PzX3+k97lV6jXuVN7/+lmsW9LDej6vXbxDk729yLUbUq6fbfuPGAx9DqVJiI5Via2s8Nadk/sKVSoYH3C+3unXJv3sXVamGBECWfpiWW506ZtNJ9flUK0wbmGqFAreQEMPn3d1CQnT7LDP0JisuDq1ajZv++niUuNcPJTs7G8q8LM24dAlbBwdcaumG3LmH6a6BzMvGQxGL0tIpSE7Go349q+Xx+vVYQkLqIy3TeK1fP5zi4iLu3ql46I85mZm6Bpur672Gdlyc7ryF1jNusIWE6o59Pa56blyOfv4UpqehLi42Cs+7c9uwvTxuISHk3b1L3bp1afXRJ7T+cjLNP/oEn7btysTT3T8UeXk0eHksbSZ/Q+uvviZ8zIvI3T2qpRxlxd65Q6C3t0m9GB6sG8oUZ8F5KiwsJCs3l+t3E5i+ZBkFRUU0C6v87W2mfu6Nm3P193bG3r5NkI+5cgXrt1ft+jNX3yuVKqRSKXa2xkNW5fqHO2vU+Vev3yAowN9k7kHD+tVX35uzbd9+AHp3sd5cBqFq/v33XyZNmsQXX3zB6dOnadq0Kb179yalnI7hw4cPM3LkSF5++WXOnDnDkCFDGDJkCBdKDeeeNm0av/zyC7Nnz+bYsWM4OTnRu3dvioqKrFaOKjX+T506xUcffYRUKsXFxYU//viD9957j+7du3PixAlr5dEgPTOLGh7uJuElYWlV7C1Zun4jNlIpXdu2qTBeTl4em/bsoWl4OF4e1rkZpGVk4OXpaRJeEpaafn+9leaOM3/ZMl4b87zJg4Y1ZGRlU8PdtHeuJCw9q2rnbNnmLbpz1qqlIexOUjIA81auIiUjg49fGcvE558jITWFd76fZnjIq07pmRl4eZpeCyXXR9p99i6XVivAH7VGw4UrV4zCS8aYVtSL9iDknp4UZZqel5Iw+xo1zKbLT0xEq9HgGW78xsYpIAC5uzs2cjl2+pu43MMDjVqNQn9zL6FVqVDk5mJv5m/hv83es4bZyrhQ34Na8kbEoYaXUXjZuOW9OakOmRnpeJr53Xl66s5ZRkb5b6TKs2bVPzg6OtGi5b16MjMjHalUinuZxrGdnR0uLq5kZFRPr7LM1QVlbq5JeEmYzNV8Z4yNvQN2Ts641KpFgwYNuHtgP1eXL6UgMZE6gwbj3bq1IW7J+ag7ZChalZqry5dya/s2XIKDafDyyyZzVapDRnYONdxMh6aUhKWX+bsw57fffmPER5/yyrdT2Hf6DKP69qZvJYtS5OTns+XwERqHhlCjgrcm9ys9OwdPM/v1LClXFevif7bvQCqV0rl5M0NYkK8PGo2GS9eNG9wlcwpSrVDfp2Vmmr331/DQ35+r2PawhFqtZteBgzSsX48gf+u+oRcsN2PGDMaNG8eLL75IREQEs2fPxtHRkb/++sts/JkzZ9KnTx/ef/99GjRowNdff03z5s357bffAF2v/88//8xnn33G4MGDadKkCYsXLyYhIYF169ZZrRxVfrdZ9ub30Ucf8cknn9CrVy8OHz5cbRkzp1ipwM7M2EOZvnJWmOlxLM+uQ4fYtHcvIwb0J6iCoS8ajYavfv2NvPwCJr74QpXzbKliRTF2Zm4yJXMqisv0fN2vX+f/RYCvH0P6WHe1mBLFCgV2tqaLSpWcs2KF5cNzdh45wub9BxjepzeBpcZqFpb8biQw48P36dmuHUO6P8E3b79Nbn4+a3ftfrBCmFGsUJRzvuwM2x9U786dcXZy5Ntff+NYdDQJySms276D1Vt1w3GKix/8GObYyGRozAyb0ujLVN7wCUVODgkHDxLUtSshISE4+vjgGRFBiw8+MOzPRp/WRiZDW85EbI1SiY0VVmd6UDZyGRqNxiS85PdSkmcbua6MGjNDbDQKhVXLplAosDVzXdrZldQjVbtmVvy7hOjoU4x5cRzOpXpfFYpis8cBsJPJqq2+ktraoTFznWiUKsN2c0rOgZ2TE2fOnCHh0EEyzp8nZvFCCpKTCeh6b+hoyTWpzMslZvFCMs6fJ/HgAa6vXY19DS9qNI2slrKUVqxUmq0XS+qUYguGLQ4fPpxv33ydt58ZTi1fHxQKJZoKpvBpNBqmLFhEfmEhbw1/6v4zX4FK6/sqDMfcfew4Ww4eYnjPHgSWGh/fvXUrnBwc+GHRYk5eukRSWhqb9h9gQ9Q+ABRVuKdYqrz7s7ykvq+m6720E+fOkZGVJXr9HyEKhYJTp07Ro9QcPKlUSo8ePThy5IjZNEeOHDGKD9C7d29D/Bs3bpCUlGQUx83NjTZt2pS7z+pQpaU+GzVqxOHDh2lSZlnN9957D41Gw8iRIy3aT3FxsckfS35RkeG1XXlkdjIUSiWqMjfgksafrZ2dybay1BoNN27cYP6ff9KqSRNeGv50hWl+/msBx6LP8skbr1GnVlCl+y9LZeGyfnKZDIVCYRK/UP+wZWdnV+G+Srap9flTadQm8S/ExLBl9x5+++5bNFotGrXaEF+t1licV93+Lfs9yGR2Zs9Zgb4RYmtr4zIkfAABAABJREFUW+G+SvIXHRPDtPkLaNWoES8OfdIoTcnNpl3TpshkMsO2sLp18KvpxflrsVU6bzYW/B5kdubPV4H+fNna2lb6+yydJ7WZ8+Xm6srUjz7i65m/MEE/mdTJ0ZGJL7/Et7/+hoO9vErnTGthD6ZaqUQqk5nEl+hfeavV6nL3dXbuXKQODjRq1YpGs3STMW9HRZGfnIx/u3YoVSq0dnaoVSoktrZm9yOVyVAplRbnl0rqjXKV7N/G1qJ9qBUK3XCaMnGl+jdoarUaZDLdvyXh+caTR6X29rphUZYcr4Jzq1Qqycsz7hF3dXVDpq9HyqYtKi6pR2zN7rckrPS2gwf2smTxX/To2ZfefQYYbbOz050jc/tSKhTISv0ezNFYuMqYRqVCYmtnGl/fuFer1Wb3VfK3pVGpSEhIoEapYVBpF85Tq3sPbD09UWRno1ap9eEX0JSKl3rpEiFqNc61g0k+U/mCFKCbiGsJmZ0dCqXKJH6R/kHSztauwn2ptVpq165NI0c5NhIJnVs0Z9zkb9EArwwdYjbNbytWcuLSZd4f/RzBAQEW5xUwWempPHJZeeXSNcjt7CovF8DZq9f4YfHftIyI4IXBg4zSuLm6MvmN1/l+wUI++Fk3cdzR3p63nhnBtIWLsJfLLS6bpfWnrr5XllvfV3Z/1h2rdH1f+f1269592EildGvfrkr1vFB15tqkcrkceZmOmrS0NNRqNT5lJmv7+PgQU86Kk0lJSWbjJ+nnsZT8W1Eca6hS43/06NHs27eP1157zWTbBx98gFarZfbs2ZXuZ8qUKSYTg0eMGFHpw4OdgwN3UlM5fvuuUfg1/eu+DLXGZFtZCQkJLFy4EG8fHwY9/TSnE8r/5e7cuZOdO3fRt29f3IPrVrpvsyxMYyOTcysxif0XjJcNK5n0kZyXb7LNnJv6icHHr1zDM9X41fusWbMIDg7mdnYOt/cfBOD8Vd3+90Wf5WpyCh7VPKzJztGJu+kZnCqTl5JxmVlSG5NtZSUkJDBnzhzdORsxguiMLKPtOTa6y7jYTmayLzsHR1Jycio9hhEL4tra23M7OYXDsdeNwkvOV1qxwmRbRU7F38IzJ890g9yed957j6SkJBQKBX5+fuTox+xKHRyrdAzGjLEoWpG9PQ516qAtE1+uHx5RGBmJtpy3ZUrgeEICDjt24OjoSEFBAYWFhXTq1Ini4mKUT+vWqS6qUwepjQ1248YZvbGTSCTIXF0p8vMzOX557rcfXaZfKcm2T0/kDSteWx2gWK3G3t4e+fjXjcJdatUCQN2/D/LOHVAF6pb9dB3/BpoyQxAcg2uTmZmJ/N0JlR7v6uXyG5xxcXHMmTPHKOyjjz7CycmJO7dumKSNuaibl5WTlVLxfq/qJktevXqVBQsWEB4eTvcnOpukUauK0Gg0nD6x3+iNgEqlIicnG7SqCo9Dy9blbyslTyLBwdub1DLxvfTXYqqPr8k2Qx7VasMyv+nN7w0TdPKqSS0gt0UrcnJycHd1xQ/IqOFlsi+FUonG37/cY5SVmm/ZGF2ZszMJWVmcLRP/WrJuWFaOvYPJNnMuFJQ0WKTUDglhx/ETtOlt+lZ3586d7Nx/kL59+1KzUROL9m3Msvh2Ts4kZGZyJtv4wfRagm6Bhmw7mcm2skrX94NHjuRcnpnVl3x8mfTBB2brRTt390qPYWBhPF19n8yha8bzrErq+9SiYpNtFTl54yaeFRxbqVSy98gRQkJDuZyabtE9qazBEY2qnMb6Hs2vfJlrk37xxRd8+eWX/50MPQRVavyPHTuWsWPHUlhYiFarxVHfE3jz5k3Wrl1LZGQkNyyY+PLxxx8zaZLxUmYZly5U2vN/Kqw+K7dspWEND6OJlldPnQSgX8vmeJczHhngbnIyUxcuwMnJiZmffkyNCpZJXLtjBzt37uSpvn14a/RzlZapPPYWjqs826Qx/6xdR4u6wUZlu35RNynkyW5d8KlgCUuVWs3hy1eo7a2L0zqsnslSYjPy80lKSWHqVNNlKBcuXIizkxO7Vv5rUX7zk5MtincypC6rduwk3NnRaBJYzDHdaiC9GzXEu0b547tvJyXx9fz51HB1Zeb77+FuZoyvd+NGLF8OtsVFtKhpfP6L8vII8vM1Ca+I3IJzdiaiASs2bqKpv6/R+YqN1jWyBrZvi08lY7tVGg379uleVbcIroVfBWtAUz/U8J9r9MN+BnfpROtQyyfGHvnPFxbFy9Fq8Ro4ELsVK4wm/XoOGwYdOpAzfz6SClZp0trZUfjssxTOn49EqcTO0RG3fv1IPHIEyaJFAGS3aAGfforHqVOknL7XSPQIC0MyaBA5mzcj0f9uKlOUlmVRvLIUYfWhSxdU23ZSvG17pfEz3T2p2aYVxb/NhlK9RK7vTUIVHk7Gt9+jUSpJDQ6GxX/hfOoMyes2GOLZ16iBw+DBxC1dTvHiJZUer/Gfi8rd5h9UD/9A43PfIKIxYQcOc+nieULDIo0m/e7cHYVcbk/7Tj0NQ4BKU6vVxF09S0j9psTFXmXJkiXUqx/Ol19PM+n9AsjJU7B9+3Y0Ejn1G9z7CGHM5YtotVqat2xvFF5W5t+VdxIBKGt4UrNde3zPnzWa9BvQWTcUwvbAfmrmmB8fX9CsGc4BAUgkEjxPnUCqfxvgqa9DnE8cQ56bC1kZEBFBjcwMCk7eW7VDYmODfMAAJHfuUPOkZStr+Vu4KkvTWkGs2RtHqFRrVC9eStI1kruH1sHbqfwlpdVaLRcKig09/wDrtBoURbrlP0vbsG8/O3fu5MluXXltQF/TnVnA0qU+I4Nrs3r3HurLbI3KdTlFd7/oGVYPb7fyF824nZLC1/Pn4+nqwk8T3658MQ6Pe3X1hku6lQf7RDahWQXHKM2xojq3lJL6PjLAeMGR2LPRAAzq0K7y+l59r75vWad2hfX9roOHKC4uZkTf3nSoF2JRHoX7Z65Naq7e8/LywsbGhuQy7Z/k5GR8y1k21tfXt8L4Jf8mJyfjV6pTLTk5mchKPhj6IO5rPbPBgwezePFiALKysmjTpg3Tp09nyJAhzJpV/rrLJeRyOa6urkY/Tvb22EqlFf480bYtGo2GzXujDGEatZpt+/YTERqKf82a2EqlpGVkcDcx0Shtdk4O70+ZilQiZezYsdRwdy/3OPuOHuPXhYvp1bEDE8aMrjRfFf7Y2Fj007NzJ9QaDRu2bTeEadRqNu/cRaPwMAJ8fbG1sSEtPZ07dxPM7gPARn/Dt5Wabv9s4tv8+MV/jH5GDB4EwMRxY/nmww8szq+l5e/WuhUajYat+/YbnbPtBw8SEVIX/5pe2EqlpGdmcjcpucw5y+XjGT8jkUj4/r1JeLm7mT1GnQB/QmsFcfhMNHn5+YbwMxcvkZKRQatGjar9nHXv0AG1RsOmXbvvnS+Nhi17o2hYvz4BPj6685WRwZ3ExHJ/hyVszJwvcz+5eXksW7ee0OBg2jZrZvn5srFBolRa9JN44ABSGxtqd+9uCLPRagnq1o3MmBiKk5KQKJU4urvj4uNjdh+A4b8jnn1WtwLMunWGsPTTp1Hk5BDcq5dRujq9eqEqKiLl6FGL84tCcX8/JeOP1SqTbfYuLrj4+SJRqw1hd/buxd7ensC2bQxhMgcHgrp2IeHgITT5+aBQkHP1Kjnx8dQd0B+J6t6+Qwf2R6vRcHvXbovyZ2NjU+6Pm5s7zVu0NvpxcHCgY8cuZGVlcvzYYUPcvLw8Dh/aT+s27bC3dzCEp6QkkZKSZPh/gISEO3w9+VO8fXz54sspODo6mj1+ZLOWuLi4sn3rJqPwbVs3IZfb06Zt+wrzL1WrLfrJPHcOiY0Nvs1bGMJsAO9mzcm9dQtVZgZStRp7Z2ccPT2N0qafO4vExoZatWoh1Wh0aSUSajZpSkFyMuqsLKRqNbmxsSjycqnZpCk2EokhvU/TSCQ2NuRcu2pxfm0kEot+ujRvhkajYduhI4YwtUrFzqPHCA8Oxs/TExuJhLTMTO4mJxulzcnLMzT4S8JSMzKIvnKV+rVrGcXdf+o0s1aupnurlrzx1FCL83e/P11btNDV9wcPGpVrx5EjNKhTB78aNXTlytDV96XTZufk8OnMX5FIJEx9+21quLpafNzcvDz+3b6DuoEBtGrQwOJ0ltadPTp2RK3RsLFsfb9nr+X1vU3p+r7i+8yuAwexl8t5on37KtXxZdsDgmXMtUnNNf5lMhktWrRg9+578wg1Gg27d++mXTvzk+3btWtnFB90b+JK4tepUwdfX1+jODk5ORw7dqzcfVaHKvX8lzh9+jQ//fQTAKtWrcLHx4czZ86wevVqPv/8c15//fVK9nB/GtYLpVvbNsxZ/g9Z2dkE+Pqybd9+ElNT+ejVVwzxvvn9D6IvXebgv/e+NPnud1NJSE5h5MABxMfHsyMnGxuprgL1dHOjlX4ew6XYWL75/Q9cXVxo0agROw4eNMpDI/0fenVrFB5Oj06d+G3BQjKyswny92PTzt0kJCfzn0kTDfE+/+FHTp87z8nt9z5KlJefz7K167iZkkp2mu618YoNG3B2dsbFycnQwG/bwvST7rl5uo9uNG/SuEof+bJUREgIXVu1Yu6q1WTm5hLg7c32g4dISkvnw5deMsT7bu48omOusG/RAkPYB9Onk5iaSteuXTl/9RqXSn0h0sPNjVaN7q1J/uazI3lv2o+M//Y7BnbtSn5hISu2bSfI15fBVlhXvVFYfbp3aM8ffy/RnS8/Pzbv2UtiSgqfjn/TEO+rn2dy5sJFjq5fawjLy89nxeYtaDQaYvVLXa7asgVnJydcnJx4un8/Q9zXP/mURmFhBPr5kZ6VxfrtOygsKuLHzz41Wc6xumRdvUrCwYM0GD0auZsb+YmJBD3xBI7e3hz55d7HmSLfeQevxo3ZOHCgISz0qadwCQ4mw8MDevfGt1UrvJs3J+bvv8kutW6xRqEgZulSmrz+Oi0+/JDUM2fwjIggsFs3Li9ejDLPzBCoahL61FDsXFxw0PfU+XfsgIO+Fy52xSqU+fk0fuNV6vTvx6Ynn6IgUTc08E7UfjIyMmj18Qe4BgVSnJ1N6NAnkdhIuThvvtExzv76Bx1/mErnmTO4vWs3rnXrEvrUUK5v2ERu/E2spX3HLoStX83Mn77n1q14XF3d2LJ5PRq1hmefe8Eo7mcfvwvA/IX/ALrFHKZN+4j8vDyGDnvGZK1+Pz9/w3cA5HI5o55/kdl/zGTqd1/SrHkrLl08R9TenTw/5mVcXCz7yFJl8u7cJv38OYJ698HO2Zmi9HRqNm+O3MOD62tWG+KFPj0C17p1OfrJR4aw5OPH8G7VmiZNmpCYl4siM5Oakc2Qu7tz5e97b1W0ajW3tm4l9OnhNBz3KqnRZ5C7ueHbvgM5N26QcbHiL6zfjwZ1guncvBnz128gKzcXf++a7Dx6jKT0dN597llDvO8X/c25a7Hs+uNXQ9i4b6YQGVYfR28f7rq7kpiSytYjR1Cp1YzV1/Wg+5DYtMVLcHVyoll4GLuPnzTKQ0RIHfyreeWpBnXr0KVFc/5cs46sHH19f+QISWnpvDd6tCHe1AULOHv1Gnvm3nsD9OHMX0lMS6Nr165ciI3lUty9YTQeri60LPV18Yk/TCcipC4BNWuSkZPD5v0HKCwu5ru33rRKvWio7xf/TWZWFoF+fmzR1/efjX/LEO+rn37m9IWLHNuwzhCWl5/Pik2b0Wi1hvp+5eYtuJTU9wP6Gx0rOzeXI6dP061dOxzLLJkq/PdNmjSJMWPG0LJlS1q3bs3PP/9Mfn4+L774IqAbHh8QEMCUKbqPH06YMIEuXbowffp0+vfvzz///MPJkyeZO3cuoBvqOnHiRL755hvq1atHnTp1+M9//oO/vz9DhgyxWjnuq/FfUFCAi/513I4dOxg6dChSqZS2bdty86b1bmwAn735Bn+uWMn2AwfJzc8npFYtpn3wPpERFX/NLlafr+UbN5lsi4xoYGj8x9+5i1KlIisnhymz55jE/eT116zS+Af46oP38Fu0mC27d5Obm0donTr8PPkrmjduXGG6nNw85v5tPIxgyeo1APj5eBsa//8tn7wyjr/WrGHHocPkFeRTNzCIqe9MoGm46UddSovVfwMgKiqKqP9j777Do6ryx4+/p2XSe++QnkAKvfeOgCCirr2uvaDrqmt3XXVXsetaEcQOiIBI7yV0CJ0kJCG99zL998dMhgwzSSaQ+GV/nNfz+Oxy7jn33pO5c+bccz/n3K1bLbalxsdZdP77JSTw76fm89WyX/li6TIcHRwY0a8f998wD+cuvJG5K158/DECv/uetVu3Ud/QQHRkBO88/w/SkqxflNRWXUMjn3/3vUXa9yt+AyDQ38+i8x8XFcXm3bspr6zCxdmJgSmp/PXmmwix882Ul+rwggXE3XILoWPHonB1pS43l32vvkpVm5f62VKXm0vg0KEE9OqFJDaWutxcDrz5JsUXvfgLIG/NGgxaLVGzZxMweDAt5eUc/+ILclautLHn7hN38024tHm8Gjp2DKFjxxjPae26dt8sbNDrSU9PJ15vIGbeXGRKJVWnTrPvtdepv+h9FcW7drPrmX+QdPedpM1/HFVNDacXfcuJrxba3Hd3kclkvPzKm3z91X9ZtXI5apWamNg4Hn/iGUJDwzss29TUREWFcc7QooWfW20fN2GyxUvApl9zLXK5nF+X/8ze9N34+flxz30PMXPWdd1ap6xffiZswkR8U9OQOznRVFLCmcXfUJ/bcYipQavlxMKvCPjLLQT1649MoaCxuJjTi7+xuBEFqDh8CINOS/CoMURMmWp8+rR/H+fXrbV6r0N3eeb2W1no7c3Gffupb2qid0gw/3zwfpJjojssN2PkCPYeP0H+iZOsU6nwdHNjQEI8N02eTO+QC+89yCsuMf6WNTTw9rffWe3nb7fe3O2df4Bn77qTr39byYb0vcZ6hYbwr0ceIqWT91u0vtvA2N5bbkuJjbHo/MdGhLPtwEEqampwcXKif0I8d86aSfBlvt29Iy898TiB333PH+b2PpIFLzxPWp/O2vsGPmunvQ/y97Pq/G/atRutVsvk0ZYvdxSuDDfccAPl5eW8+OKLlJSUkJqaytq1a80Tds+fP29xAzps2DC+//57nn/+eZ577jliYmJYsWIFffpcmJPx9NNP09jYyH333UdNTQ0jRoxg7dq1OPZQ3wVAYrB3Gn8bycnJ3HPPPcyePZs+ffqwdu1ahg4dysGDB5k+ffolzVAuP2LfagqXS6s3TgoeFBZiEXbRUxw7mFfQnbQ6HduPn2RUn8Q/5ZFfYw/OQm9Lq9dzsLyS/n4+f8rnBaD8Ez+z3VnnGBbd+0/5zHb+7e89fgwwxvwbbr8dyaJF5hCgntRc3v1rbNvk4IDyycdQvfO+MTSnh6V+93OPH6OVTqfj7KlDxCb0M4cA9aSqrz7oPFM30MtklA8YhN+BfUj/hBVTQtq8fb4n6QwGjjYa4/tbQ4B6kr0x/5dLZzBwuLaeNA+3P6VeLj08iNKWVqdjV2Y2w2Oi/pT23jOu4wHR/wvqJhuTt68ADhe9vO1qcEm9qRdffJGnnnqKyMhIBg8ebI5LWr9+PWlpaZ2UFgRBEARBEATh/8Ilhf3MnTuXESNGUFxcTEpKijl9/PjxzJ49u9tOThAEQRAEQRCE7nNJnX8wLk908dJGgwbZtxayIAiCIAiCIAh/vj8niFoQBEEQBEEQhP9zovMvCIIgCIIgCFeJSw77EQRBEARBEAR79NCqucIlECP/giAIgiAIgnCVEJ1/QRAEQRAEQbhKiLAfQRAEQRAEoUcZEHE/Vwox8i8IgiAIgiAIVwnR+RcEQRAEQRCEq4QI+xEEQRAEQRB6lFjt58ohRv4FQRAEQRAE4SohOv+CIAiCIAiCcJUQYT+CIAiCIAhCjxJhP1cOMfIvCIIgCIIgCFcJ0fkXBEEQBEEQhKuECPsRBEEQBEEQepRexP1cMcTIvyAIgiAIgiBcJUTnXxAEQRAEQRCuEiLsRxAEQRAEQehRBhH2c8W4Yjr/jr1i/pTjaLVayC/EMSIKubznq7/tcF6PHwPAYNADsPN8MxJJzz/Qkcs8e/wYAAaDDqjkmNYDiUT2pxwz1sn7TzmOTqcFoMbJC5ms56/FKUu+7fFjAGi0Wjbs3MWELz5H8Sd8x3Iqmnr8GAA6nY6zpw7R98tFyGQ9fy0euXlejx/DzMEB5ZOPceye20Gt7vHDbb3+tR4/BoBMYmAC9fzgNR6dQdLjx5uET48fw0iPhDyOEMCf8QA/yMO1x48BoNfroPYkhe5hSKU9/x0rKWzs8WOYmX6jdxXrQNLzneBZcT1+COF/mAj7EQRBEARBEISrxBUz8i8IgiAIgiD8/0lE/Vw5xMi/IAiCIAiCIFwlROdfEARBEARBEK4SIuxHEARBEARB6FHiJV9XDjHyLwiCIAiCIAhXCdH5FwRBEARBEISrhAj7EQRBEARBEHqUeMnXlUOM/AuCIAiCIAjCVUJ0/gVBEARBEAThKiHCfgRBEARBEIQepdeLsJ8rhRj5FwRBEARBEISrhOj8C4IgCIIgCMJVQoT9CIIgCIIgCD1KrPZz5RAj/4IgCIIgCIJwlRCdf0EQBEEQBEG4SoiwH0EQBEEQBKFH6UXYzxVDjPwLgiAIgiAIwlXif3rkv76+ng8+/IAtW7fQ0tJCUlISTzz2BPHx8XaVz8nJYcG7Czhy9AgKhYLhw4cz//H5eHl5WeSrqKjgs88/Y+/evVRWVeLr68voUaO568678PT07IGaQXNTI6uXLebYkX1o1CrCIqOZef0dhIb37rRs+o4NHNy7nbKSQpqbG/Hw8CYqNolJ18zD29ff8jjNjWxcs4zjR/ZSU12Fm5s7MQnJTLpmHl7eft1er6amRlYuXUTGob1o1CrCe8Vw7bw7CIuI6rTs7u3rOZC+jdJiU708vYmO7cOUmTfg06Zee3dt5vuFH7a7n1vveZwBQ0Z3S31aNTTU89UX/2X37h2oWlTExcdz730PER0T22nZM2dOs3njes6cPkVOTjY6nY4/1m+zmbexsYEfv/+W3bt2UFFRjqenF6lp/bn51jvw9w/otvqo1Wo++uxzVv3xB3X19cRGR/PI/X9l2ODBnZYtKy9nyZIlvPrqqxgMegb178/TTzxBWEiIRb4+g2zv6/GHHuSe22/vlnp0pKGhgW++/i97du9EpVIRGxfPXfc8QHR0x5+ZXq9ny+YN7Nm9g3PZmdTX1xMQGMioUeOYfd0NODg4WJVZv+53fl3+M6Ulxfj6+TNj5hxmzJzTbXWROzkRd/NNeCcl4Z2YgNLDnX2vvU7u73/YVV7h6kJKSgqBK5cjVyqpOnmKIx98RM2Zs1Z5g0cOJ+meu3CPjKSluobc1b9zcuEiDDpdt9XHFielnNmjokiJ9sVBISOvuI5l27LIL2votOyH88e1u+1UXhUfLj1qc9vA+ADunJ5Ii1rL/A93XPK5d6S5qZE1v37LiaP7UKvVhEVEc811txFiR1vflk6n5b3Xn6KspJBps29l9MSZFtv1ej3bN64ifcc66mtr8PUPYuzk2aQOHNGd1bHQ2NjAT999xcF9u1GpVURFxXHTrfcS2Tu6w3J6vZ5d2zdzYN8u8nKzaWiox88vkCHDRjN1xnUW37EdWzfwxacL2t3X/Q//jWEj2//8L0VzUyO///otJ47sQ236fb7mutvt+n3eu3Mjh/bvpNz0++xu+n2eMP16vH0sf5/r62r4Y8V3nDp2EJWqBf/AEMZNnk1y/2HdWh/h6vM/2/nX6/U89sRjZGZmcustt+Lp6cnSpUv56wN/5dtF3xIeHt5h+bKyMu796724urry0IMP0dTUxJLvlpCdlc2ibxahUCgAaGpq4s6776S5uZnr515PgH8AZzPP8vMvP3Pg4AGWLF6CVNq9D1D0ej1ffvQ6RQV5jJk4CxdXN3ZvW8sn77zIE8/9G7+A4A7LF+bn4O3rT1LKQJycXaiqKGPvzo2cPHaQJ194Bw9Pb/NxPnvvVUqLCxg2ejJ+AcFUlBWze9s6zpw4wtOvfICjo1O31uvz9/9JYUEu4yZfi6urGzu3ruXD/7zAUy+8jX8n9So4n4OPbwB9Ugbh7OJCZUUZe7Zv4ETGAf7+8rvmekXFJnLL3Y9Zld+6YRVFBbnEJiR3W51a6/XS889w7lw2c6+/EXcPD1avWsHTf3uMDz/+gpCQ0A7LH9i/l3Vrf6dXrygCg4IpLMhv9zjPPfMk5/PyuGbGLEJCwygqKmT1qhUcPLifz79cjLOzc7fU6R+vvsqGTZu55aYbiQgLY8Xq33nw8Sf4+tNP6Jea2m65pqYm7n34Eaqqq7n7tttQOjiw+IcfuOOv97NsyRI8PT0s8g8dPIiZ06ZZpCXExnVLHTqi1+t59aVnyMnJZs51N+Lu7s7vv//Gc39/gvc++IzgDj4zlUrF++++RVx8IlOmzcTT05PTp07w/XffcPToIV5/YwESicSc/481K/nko3cZNnwU186+nhPHM/j8vx+iUqmYe/1N3VIfB08Pku65i8biEmqzsvDv38/+whIJI996A8/QUE4vXoK6soqo62Yz9pMP2XDH3TTkF5izBg4dwvC33qDs0GEOL3gPj6jeJNx5O0pvLw79+51uqYvNUwQenJ1MiJ8LGw/k09CsYVRKCI/PS+PNJQcor2nusPyiP05gMEgs0sID3BjXP4xTuVU2yygVMmaPiqJFre2ualjR6/Us/OQNigtzGTXB2Nbv2b6Oz957mUefeQtf/yC797Vr6x/UVFe0u33dyh/Yun4Fg4aPJzQimpMZ+/lh4fsgkZA6YHh3VMeCXq9nwZsvcT7vHNNmzMXN3Z1N61fzr1ef5tU3PiQwKKTdsmq1ii8+XUBUTDzjJkzDzcOTrLOnWP7LEk4eP8IzL75p/o7FJfThrw//zbq+v//K+bxzJPZN7fZ6ff3xvyguzGP0hJkXPrN3X+LRZ/+NXyefWVF+Lt4+/iQmD8C59fd51yZOHTvI4/942/w71tLcxCdvP09DfS0jxk7Dzd2To4f2sOTLBdyk05E2aGS31uvPIF7ydeX4n+38b9q0iYyMDN58400mjJ8AwMQJE5kzdw6fff4Zr//z9Q7Lf7PoG5qbm1myeAmBgYEAJCUl8dDDD7Fq9SrmzDaOym3fvp3i4mLeW/AeI0ZcGCHx8PDgiy+/4GzmWeLj7HvSYK+MQ3vIzT7Dbfc9RUr/oQCkDhjGmy8+wrpVP3HLPU90WP66v9xnldYndRDv/etpDqRvZfwUY93ycs6Sn5vF7BvvYcTYqea8/gEh/LT4YzJPZdA3rfORXnsdPbiHnOzT3Hn/30gdYBy5SBs4nH/+4yH++O1Hbr9vfofl593yV6u05NTBvP3Pp9i3ewsTp10HgK9fIL5+gRb51GoVv3z3OTHxfXH38LLaz+XYuWMrJ08e57nnX2HkqDEAjBw1lnvvupkli7/m78++2GH5adNncMONt6BUKvnko/fa7fyfPnWSs2dO8+DDjzNj5mxzemhoGO++8xaHDx1g+IhRl12fYydO8Mf6DTz56CPcecstAMycNo1rb/oL73z4Ed999WW7ZX9cuozz+fk88sgj3HHTjSjkckYMG8rsm/7CN99/x+MPPmiRPzI8nBlTp7azt56za+c2Tp06wTPPvczwEcanQCNGjeWv997Kd0sW8re/v9BuWblczr/f/pCExD7mtMlTrsE/IJDvl3zD0SOHSE3rDxhvFL5d/BUDBg7h2X+8Ys5rMBj46YfFTJlyDa5ubpddn5aKSlZOm0lLVRVe8XFM/OYru8uGjhuLb98+7Nu3j9xvFoNaTf6mzUz9+QeS7rmbvS+9Ys6b8shD1GRls/2x+eaRfk1jEwm330rmT79Qn3f+sutiS1qsH1EhHnyx8jiHM8sBOHSmjJfvGsw1w3qxcM3JDssfOFWK7qLOf0yYJ3qDgQOny2yWmTIkghaNlrP51SRH+3ZPRS5y7HA6eefOcPM980nuZ2zrk/sN5e2XH2PD6p+46a7H7dpPQ30tm9YsZfTEa9mw+ier7bU1lezYtIqhoydz7Q33ADBo+Hg+e/cl1iz/luR+Q5BKZd1WL4D9e3eSefYkDz/xHIOGGDuqg4aO5OnH72X5L0t48NG/t1tWLpfzwqvvEBOXaE4bO34qfn4BLP9lCSeOHaFPchoA/gFB+AdYdrjVahWLvvqIxD4peJo6092l9TO75d4nL3xm/Yfxn5ceZcOqn/jL3Y93WH72TfeAxHLAMCllEB+8+XcO7d3G2MnGtj19xwYqy0u477GXiI7vC8CQUZP5+N/PsXrZIvr2G4JcrujWuglXjy4PWW/YsIGXXnqJzZs3A8bO8dSpUxk3bhwLFy7s9hNsz6bNm/Dx9mHc2AuP87y8vJgwYQLbtm9DrVZ3WH7L1i2MHDHS3PEHGDxoMOHh4WzcuNGc1tBofKTs7W3ZgPj4+ADgqHS87LpcLOPQHtzcPS063q5uHqT0H8aJo/vRajRd3mfr48TmpkZzmqrZOFrm5u5pkbe1c6xQWIcvXI4jB3fj5u5Jcr8h5jRXNw/SBgzn+JF9l1YvX2NoUtt62XLi6AFULc0MGHz5neOL7dyxDS8vb4uOt6enJyNHjWXP7l2dXoteXt4olcpOj9NkqqOnp+XNi7e38Vq0Zx/2WL9pMzKZjOuvvdacplQqmTNzBkePHaO4tLT9sps3k5SQQFhYmDmtd2QkgwcMYN3GTTbLtLS0oFKpuuXc7bVr5zY8vbwYOuzC6JmHhycjRo5hb/puNJr2PzOFQmHR8W81dKhxX/n5eea0YxmHqa+rY/o1syzyTr/mWlpaWti/P/1yqwKAXqOhpcr2CHZnwsaOobmyiuLiYnOaqqaG/E2bCRk1AqnpKah7ZCQevXtx7reVFiE+WcuWI5FKCR039rLq0JG0WH9qG1UcMXX8ARqaNRw8U0ZytC9ymaSD0tbkMglpMX5k5ddQ02B97fl5OjGuXxjLtmah68HRymOH03F196BPqmVb37f/UE5kHLC7TfxjxXf4BQTTr53R4JNHD6DT6Rg6arI5TSKRMGTkJGprKsk7Zx3edbn2p+/Ew8OLAYMuPFVwd/dk8JCRHDqwp8PvmFyusOj4t+o/yDhoVFTY8U3m4YN7aWluZuiI7r8mjx3ag6u7p9Vnltx/GCcyLu332cvG73NO1ilcXN3NHX8AqVRKcv+h1NfVcC6z4xteQehIlzr/S5YsYdq0aaxevZpZs2bxzTffMGvWLEJDQ+nVqxf3338/S5cu7alztXDm7Bni4uOsQm6SEpNoaWnh/Pn2G4fa2lqqq6tJSEiw2paUlMSZM2fM/+6X1g+pVMrbC97m2LFjlJaWsnPXThYuXMiY0WOIjIzstjq1KszPISS8l1XdwiOjUatVlJcV2bWfxoZ66utqyc/N4sdFHwEQE38h5CU0MgoHpSNrV/5A5ulj1FZXkn32BKuXLyYsMpqYbg6PKTifQ2h4b+t69YpBrVZRVmpvveqor6vhfG4W3y801quzUJ4De7ehcHAg2fQkpTtlZ2USFR1jVa+4uARUqhYKC22P5HdVTGwcjo5OfLvoK44cPkRFRTkZGUf46sv/EhsXT1q//t1ynFNnzxIRHoarq6tFet/EJADOnLXdUdDr9ZzNyiLRxpybvkmJ5BcU0NhoeZO2YvXvDBw9hv4jRzHzhhv4fe26bqlDZ86dyyIqKtbqM4uNjTd+ZgUF7ZRsX3W1sfPt7n4htCk7OwuA6BjLUKaoaOOxz2Vndvk43c0zLoaaTOvzqDp5ErmTE27hYeZ8ANWnTlvka6mopKm0FK/YmB47xzB/V/JLG7i4G55XUo9SIcPfq2vhbkm9fHB2VLDvtO0b2evHxnA2v5oTOZd2Q2WvovwcQsKs28SwiGg0drb1+bmZHEzfyoy5d4DE9k1QYUEODkol/oGW4WxhkdGm88i9pPPvSF5uNhG9oqzq1js6DrVKRUlxYZf3WVtTDYCbu0eH+Xbv3IKDg9LixqO7FObnEBJm/fscFmn/ZwbG3+eGulry87L4efHHABYdfZ1Wg8LG/CGFg3GQp/D8uUutwv8Zg+HK/O9q1KWwn3feeYd33nmHRx99lE2bNjFjxgxef/11nnjCGIaSmJjIe++9x9y5c3vkZNuqqKggLTXNKt3X1/h4try8nOho25OK6urqLPJalPfxpbauFrVajYODA7179+a5Z5/j/Q/e58677zTnu2b6NTz/j+e7oyrW51dbQ+8Y61GP1hH52poqgkIiOt3Pq3+/F63WOArh7OLGtTfcTVxiinm7q6s7t947n1++/ZT/vvuyOT0uMZXb//oUMln3Pgauq60mKrbjegWHdl6vF5+6x1wvF1c3rrvpHuKTUtvN39hQz6njh0lOHdytcxhaVVVV0advilW6l+npUFVlJb16dT6huTMeHp48+4+XeP/d//Ds3y+EfvUfMIh/vPAKMln3RPFVVFTg52P93fDzNdanrLzcahtAbV0darUaX1M+y7LG/ZVVVNDLxQWA1ORkJk8YT2hwMGXlFfy4dCl/f/FF6hsauHHudd1Sl/ZUV1XSp4/1DWPrU5Sqqgoie3VtwuXypT/i7OxC/wEXRgSrqyqRSqVWT2sUCgVubu5UVVVewtl3L0cfH8ozjlmlN1cYz83R15fa7HM4ma6J1vSL8zraaE+7i7uLA1kFNVbptY3GUXsPFyVFFR0//WtrYEIAGq2Ow2etr+U+vXxIiPDi9cX7L/l87VVfV02vaOtBqNY2sa62usO23mAw8NvPX5PSfxgRveOoqrQdwlRfW42rm6fFXBQAN/Nxuv8mp6a6irgE6ydknqYFNaqrqggL79Wlff6+cilOTs4kpw5oN09DQz3Hjhyg38BhODl1zxyoturrbP8+u9n5mbV6/dn7LH6fZ827i9iEC78jfgHBZJ4+RnVlOV4+FxbfyMk6BRh/LwXhUnWpt5CZmcmMGTMAGD9+PFqtlvHjx5u3T58+nTfeeKN7z7AdKpXK5qoaStNdcUdhBFqtcQKXg42wltbQibb79/f3JykxieHDhxMUGMThI4f58acf8fT05PHHHr/cqljRqNU2Y/nkpvPt6HFpW/c++g80Gg1lxQUc3LsdtbrFKo+rqzshYb0YPmYqgcFhFObnsnX9Cn5c9DG3//Wpy6vIRdqrV+vkanvrdf/jL6DRqCktLuBA+nZUKut6tXX04B50Wi39h3R/yA8Y40tb69BW6/XVnSEtHh6eREXHMCNpNhERvTiXncUvP//Agrff5B8vvNotx2hRqXBwsFEfZcffrRZTuq3vVet3qW3ZJV9+YZFnzswZzLvtdj749FOuvWY6jo7dH1LXSq1WI7fxmSnMn5l912Krn39awpEjB3ngocctnpio1SqbxwFQODj86eFOtsiUSvRqjdVzYL0pXE1m+txlSuPfRm/je6pXq5Gbbup6goNchlZnPUSn0eqN2xX2P8R2dJDRp5cPJ3KqaFZZTuaVSSVcNyaaHRlFlFQ1Xd5J26H9tt6Ypu0kZPBA+lZKCs9zyz1PdnwcjRq53PrnvvXY9ra9XaFut71v/R3r2rW/8tcfOXHsMLff/RAuLq7t5tufvgOtVsuwHgj5gQ5+x1r/lp18Zq3uevgfaDVqykoKObRvO2q15d9j0PDxpO/YwJIv32HG3DuME34P7ubEkX1dOo4g2NKlzr9CobCIX1YqlRY/dEqlkubmjlddAGMH4OIfvabGJpsxyxqNxjxS38rT0xOlUolKpTJ35Fu1Hl8ul1ttA2PHv7URbGlpsS7fYiwvk8nQarUczTjKE/Of4MvPvzSHCY0YMQInJye++vorpk+bTq9e7Y9eGAz6drdptRqaGi2XqXN1c0fhoECrUVuV1ZgaB4VcYbWt9d9t06NijWEa8UmpJKYM4O1X5+PgoDRP7q0sL+WTBS9x0x0Pm+Pwk1IG4OXjy0+LPubksYMk9LF+umI8TvvPytqvl4OpXpZLArb+CMjlcqtttuoVbYoFTeiTSp+UAbz18nyUSiUjx9meOHpg7zacXVxJSEqx2r8tOp3t1T00Gg0N9fUWae4eHjg4OKBWq6zKtZiuJblCbnOfOlPctK5N/LTeVE9b+UuKi/j73x5n/lN/N88vGDR4CH5+fry74N/sTd/FgIHtT9DW2Pg+2KJ0cEClUlvlb2xqMtVHYXNfrU+KWkw3Y22/W83NLeY87Z6HRMK86+bw+r//Q8aJE6SlWD9NsUXXwRKTGo2GhoaLPjP31s9MbVW29dwVCrnVNlufF8DOHVtYsvhrJkycyuQp11hsVygc0Go0Ns9RY3q62O752xjcsEvrzYZMbtc+dCo1UkdHULdY5JeaOvM6nQ7anKfUxQUaLTvGUkdHdGq13ecsk9huP2RSCc6Olh2rhmY1Gq0OhVxiVU5p6vRrtTqb+2xNa7utX6wfDgoZB06XWJWZMCAMV2cFf+w5Z94mlRhXG2rvnC20095rtVqaL2oTXdzcjdeHVmNVrrXTL1fIbe/ToKelpYW1v/3AqAkz8PTyNuYz5zVYlDMeR2t9HFPbq1Ao2j13AL2+/e+YVquhocGybu7u7jg4OKDRqK3Ktg7WyOVyq22t/744fe+e7Sz7aTGjxk5i7ISpHZ7P7h1bcHF1o09yWof5gA7r3O5nZvp9vrisxvy3bP8za/u/0aan4PFJqSQl9+edfz6Jg4OS4WOmABAUEs5Ndz7K8h++4JO3jVEGbu6ezJh7O7/++KWxv9TB+V+JxEu+rhxd6vxHR0dz+vRp4uKM8auFhYW4tVmpIjs7m9DQjpc1BHjjjTd45ZVXLNJuuOEGbrrJetm77OxsPvvsM4u0Z555BmdnZ85mnmX7zu0W2/btM94V5+XnodbavjN2d3cHYP/B/bi4WY5WnTp1CmdnZ9L3GSfi/fjjj7i4uFBeWU75zguPiF1cXTAYDCxdvpTBdqx9bktOO3Vzc3WltrIIfV2OxbbaUmNcrqu8yWpbK0N9nlVcLIC3EkKCgzm0ZyPD+htjsvdtXYdWoyY+0sdifwm9jI8Yc06mExfuafM4HY05tPeZubm6UFNRiLraMlaxqsgYQ+4sbbTa1kpTk2sz3V0BwcFB7N+1gcFp1ktEVldXcy7zFIMGDUJXfx57ViI/WW07vb16ubi4cD4vh5PHDlpsO3HsEAA1laVW29o6c/LIhfOtNF5jtvKvW7cOtVqFm4vSYruHu/HR9vatG3F2bP8rbe/0MKlcTm5+Pht27rJIzzTFhReWlVttA2PMv1wuJ+PkKaLi4tmSvte8bd+RIwAcy8wiM7/9ePqicuNShdvS91JR3/n67Z3p6DMrOJ/D2VOHLLadPnEYgLqaMqtt5n2evbAm/NmzZ1m4cCHx8fGMHzfKqoxO24Jer+fQ/u0WAyVarZa6ulowaNs9jvJJ6+Vq7eFgeveIfMpElEmdr0Sm0utw6ZcK6ekoH3nAnO5mWi5ZN30KylHD0ZradvdHHkRfU2OxD+fICKqrq+0+5wnU20z38fGxWFUNYP369WjULfT2kzEhyrJceLgx1CLBq4pQue19AoztfeFaGtavLxqNhgBymRB1ofMkl8uZPDSSnJwcxkdfeJoY5mVAJoUZfbTodLqOJ/A32j6H8+21iW6u1FcVIWnMs9hWX26cK+Lh0GK1rdW2bdvQadWkJkZSnW+6bmtrAWipLaI6/zDu7u7I5XLcneVk11ZBQ65F6E9DpTGEy8OJdo8DUNZBRFV73zFXVxfKis9Tlm/Z8uSfOwGAXlVjta1VReGFeXdtv2NTJ41ttwwY2/uzZ04waNAgqoovbxJzXge/z3VVRdCQa7Gtvsz4mbkrmq22WWi0no/o42T8fT6cvpHhAy58Z5NjA0n8x7MUFxej1+sJCQnh3Dnjb6Svh0PHx8G+wRPh6tSlzv9zzz1n8QKs1k50qwMHDjBv3rxO9/Pss88yf77lso5NDbZH/lOTU0kyTTRslZKcwr69+zhy9Agjho2wmHiza+cuHB0dmT1rts2wIK1Wy+703Xh6eqJqUTHqoqURP/roIxITEs3py5YuQy6XW+U7cdLYgEX1jrLa1tbOjPYne4bE+nHfY5Yv9fAIiSckIsYY1+caYVG3/JJ1KByUBPQeaF6Bo5XBoMdQn4fELQKJxPYjcI1eglajRepufFLRqDb9CLiGI3W48Lc3YPwBMSjczHkv1tHqGhEJ/jzwhOULp3zC4wmNjOFc5mnkHpEW9SosXY+Dg5KQmEFWIRIGgx5NTS4Kz8h266XVS9BqdTh4WcdoH0v/FYPBwKBR021utyU61PZSoOGRsVYvI0tM6suOnbs5ceIY8UlpFvXatHkbSqUjo8ZMsjlxS6fTcebkEeISU82j5tt2GDvViX2tJ+9u3mJ88VdsQopFSEyNaRKct4+/zXKtQjzsC6M5fuQw3/30M0PTUnFtE8px3jR59YZZMwkMsP1CscXR0dRWG89n7JDB5qdsy3/5hdDgYGZMGG+zXKvKEuOKM2OHDSOlr3W8sC15le0/bQwOiyE41PJzT0jsS9yO3Zw8cYzouFSLz2zDpq0olY4MGznRarUrnU5H9tmjRMWmIJPJOHvmFEuWLCEmNp6XX/u3zfarrkHNunXr0EuUxCZcWHv/9KkTGAwG+g0YZpHe1rF7Lu1FZ+q4WBg9Gu3aDajsmEBd7e6Jb4pxoqHqw0/B1Ll1f2o+2vh4ql5/C71GQ3lkJCz+GteDhyldsdJc3tHHB6dZs8j+7gdUi5fYdY47rrU9X8qpQM+RksMWadmFDvhFNhEV4smmbDeLwY0be/mj0uhYdUyCVme9ZKpMYmBs7wa2nHNFZ5Dg7uLADB9f9p4sZn2m5cCPt7sj0+VyYmJiiImxnrw8adIkMrLK+WKl9fyIVuOTbS8rGRjtwz2PWM6JcA2MJzg8mpys0+icwiyuw/PFxrbeN6I/BlthYwY9NTU1NDc388471u9X2Lx5M5s3b+axZ94iOCyCoEjjUq6l9XICgi4M0OWdNP4+BfVOw+DSfpx6gHf7IV0uXuH8zSfMIq13XCK9ondw9vQJfEPiLepWvnYTDkoliWmjrMIl9XodFYVn8A2JQyqVkZ11hm+/XUKvqFieeOafODhYf8fa2n94KQaDgXFTZuMfZh2Xf7Gy6vZDu4JifLn3UcsXXboFxRMcHkNO9in0zuE2PzO/yAEXnr61ZdAbO/4u4VZLfQJodBLj0xnXSIt0ORDmeWH+YmaucWAyJmUMuHb8bhxBaE+XOv+zZxvXn21ubsZgMJhfKJSXl8evv/5KWloakydP7mgXgDE86OIfSonBdmfS29ubYUOt32Y3YcIENm/ZzPYd283r/NfU1LB5y2ZGjhxp8bKjAtPKHW2fSowdO5Y1a9ZQUVlBYIBxuc99+/Zx/vx5/nLTX8ydloiICPbu28uRo0cY0P/CJKPW5UATExJtxlKa69VOhxXAxdWduMRUq/TkfsPIOJTO8SP7zev8NzTUkXEonaTkAebZ/gAV5SUA+Pj6Y8D4Eg21qgnni2Iiz+dkUlJ4nrRBI83n5BcQgsFg4OjBPQwadmHJ1CMHjB3QkLCods+/43p5EJ9kHS6U2n84Rw+mc+zwfvM6/w31dRw5uIeklIEoHC50TivKjJ1AHz/jzZGxXs1W9co7d5biwvP0HzwKicR6gvKhfbvw8vYjKraP1WS39rQ3cdbD08tiMmerkaPGsmvndtL37Dav819bW8OundsYPGQYjm0mnRUVGVe4CA6+8IIbmUxmPqbU9He1dQ6hYREYDAZ279rBxEkXQpx2bDfeFETHxHU46VfRwXXa1pQJE1j8/Q+sWLXKvM6/Wq1m5Zo1JPdJMr+pt7ikhOaWFnq3WfFq8vjxvPvxx+Tn5yMfMRyFXE5OXh77Dx3ijptvNp9DVXU13he9SbuxsZHvf/4FL09PUvok2X2+HU1M9/DwpF//QVbpI0aMZveu7ezbu9u8zn9tbS27d21n0OChFhPDi02rkvj7B5qPV1RYwGuv/gP/gEBeevmNdl+ulpo2ADc3d9b9sZrBgy+0Y2v/WI1S6cjgIcPaP/9LjeltXWpQp7Xah6OPDwpXFxoKCs3LdRZs2kTY2NEEBQWRq1aDWo2DhwdhY0ZTtHMXetMKTXVnz1KXm0vva6ZzbulyDHpT+MKM6Rj0evI3brL7nC9ec79VQ4uOk3k1VumHzpaTFutP32h/8zr/Lk4K0mL9OZZdgTF037hPX9NNbkXthdF7nUGCziAhLTYAqVTC3pPW6/7XNGr47Dfrjv2YtFB6BbmzcM1JahvU7Z47YLNTB+Ds4k5MQqpVet+0oRw7vJfjR/eb14xvbKjj2KF0Evr2R96mra9sbetN7zAZPnw4Sf3HmusN0NBQy/LvP6f/kDEkJQ/Eyy8AJFISUwaxetki9uxYb17n32AwsHfnRtw9vYmIim/33IEO3wHg5u5B3xTrQYdBQ0ZyYO8uDh1IN6/zX19Xy/69u0jrNxhlm2WyS0uMK+T4md5SLpXKKC4q5N1/v4KvXwBP/v0VHB07n7ybvmsbPr7+xCck29fed1Dndj+zfkM5djjd5meW2MlnptPpUDU34exiOXB6PjeTkqLzxrctd3BO5WXFpO/cQELf/vgFdh5lcaURL/m6clzS8iCzZs1izpw53H///dTU1DB48GAUCgUVFRUsWLCABx54oPOdXKbx48bTt09fXn3tVXJycvD09OSXpb+g1+v5632WL4N64CHj+az6bZU57Y7b7mDz5s3c/8D93HjDjTQ3N/Ptkm+Jjo5m5owLr0WfN28eq1avYv6T87lh3g0EBgZy6NAh1q1fx+DBg+nTx77Rya5I6T+EHZti+WnRR5QW5+Pi6s7ubWvR6/VMnnGDRd7WVXr+8fonAKhVLbz27P2kDhhGYFAYDkpHigvz2L97C45OzkycdmElpoFDx7J1/W8s/e4zivJzCAgKozA/h707NxIYHEbfNOtO0+VIHTCUbRtj+X7hh5SY6rVzyx/o9XqmzrrRIu/H77wEwItvfgoY40RffvqvpA0cTlCwqV4FeezdtRlHJ2cmXXO91fGKCvMoKshlwtQ5dnf8L8WIkaOJT0jk3Xfe5Pz5XDzcPVi96jd0ej233nanRd5n/2584rXo2wsv4ikrLWXrFuMa+GfPGh93//DdYgD8AwIYP8F4Qz1x0hSWLf2RD95/h+ysTMIjIsnOymTtH78TEdGLYcO7542PyX36MHn8eN7/+BOqqqoJDwvlt9/XUFRUzKttVrh69uVXOHDoEMf3XQjvuXHudSxdsYKFCxci0+tQOjiw6Psf8PH25vab/2LO98MvS9m8bRtjRo4gKDCQ8ooKfl21muKSEt545WWbE6i707ARo4n7bRnvv/sW58/n4u7uwZrff0Ov0/OXW+6wyPv8s8bJlJ9/9R0AzU1NvPjC0zQ2NDDnuhut1uoPCgomPsH4tFKpVHLzrXfy30/e581/vUxav4GcPJHB1i0buPX2u3Fzs+wEXI7ouXNQuLnhZFp1J3jEcJz8jTfPWT8vRdPYSN8H/0qv6dNYPXsuTcXGjknB5q1UHD9Bv379cL79VlRVVUTPmY1EJuXEF5YvCzv64SeM+M+bjHp/AfkbN+HeuzfRc+dwbuVq6nPbDxu5XIfOljG2KJRbp8QT6ONCY7OaUakhSCQSVu+2DIF87PpUAF740vodCgMTAqipV5GZX2O1TaPVczTL+g25yVG+RAS62dx2ufr2G0L4lhh++fYTykoKcHFxZ8/2degNeiZdY/kU/Yv3jRP6n/mnsa0PDQ0lxCXCorPYutpPQFAYSakX2m9PLx9GjJ3Oto0r0el0hEVEc+LoPnKyTnHjnY92+wu+AAYNGcG6NfF8+em7FBWcx9XNg03rV6PX65gz71aLvG/981kA3v7gawCam5v4z7+ep7GhgWkzruPIYcuVl/wDgoiJtVwlqeB8Lvnnc7hm1rwebe+T+w1h5+ZYfl78MaXFBcY3/G4zfmYTr7H8ff78PWN487OvG3/H1Go1/3r5AVL6DycgKAwHpZKSwvPs32P8fR4/zfJ37O1XHie531A8vX2pqigjfcc6nJ1dmWPjRZ6C0BWX1Pk/dOgQ7777LgBLly4lICCAw4cPs2zZMl588cU/pfMvk8l4/733ef+D9/nxpx9RqVQkJiby8osvExkR2Wn5gIAAPv/v57z73rt89PFHKBQKRgwfweOPPW4RLhQZEcm3i7/l008/Zc0fa6isrMTPz49bb7nV6iaju0ilMu555B+sWraYHZvXoNWoCYuM5sbbH8Y/sP1XooNxBZHBw8eTdfY4GQfT0WjUuHt6kTpwBBOnzcXb90KYkYurG08892/WrvqRExkH2L19PS4ubgwaNo6ps2/u9rcHSqUy/vrYC/z2yyK2b/odjVpNeGQ0N9/1KAGd1MvBwYGhIyeQefo4Rw/uQaNW4+HpRb9BI5l0zfX4+PpblTmYbpwP0r8HXuzVlkwm49V//puvvviUlSuWo1KpiI2LZ/7fniE0LLzT8iWlxSxeZNnJav133+RUc+ff3d2DDz76nG8Xfc3e9N38/vtK3N3cmTR5KnfcdW+3dpj/9fJLfPhZIKv++IO6+npio6P5eMECBvSzPQG8lYuLC198/BF/e+FFvvxmEXqDgYH9+vH3Jx63GOlPS0nmyLEMlv22kpraWpydnOiTmMhrzz/P4IHtL+PXXWQyGS+/8iZff/VfVq1cjlqlJiY2jsefeIbQ0I4/s7r6OirKjZ2sRQs/t9o+bsJkc+cfjC/0ksvl/Lr8Z/am78bPz4977nuImbO6dznTuJtvwiXowptOQ8eOIXTsGADy1q5D02g7cNug17Pj6Wfp9+mHxFw3B5nSgapTp9n32uvUn7cMWyzetZtdz/yDpLvvJG3+46hqaji96FtOfNWzL3g0GODj5RnMGR3F2H4hKOQy8krqWLz2NGXVnS8yAeDv5UREoDsbD5y3OS/q/4JUKuPOh55jzfJv2bXlDzQaNWERUcy77SH8AjpuE7tqyrU34+Tsyt6dGziYvhVfvyBuvONR0gZ2z6DBxaRSGU898yo/LvmK9WtXolar6B0Vy70PzicouONR64aGeqpM859+/t762hoxeoJV53/3zi0ADB0xpnsq0A6pVMZdDz3H78u/ZdeWNRc+s9sf6vz3WaFg0LDxZJ89wbFDpt9nDy9SB4xg/LTrzC/jbBUUGsGBPVuor6/BxcWd5H7DmHTNDbh28p4DQeiMxNDRsi3tcHZ25vTp04SHhzNv3jySkpJ46aWXyM/PJy4ujqamri+RVl/b/mSt7qTVatm+czujRozqMFynu2w73HOjYW0ZDHr0dTlI3Xt1GJLTXeSynj8GgMGgQ119Dgev3jbDenpCbHj3vg6+PTqdlpPHDpLYt3+3rdHfkTDPnls6sy2NVsuGnbuYaAr76Wk5FT2/JCMYH9mfPXWI2IR+3f4ODFuO3Nz5/Klu4+CA8snHUL3z/qWHG3XB1utf6/FjgDHmf0JUPRuz3ToO1+kmk1Kt33HRIwx6JI15xjj9P6G9D/Jpf2nN7qTX6yjLP4l/WGKPPI24WEmV/e+GuGwGvXGCrmvkn/KZzRrXt/NMf7Lz+bbfQ/F/LTzMevDw/3eXdAVGR0ezYsUK8vPzWbduHZMmTQKgrKzMahKwIAiCIAiCIAhXhkvq/L/44os89dRTREZGMnjwYIYONU56Wb9+PWlpHYcFCIIgCIIgCILwf+OSnsnPnTuXESNGUFxcTEqbF/GMHz/evCKQIAiCIAiCIIB4ydeV5JIDcgMDAwkMDLRIGzSoe1eHEQRBEARBEASh+/T8bDxBEARBEAThqiZG/q8cf86SLYIgCIIgCIIg/J8TnX9BEARBEARBuEqIsB9BEARBEAShRxn0IuznSiFG/gVBEARBEAThKiE6/4IgCIIgCIJwlRBhP4IgCIIgCEKPEqv9XDnEyL8gCIIgCIIgXCVE518QBEEQBEEQrhIi7EcQBEEQBEHoUSLq58ohRv4FQRAEQRAE4SohOv+CIAiCIAiCcJUQYT+CIAiCIAhCj9KLl3xdMcTIvyAIgiAIgiBcJUTnXxAEQRAEQRCuEiLsRxAEQRAEQehR4iVfVw4x8i8IgiAIgiAIV4krZuRfff7cn3IcrV5vPF5BLnppz9/7JKuLevwYADqDgQygj7oAmUTS48dT1dT2+DEAdMAZpRO9Sk4g+1OOCM4OEX/KcVqvRafSPOR/wrV48tc9PX4MAL1EApG9ObPkW6R/wkhPc1lZjx8DQC+TwYBBVH/7X6Q6XY8fb+v1r/X4MVrJJAYmUM+Oa59HZ+j59mPMLy/0+DEAcHCAJx9j5Ip/glrd44cLaRzf48cA0EullPRNJSj9N6SmdqQnecbF9fgxwNjelzm64JW5/09p773+hO9xKx1w1sWd2NKMP+m3rO+fchThf9MV0/kXBEEQBEEQ/v9kEGE/VwwR9iMIgiAIgiAIVwnR+RcEQRAEQRCEq4QI+xEEQRAEQRB6lFjt58ohRv4FQRAEQRAE4SohOv+CIAiCIAiCcJUQYT+CIAiCIAhCj9LrRdjPlUKM/AuCIAiCIAjCVUJ0/gVBEARBEAShG1VVVXHzzTfj7u6Op6cnd999Nw0NDR3mf+SRR4iLi8PJyYnw8HAeffRRamstX6oqkUis/vvxxx+7dG4i7EcQBEEQBEHoUVfbYj8333wzxcXFbNiwAY1Gw5133sl9993H999/bzN/UVERRUVFvP322yQmJpKXl8f9999PUVERS5cutci7cOFCpkyZYv63p6dnl85NdP4FQRAEQRAEoZucOnWKtWvXsn//fgYMGADAhx9+yLRp03j77bcJDg62KtOnTx+WLVtm/ndUVBSvv/46t9xyC1qtFrn8Qpfd09OTwMDASz4/EfYjCIIgCIIgXJVUKhV1dXUW/6lUqsva5549e/D09DR3/AEmTJiAVCpl7969du+ntrYWd3d3i44/wEMPPYSvry+DBg3i66+/xtDFxyqi8y8IgiAIgiD0KL3BcEX+98Ybb+Dh4WHx3xtvvHFZdS0pKcHf398iTS6X4+3tTUlJiV37qKio4LXXXuO+++6zSH/11Vf5+eef2bBhA9dddx0PPvggH374YZfOT4T9CIIgCIIgCFelZ599lvnz51ukKZVKm3mfeeYZ3nrrrQ73d+rUqcs+p7q6OqZPn05iYiIvv/yyxbYXXnjB/P/T0tJobGzkP//5D48++qjd+xedf0EQBEEQBOGqpFQq2+3sX+zJJ5/kjjvu6DBP7969CQwMpKyszCJdq9VSVVXVaax+fX09U6ZMwc3NjV9//RWFQtFh/sGDB/Paa6+hUqnsrofo/AuCIAiCIAg96v+Hl3z5+fnh5+fXab6hQ4dSU1PDwYMH6d+/PwCbN29Gr9czePDgdsvV1dUxefJklEolK1euxNHRsdNjHTlyBC8vL7s7/iA6/4IgCIIgCILQbRISEpgyZQr33nsv//3vf9FoNDz88MPceOON5pV+CgsLGT9+PIsXL2bQoEHU1dUxadIkmpqaWLJkiXnyMRhvOmQyGatWraK0tJQhQ4bg6OjIhg0b+Ne//sVTTz3VpfMTnX9BEARBEARB6EbfffcdDz/8MOPHj0cqlXLdddfxwQcfmLdrNBrOnDlDU1MTAIcOHTKvBBQdHW2xr5ycHCIjI1EoFHz88cc88cQTGAwGoqOjWbBgAffee2+Xzu1/svOv1mj44sefWLd9B3WNDUSHR3DfTTcyKCW5w3Jb0/eyYdcujp45S2NDAwG+Pgzr3587516Hm4uLVf4d+w/w1c+/kFtQgJeHO9PHjuWOudchl8l6qF5aFq1Zw8Z9B2hobqZ3cBB3XDOd/vFxHZbbeTSDVTt3kVlYREtTEx5uriRERnLr1Cn0Cg6yyPvpsl/JyMqmtKoKtUaDv7cXY/qlcf34cTh14ZFRV2i0WpZs2syWoxk0NDcTGRjArePHkxYd1aX9PP/NIo5kn2P64EE8cM10i21r9u3j6LkczhYUUl5by/i0VJ6YM7s7q2FFrdHw9fJfWb9rN/WNjUSFhXH33DkM7NOnw3Lb9x9g8959nM45R0VNLQE+3gxLTeW2WTNtXodNzc0s+m0lW/ftp7KmBg83V5Kio3nuvntx7KHPTCKTETh0GF7xCcgcHWmuKKdk9y4azp/vsFzAkKEEDhlK2kXpeq2WYx99YLMMgEtwMNHzbgTg+H8/QdfScrlVsEkikxE2YSK+af2QOznRVFJM/ob11GZl2VU+ODiY+Hv/inNgIAadjuayMvI3rKfuXLZFPoWrK6ETJuIVF4/c2RlNQwO12VmcW76snT13HyelnNmjokiJ9sVBISOvuI5l27LIL2v/zZKtPpw/rt1tp/Kq+HDpUZvbBsYHcOf0RFrUWuZ/uOOSz/1icicn4m6+Ce+kJLwTE1B6uLPvtdfJ/f0Pu8orXF1ISUkhcOVy5EolVSdPceSDj6g5c9Yqb/DI4STdcxfukZG0VNeQu/p3Ti5chEGn67b6tCWRyQgZMw6f5GTkjk40lZVSuGUTdefO2VU+ODiY+P79cPYPwKDX0VJeTsGWzdTn5gDg4O6Ob2o/PGJicPT2wWDQ01xWRvGO7dTl2HeMS6HRalmyeYupvW8hMiCAW8ePvYT2/luOnDvH9EEDeeCaaeb08tpaNhw6zP6zmRRVViGTSgj39+fG0aNIjerd3dUx02i1fLdlG1syjtHQ0kJkgD+3jB1DWheP+dK333H0XA7TBw7g/mkXXtKk0mj4bM1azhQWUVFXh16vJ9Dbi4mpqUwb2L/H+h1/pq4uR/m/ztvbu90XegFERkZa/E3GjBnT6d9oypQpFi/3ulT/k0t9/vOjj/lx9e9MGjmCx++8E6lUypP/eoOjp053WO6tzz4nr7CItLQ0HrvzDganprLsj7Xc99zzqFRqi7x7Dh3mmX//B1cXZ564605GDhzIN8uW8e5XX/dYvf6z5DuWbd7K+IH9efC62UilUv7x6Wccz+64oc4pKsLN2ZkRI0bw0Ly5XDNiOFkFBTzy9gKyCwot8p45f54+Ub25bdoUHrxuDqkxMfy4YRPPfvJf9Hp9j9Tr3eW/smL3HsYk9+W+aVORSqS8/O0STuTl2b2PPSdOcjq/oN3tS3fsIuNcDuH+fsikf85l/cYXX/Lz2nVMHDqER265GalUyt/feZcMGx2Ltt5e+A15xUWMHzqUmTNnMrBvX37duIkHX/0nKrXlddjQ1MQjr/+LP7bvYPzQITxx+21cN3EiarUGjVbbY3ULmzQZv7R+VJ8+TeHWLaA30HvWbFxsvJjElqNHj5K79g/yTP/lb1jXYf6QMePQXVT3nhA193oCR4yk4shhclevwqA3EHf7nbhFRHRaNmzsOAYMGICqrpa8NavJ37CeppJiHNzdLfI5eHjQ58GH8YyNo3TfXnJW/kbZgf3IbdzYdTcJ8ODsZAbE+7PtSCG/bs/G1dmBx+el4efp1Gn5RX+c4Js1Jy3+23wwH4BTuVU2yygVMmaPiqJF3f3Xo4Onh6lDHmH3DZqZRMLIt94gNDSUrOUryPjoU5ReXoz95ENcw0ItsgYOHcLwt95AXd/A4QXvUbR9Owl33k7ak493X2Uu0mvWbAKGDKXy2DHOr/sD9HpibroF17DwTsuGjBrNgAEDUNfVkb9+HYVbNtNUWoqDm5s5j2dcPIHDh6OqqqJwy2aKt29H5qAk7tbb8U1J7bF6vfvrb6zYnW5q76cglUp4ecn3nMjreOCgrT0nT3G6IN/mtvTTZ1i2cxfB3t7cOn4sN4weRbNKzfOLvmXDocPdVQ0r7/22khXpexndtw/3TpmEVCLlle9/5EQnAyJtHTt2jDPt/I6ptVrOl1cwICaa28aP5a5JE+gVEMCX69bz7oqV3VUNQQC6aeQ/JyeHsLAwq5cQ9ISTmVls3LWbh2+9hb/MmgnA1NGjuGX+k3z87RI+/9c/2y37+pPzSU5MID33PEMiw5FLpcT37s1rH33Muh07mDlhvDnvR4u/JToinPdeeN58x+3i7Mzi5b9y/fRpRIaEdGu9TufmsfXQYe67dibXjzeOvk0cNJB7//UWX/y2kvfnP95u2VunTkFnMJDRoiHZUYFMImHa0KHc9MJLrNq5i8dvnGfO+94Tj1mVD/L15fMVv3E67zyJvSK7tV5nCgrYfuw4d02exJwRwwEYl5rCQx99wsJ1G3j7vns63YdGo+Hrteu4bsRwvtu8xWaeN+++Ez8PDyQSCXNfe71b62DLqexzbE7fywM33sCN06YCMHn4MO587nn++9PPfPLi8+2WfeWRh0hLSECr13OwrIL+/r7E9+rFG59/wYbde7hmzGhz3s9/XkpJRSVfvvYKQW0mGf3loicf3ckpIBCvuHiKtm+j/NBBAKpPnSTu1tsJGjGKrJ9/7HQfRUVF6M+eRmrHSI9P32QUbm5UnTiOX1q/yz7/9riEhuKbkkremt8p3mkcnS4/fIiUxx4nfMo0Tnz2abtlXcPCCB0zluPHj1P/849IOxgN7nXtbAx6Hcc//hhtc1O316MjabF+RIV48MXK4xzOLAfg0JkyXr5rMNcM68XCNSc7LH/gVCk6g8QiLSbME73BwIHTZTbLTBkSQYtGy9n8apKjfbunIiYtFZWsnDaTlqoqvOLjmPjNV3aXDR03Ft++fdi3bx+53ywGtZr8TZuZ+vMPJN1zN3tfesWcN+WRh6jJymb7Y/PNI/2axiYSbr+VzJ9+ob4LHVd7uASH4NOnL/kb1lGyZzcAFUeP0ueBBwmbMJFTC9uvp0tIKCEjR3P8+HGafluOtJ1Bm7rcHDLee9fiGiw7uJ+k+x4gZMw4Ko4e6dY6AZwpKDS295MmMmfEMADGpaTw0MefsHD9Bt6+9+5O92Fs79eb2vutVtuTe0Xy9fwn8HBxNqdNGziARz75jO82b2Viv4ufO16+s4WFbD9+kjsnjmfOsKEAjEtJ5uFPPuObDZv5z913dLoPtVbL6tWrmT18GD9s3Wa13c3JibfvudMibeqA/rgolazef4B7Jk/Ey9W1W+ojCN0yRBoXF0dmZmZ37KpTW9LTkUmlzJo4wZymdHBgxrhxHD97ltKKinbL9uuTZJU2avAgAHILL4yQ5+QXkFNQwMwJEywetc2ZPAmDwcCWPendURULO44cRSqVMm3YMHOag0LBlKGDOZmTS1l1dZf25+nmitLBgcbm5k7zBvp4A9iVt6t2nTiJVCplyoD+5jQHhYKJ/dI4nZ9PeW1tp/vYunUrBoPBfPNgi7+nJxKJpN3t3W3r/v3IpFJmjB1jTlM6ODBt9ChOZGVRVlnZbtm0hASrtFH9jZ3evKIic1p9YyN/7NjBjLFjCPLzQ6PVotZouqsK7fKMicGg11N5/Jg5zaDTUXXiGC7BwSjs/AGSOjh0mkemdCRw2HBK9uxGd5lvVOyMT5++GHQ6yvbvM6cZtFrKDhzALSICBw+PdssGDh+BpqGBc6aQjPbq5ujnh1dcPMU7tqNtbkIilyP5k55EAaTF+lPbqOKIqeMP0NCs4eCZMpKjfZHLuvYdkcskpMX4kZVfQ02D9efj5+nEuH5hLNuaha4HVvLQazS0VNl+4tCZsLFjaK6sori42Jymqqkhf9NmQkaNQGpaPs89MhKP3r0499tKixCfrGXLkUilhI4be1l1sMUrMRGDXkfZwYPmNINOS8Xhw7iGhVs9TWorYPAQy2tRYftabCkvt7r5NOh01GZl4uDhYdf3s6uM7b3kovZebmrvC7rW3g8fZnN7hL+/RccfQCGXMyA2moq6Opp6oB3ZdfI0UomEKf0vDE44yOVMTEvldIF99fp1124MBgPXDhvSpWP7e3oC0NBDoZB/Jr3hyvzvatSlofo5c+bYTNfpdDz66KO4mR45Ll++/PLPrB1nc3IICw7Cxdnyy59omhyRmZtLgK/9o09VNTUAeLZ5XHo2xxgzmRBlGaPo5+2Nv48Pmabt3SmroIBQfz9cnCyXdYozhSNkFxTi7+XV4T6am5up0aioa6hn+ZZtNLW0kBYba5VPp9PR0NyMRqcjt6iYhat/x9lRSVxE54+bu+pccTEhPj44X7RcVWxoqGl7CX4ddLrKa2rYunUrj147C2Una93+mTLzzhMaGIiLk2UoRUJvY/xn5vnz+Pv42L2/KtOPh0eb6/DY2UzUGg0h/v68+OFH7Dx4CL3BQFJ0FI/fdisxdoSqXAonP39U1dXoLwrDaTK9ldDJzx9NQ8fx4xMnTkQul6NTq6nLzqZoxza0Tdaj4IHDhqFpbKTyWAYBg7v2o9hVzkHBNFdWWN1kNJjCC5yDglG38yPuERVF/fl8evfuTfyECShcXFDX1VG4dQul6Xva5DO2Q+qGBhLuvgePqGhThyuLnN9WoKrp2k18V4X5u5Jf2sDFv2d5JfWMTAnB38uZoopGu/eX1MsHZ0cF+06X2tx+/dgYzuZXcyKnin6x/jbz/F/xjIuhxsagVNXJk0TNnoVbeBi12efwjIsBoPqisNGWikqaSkvxio3p9nNzDgyipbISvfqia7HIGBLiFBiI2rTKx8Xce/WmocB0LU6ciMLZGXV9PcU7t1vc2LZH4eqKTq1G3wMDCeeKS0ztveVcpFjTk/LO2/taU3s/s8vtfXVDI0qFokd+J86VmOqlvLhexjDInJLSDutVVlvLsp27mTtvXqfnp9HpaFKpUGs0ZBUV8+uedPw9PAj29r78igiCSZc6/ytWrGDUqFH06tXLapurqyseHVz83aWiugYfT+tOsI+pY1xR1bUf1yUrfkMmlTJ26IWOR6VplN3Hy9PGcTwp7+IovD2q6urwtjHa42NKq7RjZOGjjz6ivNw44uekVHLz5ElMGWq9nuyZ8/k8tuA987/D/P159b57cO+BmOSq+ga83KxHir1NaVX1tn/gWn29dh3BwcGMSu7b7ed2OapqavDxtL7eW9Mqq2u6tL/vf1+DTCplzMAB5rSCUmOH64tflhLs78+z991LY3Mzi1as4Ik3/82iN17HxzQq1J3kLi5oGq07iK1pctf2rxNdSwvlRw6Tp9XhXVqMW3AIvskpOAcGcvaH7yxuKBx9ffHpm8y5Fb/CnzARzMHdDU19vVV6a5qDu5vVNgCZoxMKF1fcwsNJUCop2LgBdXUV/v0G0GvmLOMI7j5jp8vRNPDQ+9o5NBYUcPaH71B6eBI6fgIJd99Nxgfv90inq5W7iwNZBTVW6bWNxk6mh4uyS53/gQkBaLQ6Dp8tt9rWp5cPCRFevL54/yWfb09y9PGhPOOYVXpzhfGpnKOvL7XZ53Dy8bVIvzivYxcGk+ylcHW1eQOtqTemObjaHvmXOTqicHHBNSycBAcHCrduRlNTg29qGhFTp2PQ6Sk/dKDd4yq9vPGKT6Dq5Ike+c5VNdTj5Wr9PfI2DWpU2fj+tfX1uvXG9r5vx4smXKyosoo9J08xPCmxR+Z8tfc71ppW2Vm91m+kd1Agqamp0Njxb96eU6f5z7Jfzf+ODg7isZkz/rS5bMLVoUud/++//56//e1v3H777dx554XYtCVLlvD666+TmJjY7Sd4MZVajYONO2cHB4V5u73W79jJqk2buXnWTMKCLqyK07oPW29Vc1A40NQDcbwqjQaFjTkTDgpjmj3hHvPmzSNIr6WsspJ16ftQaTToDQar2K6IwEDeeugBWtRqTuTkcPjMWZpVPTPZUq3RoJDZqJe8tV7tTxLMOJfDnpOnePjhh3vk3C6HSqNGIbd1fXT9Oty0J53ft23npunTCG3z5r/m1se8EgkLnnna/PQkJiKcB1/9J79u3MQ9c6+7jFrYJpXLba5wYtDqzNvbU3HkMHqJhMLI3shyz1GfmUlTSQkRU6fhm5xC2YELHcWQMWOpy82h4bz9E78vh1SuQG9jkrTedA1KbXyeADKlMTxC4eLC/v370ezaiVSno+r4cZIffZyQMePMnX+ZKZRC01DP6cXfmDtY6rpaYm78Cz4pqZQf6LnOsoNchlZn3anTaI1x4Q4K+zsQjg4y+vTy4UROFc0qy7+bTCrhujHR7MgooqTqz53XYC+ZUolerbEKbm29AZWZRnFbP1+9xvo7q1ere2SidnvXosGUJlXY/o61Xl8KZ2f279+PPn0PUr2e6pMn6XP/gwSPHNVu518qVxA1dx56rYaCTRu7qSaW1BotCrn1qjT2t/cnefjhR7p0zBa1hjd/+gUHhZw72oQDdye1VoPCxmo75np1sPhCRk4uu0+e4t/33GX1RM6WvpERvHbrX2hsUXH0XA45pWW02Lg2/xddbav9XMm61Pm/8cYbGTJkCLfccgurV6/myy+/xKuTUBRbVCoVqosevTe2tKC0IwZR6aBApVGjvWiSU7Npf3KFwmpbW63bDp04yb8++ZRBKSncfeMNFmXkpg5cs0pltS/jzYdDh8doS2fnxe6gUKDRaq3yN6s15nPqaF86g4GIiAiSlHJkEgkj+6Vx3+tvYsDAvdfOssjr6KgkJc4YDjS4bx+2HDjIS59/yUdPP0lvOycy27v4nYNCgUantcrfbGos5Qq5zX3pdDo++30No1OSCQsLQ6e6MB/BYMfx7cnTHns+WweFA2qNxipvk53XIYBOrycnJ4evvl7IwD59uHPObIsyrTefQ1NTcHC4cM3F9e5NkJ8vxzIz7b4OAfR2zonQa7VI5DLr/KYOiU6r63Bfrdta/7fq7BmCR43GNTyCkoPGjolnTCzOQcGcXrLYnM/Qpry95wqgt3MJPGO9FNb5TZ0/nU5nc1+tf2O9VktRURE+bUbgKo4fI3z8BOTe3qhra9GZbpAqjh9H3yZf+cmTROl0uEZEUnr4kF3nK5O0/32XSSU4O1rerDQ0q9FodSjkEquySlOnX6vV2dxva1rbbf1i/XBQyDhwusSqzIQBYbg6K/hjzznzNqnEuNpQR+dtdinx5q2DMTK5XeV1KjVSR0dQt1jkl5o68zqdDhwcjP/bmt5oeSMjdXQ0rkJl5/nq7RydNV6Lcuv8pkEsnU5nc19a07nqdTqKiorwb5On8tQJQkePRe7paR0yJJEQPfd6nPz8OPPjd6iaGqELI8n2t/dyNFrdJbT3ej5bs5bRKSnG9r7lwtOpjtpynV7PW78s5Xx5OS/dejOe7m5davft7Yo6yBWoddb1ajHVSyFvp156PZ+tXceYlL70Dgkmmwt1aa9e7q6u9DXNqxqSmMAvO3bywrff8+kjD4oJv0K36fLyPJGRkWzfvp1XXnmFlJQUvvjiiy5PtHzjjTd45ZVXLNJuuOEGbrrppk7Lyh2dKCgrJz3XcvWF1gnHlRqt1baLFRUV8dlnn+EfEMCMuXM5kG+5HGa16Qd828nThIdbxsEXV1QQFhbW6TG6ysHVjaKaWjJaLEf4MyuMk93qnVysttlyonWETqogIiqK9fsPMnjKtA7LuMclYAB+2XeQqVPtjNtVdr5sIIDSw4OS2lrOXJQ/s8U4ktHs7Wu1DWD//v0UVFYyfe5cqqqqaBvJWqrVsaexGVdXVxxs/CjrgVqpzOZ+7VLW/qTxVgpnZworKzl4Ud5M03VRI5FabbtYUVER33zzDf4BAcy84QaOVFqGk9VJjR1RlVxhtS+FkzNltXWdHsNCpH3rUYfo9Th5enH+ovy+pvCHIhdXSu3YV0HEhfDASLUaibu7eZ9xY8ZSWFREQVAIBBlvON39jNdeVVwCKpWKFnsnuNlZrwaJBCd/f8oHDLJIb61XeUCg1bZWOp3OvLRqZb8LoVkuvn6EA/X9B1JXV4enuztBQJWPr9W+1BoN+uDgdo9xsQm0H0rg4+PDiBEjLNLWr1+PRt1Cbz8ZE6Isy4aHGwdpEryqCJW3v9+xvS+Eogzr1xeNRkMAuUyIajM4IpczeWgkOTk5jI++8BmFeRmQSWFGHy06nQ51R0+/nrRedawzDqYQN/mUiSiT4jvNr9LrcOmXCunpKB95wJzuZmrTddOnoBw1HK1p/pH7Iw+iN80Ba+UcGUF1dTVKO8+3xK5c0Atw8vWjpG+qRXrrtVjq7UvpRdtapep0aExPgsuSLrzbxtHTm1Cgpm+q+a2g5jKpqXiGh3Pw4EEK3TyhnX23x956KT08je29o+XTkkyVcSGDZh8/q23QSXuv07OnSWWzvf/55585eDaTG2+8EWViH850pVJdoPT0pLS2lrMuluFYmUXG0MxmvwCrbWCsV2FlFdfMvZ79Ki2oqmidvl6qN5Cu0rb7O9YquP9AWjZvZVXOeYYMsX9elPWyEoJwwSWtzSmVSnnllVeYOHEit912G9ourjf+7LPPMn/+fIu0mjOn7Br5PxQfxy+/r6Gvv6/FpN9M05KE0wcN6HDCb15RMa999RU+np588vKLeNqIsw+QSfjxxx9RNDcxJPJC57+iqora2lrmTp5kkd6RppLizjMByWGh/JqdTZRBZzHp92Sx8cZkfK9w/BzbnyikMxg4odKaR/4BVuh1qFtaSO6gHECjQYvBYMBFo+40bytVbcdxi62S/P1YmZ1NWG21xaTfDNNLZkb4euOnsl5l6FBFOTqdjk8++cRq28GDBzl48CDP3nQjfROtmzgp4KHXEWdjv/ZwDQvrNM+BqCiWrl9PvJuLxaTf03uNK0FN7tsHf5/2J2gVlZXx5sKFuLi4sOCpJ23OH/BP7sMPP4Bc1UJ/f8truqWhgbCgIKv0jpTv63wyIIAhNATXtH5EFhVYxOgH+BknMLueOIaygwm/eomEgohehOblmJf6dJ04kebyMsJzjZ+7s7Mzzs7OhNn4W48ZM4am8jLOfP+dXefb3MEKX21pfLzxGzqMwGNHLSb9howyLq0q37Edvzrbc2ua0tJwDQlBIpHgfXC/eXlFb9M8Adf9e1HW10NNFSQm4lNdRdOBC39viUyG8pprkBQU4HfAvs/hB6/x7W5zKtBzpMRyTfPsQgf8IpuICvFkU7abxajmjb38UWl0rDomQauzjsmWSQyM7d3AlnOu6AwS3F0cmOHjy96TxazPtOysebs7Ml0uJyYmhpgY68mwkyZNIiOrnC9WWsfbtxq5ov0lmdujjouF0aPRrt2Aam3H740AqHb3xDfFOFdI9eGnYLqW3Z+ajzY+nqrX30Kv0VAeGQmLv8b14GFK26yn7ujjg9OsWWR/9wOqxUvsOseISaM7zwRo/f1wHTyEkDMnLd5vETzceEOn3LeHwHYm/Db174drsPFa9Dt+1Hwt+nh7AuBx9BDObb6fYeMnEhwRQe66tej27yXQ1k474WHjc7Ylyd+XldlZhNVUWUz6zTC9BG+Ejyd+LdZzTg6Vl9nR3t9A34QLN30L163nwIED3DN1MjMSYsHGfjtj7wvcknx9WJmVRWhVucWk36PZxkHH4Z5u+NmI5T9YVtJpvZ654XqGdPAiT0VdDQCudTXEdjJf4EqnF2E/V4xL6vw3NzdjMBgYMWIEGRkZZGVlsXLlSgoKCpg0aVKn5ZVKJcqLZs1rLloNpj3jhw7lx1Wr+X3TZvM6/2qNhj+2biMpJoYQf+PoYUl5BS1qlcV6/JXVNfz9jTeQSCS8849n8W1nsmRMRAQRISGs3rSJOZMmIZMZH4+u3LARiUTC+GFDkdv5yFRm51OR0WkpLNu8hXV79pjX+VdrtKzfu4/4yAgCTTP9y6qqaVGrCQ8MMJetrq/H3fQ4UCaRIJNIKKms5MjZs8SGh5nPoaGpCUel0upNgev2GF8nHdcmb6f1sisXjExKYsWu3Ww4cNC8VKdGq2XTocPEhYYSaJokXlZTg0qjIcy0lv3ovn2ICgxEDxQqHAjRqJECr//wIwNiY5jcvz9xYaHtnoekC+d4MXs+27GDB/Lz2rX8sW27eZ1/tUbDup27SIzqTbCfaQSvopIWtYqINi/Hqqyp4e9vv4NEIuGee+7Bx9PD5jF7hYQQHR7G7sNHaGhsNK9Itf/YccqqqpgzcYLd1yFg15r7AHWZZwnoPwC/pD7mdf4lMhk+CUk0Fhejq69HCijc3JDK5ajaTICXOTmhMY3YSw0GpAYDPskpKJydKcvNNZ9DzqrfrI7rGRuHV1w859f+gbqhwe7z7WjN/baqMzIIGTGSwH79zev8S2Qy/NP6UX/+PNrqKqRgXgaxpfzCJNfKjKO4hYcTHh5O0/69SHU6JHI5fskpNJWWoqupQQrUZ2WhbqjHLzmFoi2bzTHc/v36I5HJqMs8a/f5XrzeflsNLTpO5tVYpR86W05arD99o/3N6/y7OClIi/XnWHYFxgeDxv36ehjb3IraC6P3OoMEnUFCWmwAUqmEvSet1/2vadTw2W/WHfsxaaH0CnJn4ZqT1DaoOzx/LuWFbq3znnRaq/KOPj4oXF1oKCg0d+gKNm0ibOxogoKCyFWrQa3GwcODsDGjKdq5C71pAnvd2bPU5ebS+5rpnFu6HIOpMx09YzoGvZ78jZvsPt/21ty/WM3J4wQPHUZAWj/zOv8SmQy/5FQaCvLRmq4nB3cPpAoFLZUXbnCrTxzHLTSM8PBwVBmHker1SGRyfJP60lxWhq6uzjzNIXDocIKHDqNox3bK9+655LW97W7vExNZsWuPqb03LtWp0WrZdPgIcaEhbdr7WlN7b2wnR/ftQ1RQa3uvJESjMrX3PzEgJobJA/oRFxpiPo9lO3exYtce5o0awbVDL32VMHu7oiMSE1ixJ50NBw+Z1/nXaLVsPnKUuJA29ao11cs0ADm6TxJRpnlceqBI6USwqpk3f/qFATHRTOqXRlxIMDKgtqkJdycnq0iKTaYXl8UGB13yb5ogXOySOv+zZs1izpw53H///Wi1WqZMmYJCoaCiooIFCxbwwAMPdL6TS5QUG8O4oUP49PsfqK6rIyQwkD+2bqO4vJxnH7zfnO+1Dz/i8MmT7F76szlt/uuvU1RaxpgxYzh2+gwnzl54E6u3hyeDUi48Qn341lt4+q1/8/hr/2TC8GGcy89n2dq1zBg/jshQy7dDdoeEyEhGpaXy1crV1NQ3EOzny/q9+ymtrOLJv1wIh3rr2yVkZGWz4cP3zGn3vfEWqbGxOAcEUujuSnF5BX/sSUer03P3zBnmfEczs/h42XJGpaYQ4ueHRqfjePY5dh7NIDY8jPFtVprpLnFhoYxISmLRho3UNDYS7O3NpiNHKKup4bHZF+YiLFj2K8dzc1n9mjEcLMzPjzA/P3TAGaUTcapmc8MX4OXF0ItG/PeePkOOaSlKrU5HbkkpP5pepDI4Po5egZcy3tW+xKgoxgwayOe/LDVehwEBrNu5k5KKCv5+913mfP/6/HOOnD7DtsXfmNOefvsdisrKuWHaVHJzc9lQVWm+6fLycGdgnwsrXTz0l7/w1L//wyP/fJ0ZY8fS2NTEz2vXERYYyCzTTWJ3ayopoebsGYKGj0Du7IyqpgbvxEQc3N3J37jenC988hRcQ8M4+t6CC3+Xu+6hOvMsCr0BD3dXXINC8IyLo7msjMpjGeZ8ddnZVsd1MoX91OXmoOuBNa0bCvKpPJZB2OQpKFxdaamsxK9fP5ReXpxbvsycL/r6G3Dv3Zv0554xp5Xu24v/wEEkJydT3FCPuroav9Q0lJ6enPl2kTmfQafj/B9/EH39PJLu/SvlRw6j9PAgcNhw6nJyqDpxvNvr1dahs2WMLQrl1inxBPq40NisZlSqcZR49W7LJYofuz4VgBe+tH5vycCEAGrqVWTm11ht02j1HM2yftqSHOVLRKCbzW2XI3ruHBRubjiZOlTBI4bjZBrkyfp5KZrGRvo++Fd6TZ/G6tlzaSo2tgMFm7dScfwE/fr1w/n2W1FVVRE9ZzYSmZQTX1i+ROvoh58w4j9vMur9BeRv3IR7795Ez53DuZWrqc/t/gnpjYWFVJ04Tsi4CchdXFBVVeGTkoqDp6fFjXGva2fjHtmL/a++ZE4rO3gA37T+JCcnU9LchKamBp/kZJSeHmT++L05n2dcPGETJ9FSWUFLRTk+fZMtzqH2XDZaG6t6XQ5je5/Ioo2bjO29jzebDh81tvfXzjTnW7D8V47n5rHaVK8wP1/C/HyN7b2jC3EtjW3ae0+Gthnx333yFAvXbyTYx5swPz+2HM2grdSo3t0eGx8XGsLwxAQWb9pCbWMTQd5ebD6aQVlNLY/OvMac791ff+N43nlWvWR8yWOYr6/5RkAHnHVxN4/eB3h6MrTNiP/WjGP8ceAQQ+LjCPTypFml5lB2NkfO5TAoNoYUG6ssCsKluqTO/6FDh3j33XcBWLp0KQEBARw+fJhly5bx4osv9mjnH+CFRx4m8MefWLttO/WNjURFhPOfZ/9OWierDWWaGvGtW7eydetWi21piYkWnf/hA/rzr789ydc/L+Xdrxfi6e7ObbNnc9f1c7u9Pq3+fuvNfOPtxcb9B6hvaqJ3cDCv3X8vydFRHZabMWI46SdOUnDyFOtUKjzd3OgfH8dfJk+kV5sR517BwaTGxLD72HGqauswAMG+PtwyZRLXjx9nc7Wh7jD/utks2eTBliNHaWhpITIggBdvuZk+kZHddozdJ0+y6fAR87+zi4vJNr3cx9fdvds7/wDP3XcvXy9bzvpdu2loaqR3WBhvPvE4KR08wgXIOm9cV/6nNX9YbUuNj7Po/PdLTODfTz3JV8uW88UvS3F0cGBE/37cf8M8q3cndKfz69YSOHQ4XgkJyJSOtFRUkLNyBY2FhR2Wqz59GufgYOLc3ZElJKCpq6P8wH5K9+01j4L/X8r65WfCJkzENzUNuZMTTSUlnFn8DfW5Hb+7w6DVcmLhVwT85RaC+vVHplDQWFzM6cXfUHvRWvIVhw9h0GkJHjWGiClT0ba0ULZ/H+fXre3xJU0NBvh4eQZzRkcxtl8ICrmMvJI6Fq89TVm1fWFw/l5ORAS6s/HAebtHRntS3M034dJmNbbQsWMIHTsGgLy162wuSwtg0OvZ8fSz9Pv0Q2Kum4NM6UDVqdPse+116k3fwVbFu3az65l/kHT3naTNfxxVTQ2nF33Lia8W9lCt4NyKXwkZW4tP3xTkTo40lZaS+eN3na5+ZdBqObVkEX5zbyAoJRWZg4KmkhLO/vCdxU21s6nNc/Txpfds61XBTi9aSH03d/4B5s+ZzZLNm9lyNIOGlmZje3/zTfSJ7J73kuSUGOPsiyqreKfNkpit/nXn7T0yMXb+7Fks2byVLRnHaGg21eumG+jTTe9bSQwP41R+AduPH6emoRGZVEqIrw93T5rIjMEDu+UY/9f0V+sbta5AEsMlrL3k7OzM6dPGybDz5s0jKSmJl156ifz8fOLi4miy8TKfzlQeO9rlMpdCq9eTnnueIZHhXQqZuFSNxUWdZ+oGOoOBjBYNyY4Ku0N3LoeqpvP3DnQHWyP/Pc2th16edTGtXs/Bsgr6+/v+Kddi6Z49nWfqBnqJhPORvQnPPWd36M7laC4r6/FjgHFVofIBg/A7sM/u0J3Lsdhnco8fo5VMYmBCVD0bs906DtfpJmN+eaHHjwGAgwPKJx9D9c77lxZq1EW9prU/T6M76aVSSvqmEnjsiN2hRpfDM67jAY3uYmvkvyfZG/PfHdqO/P8ZdYv9y61/wlG6ZucB65fuXQlGDOj+F/ld6S6pxxEdHc2KFSvIz89n3bp15jj/srIy3Dt4LbkgCIIgCIIgCP93Lqnz/+KLL/LUU08RGRnJ4MGDGTrUOAFm/fr1pKWldesJCoIgCIIgCP/bDIYr87+r0SUFec+dO5cRI0ZQXFxMSkqKOX38+PHMnj27205OEARBEARBEITuc8kzPAMDAwm8aBLloEH2vbxGEARBEARBEIQ/X88s7yIIgiAIgiAIJuIlX1eOnl9iRBAEQRAEQRCEK4Lo/AuCIAiCIAjCVUKE/QiCIAiCIAg96hJeKyX0EDHyLwiCIAiCIAhXCdH5FwRBEARBEISrhAj7EQRBEARBEHqUXi/Cfq4UYuRfEARBEARBEK4SYuRfEARBEARB6FFi4P/KIUb+BUEQBEEQBOEqITr/giAIgiAIgnCVEGE/giAIgiAIQo8S6/xfOcTIvyAIgiAIgiBcJUTnXxAEQRAEQRCuEiLsRxAEQRAEQehRehH2c8UQI/+CIAiCIAiCcJUQnX9BEARBEARBuEpcMWE/6vr6P+U4Or0eAE19PXppz9/7eEbH9PgxALQ6HZw8jUfvKOQyWY8fr2jXzh4/BoAOQOmETtXypxwPoLGg4E85jg5A7kBTURE9/4mB1MHhTzgKIJGYjyf9Ex7zhowf1+PHANAZDJQ3thA8ehQyUx170iR8evwYZgY9NNYzPtkbJD3fLoY0ju/xYwDopVJKgIhJo5Ga2v6elLNmU48fAwAHB5R9U8lbvw3U6h4/XN/w8B4/BoAOCTi6oG1uwUDPtx0tFRU9foxWeqkUotxpKin5U67FK5GI+rlyiJF/QRAEQRAEQbhKiM6/IAiCIAiCIFwlrpiwH0EQBEEQBOH/T3q9iPu5UoiRf0EQBEEQBEG4SojOvyAIgiAIgiBcJUTYjyAIgiAIgtCjxEu+rhxi5F8QBEEQBEEQrhKi8y8IgiAIgiAIVwkR9iMIgiAIgiD0KBH1c+UQI/+CIAiCIAiCcJUQnX9BEARBEARBuEqIsB9BEARBEAShR4nVfq4cYuRfEARBEARBEK4SovMvCIIgCIIgCFcJEfYjCIIgCIIg9CiDCPu5YoiRf0EQBEEQBEG4SojOvyAIgiAIgiBcJUTYjyAIgiAIgtCj9CLq54rxP9n5V2s0LPx1Bev37KG+sYmosFDunjObAUlJHZbbfuAgm/ftIyP7HI0NDfh7ezE0JYVbZ87AzdnZnO/w6dM88dZ/2t3P3XNmc+uMa7qtPq3Uag2fffstazZvob6hgehekTxw220M7pfWYbncggKWrv6d9CNHeb6oCLVGw2/ffE1wQIBV3pm330lxWZlV+pxpU3n2kYe7rS5tabRavt+2gy3HjtPY0kKEvx+3jBlNau9eXdrPi9/9wNGcXKYN6Mdfp0y22Dbrn2/YLHPr2DHMHT70Uk+9Qxqtlm83bmLz4SM0NDcTGRjIbRMn0C8musNyu0+cZM2+feSWlFLb1ISniwvxYWHcPH4ckYGWn1mzSsXiDRvZefwEtY2NBHl7M3PoEKYPGdwjdWolkUoJGDQYz7h4ZEolLZUVlO7dS0NBfofl/AcOImDgIFIuStdrtZz4/L/mfytcXfGKT8AtIhKlhwcGg4GWqirKDu6nsaCgB2pkpNZoWLR6DRv37aO+qZneIcHcOeMa+ifEd1hu55GjrNqxk7MFhbQ0N+Hh6kZCr0humz6VXsHB5ny1DY2s3bOH9GPHOV9SilanIywggOvGjWHsgP49Vq+2mpsaWfPrt5w4ug+1Wk1YRDTXXHcbIeG9u7QfnU7Le68/RVlJIdNm38roiTMttuv1erZvXEX6jnXU19bg6x/E2MmzSR04otvqIpHJCBkzDp/kZOSOTjSVlVK4ZRN1587ZVd47MYmYkSPxmDoVg15HS3k5BVs2U5+bA4CDuzu+qf3wiInB0dsHg0FPc1kZxTu2U5dj3zEuhdzJibibb8I7KQnvxASUHu7se+11cn//w67yClcXUlJSCFy5HLlSSdXJUxz54CNqzpy1yhs8cjhJ99yFe2QkLdU15K7+nZMLF2HQ6bq7WoCpvd+xk63HT9DYoiLCz4+bR48ktVdkl/bz0g8/cTQ3j2n90rhv8kSr7TWNjXy/fScHsrKpb27G09WF5IgIHpk+tZtqYkkikxE0fATeiUnIlI40V5RTvHMH9Xm5HZYLHDacoGHG70TbFkCv1XL0vXfM//ZO6kPE1Ont7if391VUnzp5OVUQBLP/yc7/m199zbYDB5k7cQKhAQGs3bmLv7/7Pu8+/TeSY2PaLff2osX4eHqQlpZGSmgIeYWF/LppM+kZx/ji5RdROjgAEBEUxHP33mNVfsPuPew/cYKBndxkXKpXFixg085d3HTtLMKCg1m9cSOPvfgS/33zDVL7tH/MY6dO8cuq1fj7+xMRFkrmuZwOjxPbuzc3XzfbIi0iJKRb6mDL+ytXs/v0GWYMGkiwtxebMo7x6o8/889b/kJieJhd+0g/fYYzBYUd5kntFcnY5L4Wab0DrW+AusuCpcvYefwE1w4fRrCPDxsPHeKlRYt58567SIqMbLdcbkkJro5OzBg2lEY3dxxra9h48CBPfPpf3rn/PnoHBQGg0+t5fuEiMgsLuWbIYEJ8fDiYmcXHK1fR0NLMDWPG9FjdQsdPwKN3FBUZR1HV1uIVH0/k9Gs499sKmkqKOy1/9OhRPMvLkGIc6jFcNOTjHtkLv7R+1OXkUH3mNBKpBK/YeHrPvJaCzZuoPn2qR+r1n2+XsP3QEeaMG0uIvx/r9+zluY8/5e3HH6VvdFS75XKKinB1dmbEiBHEe3tSU1fP2j3pPPzW23zwt/lEhYYCcConh4UrVzMoKZGbp0xGJpOy4/ARXv/6G86XlHD7Ne3/uHcHvV7Pwk/eoLgwl1ETZuHi6sae7ev47L2XefSZt/D1D7J7X7u2/kFNdUW729et/IGt61cwaPh4QiOiOZmxnx8Wvg8SCakDhndHdeg1azZeCYmU7k1HVVWJb0oqMTfdwpnF39CQf77DssGjxxA8agxFRUXUpu9GKpHg5OePg5ubOY9nXDyBw4dTc/o0lUePIpFK8UlOIe7W28n57Vcqjh7plnpczMHTg6R77qKxuITarCz8+/ezv7BEwsi33sAzNJTTi5egrqwi6rrZjP3kQzbccTcN+RdungOHDmH4W29Qdugwhxe8h0dUbxLuvB2ltxeH/v1OBwe5dB+sXsPuM2eZMbA/QV5ebD52nNd+Xsprf7mRxLBQu/aRfuYMZwqL2t1eXlfHs99+B8DktFR83Fypamggs6jztulSRUyZhmdsHGWHDqCqrsY7qS9Rc+aS+fMPNBZ2/NsEkLdxPRVePniXlSDR6+Giya8NBfnk/r7Kqpx//4E4+ftTn5fXbXURhP+5zv+pc+fYvHcf98+7nhunTgFg0vBh3Pn8i3z28y98/Pxz7ZZ95aEHSI6N5WBlNf19vJBJpcRGRvLGl1+xYU8614weBYC3hweThlmPFi/6bSWhAQHEd3HE2h4nzpxh/bbtPHr3Xdw69zoApk8Yz433P8gHX3/N1wvab6hHDRnC+h+HcCj3POdPn+q08+/v68O0ceO69fzbc7awiB0nT3HH+HHMHmocrR6b3JdHPvuCbzZv4d933NbpPjQaDd9s2MScYUP4ftuOdvMF+3gzpm+fbjv3jpzJL2BbxjHunjqF60YaR3XGp6XywPsf8vXadbxz/1/bLfuX8ca/vQ44JXcgQatm6oAB3PbWv/l97z4euXYWYHxCcOr8eR6fM5tJplHj6UMG8/p3P/DD5q1MHjAAT1fXbq+bk78/njGxFO/eRcWRwwDUnDlNzI03EThsGOeWL+t0H0VFRZB7Dmk7qzs0FBZy+ttF6FpazGlVx48TfcON+A8a1COd/9O5uWw5cIj7Zl/LvInjAZg0eBD3/PNffPHrb3zwt/ntlr112lR0BgNHG1tIcXFEJpEwbfhQbnzuBVZt38njf7kRgIigQBa9/CIBPt7msjNHjeTpDz7ix/UbmTdxAk5KZbfXrdWxw+nknTvDzffMJ7mfsQ1L7jeUt19+jA2rf+Kmux63az8N9bVsWrOU0ROvZcPqn6y219ZUsmPTKoaOnsy1NxgHSgYNH89n777EmuXfktxvCFKp7LLq4hIcgk+fvuRvWEfJnt0AVBw9Sp8HHiRswkROLfyq/bIhoQSPGs35Des50txC4LEjSPV6q3x1uTlkvPcu2uYmc1rZwf0k3fcAIWPG9Vjnv6WikpXTZtJSVYVXfBwTv2m/LhcLHTcW37592LdvH7nfLAa1mvxNm5n68w8k3XM3e196xZw35ZGHqMnKZvtj880j/ZrGJhJuv5XMn36hPq/jG6iuOltUzI5Tp7lj3BiuHTwIgLF9+/DoF1+zaMtW3rrtlk73odFoWLRpC7OHDOaHHTtt5vn0j/XIpFL+c/ttuDs7dWsdbHEODMIrIZHCrVsoO7APgKoTx0m4426CR40l84clne6j+uxZCkLCIPuszWtRXVuLurbWIk0ilxM2YRL15/PQNjV2T2X+D+lF3M8V47Im/BYVFfHSSy9x880389RTT3H69OnuOq92bTtwEKlUyowxo81pSoWC6SNHcCI7m7LKqnbLpsVbP9ofaQqpOV/c8YjBqXPnKCwrY0IPhVts2rkLmVTK7KkXHlkqHRyYOXkSx06dpqS8vN2yHm5uuLQJW7KHRqOhuU3Hq6fsPn0aqUTC5H6p5jQHuZyJqSmcKSikvLau031s3boVvcHAtXb87VUaDWqt9nJO2S47jx9HKpUydeAAc5qDQsGkAf05dT6f8pqaLu3P09UFpUJBY/OFz+REbi4Aoy56mjE6uS9qrZb0Uz0zOu4RFY1Br6fqxHFzmkGno/rUKVwCg1DYecMhVSja3aaqrrLo+AMY9Hrq8/JwcHXrsOyl2n7oCFKplOkjhpnTHBQKpgwdysmcHMqqqru0P083N5QODjQ0N5vTgnx9LTr+ABKJhGHJyWi0WoorKi+vEp04djgdV3cP+qRe+K64unnQt/9QTmQcQKvR2LWfP1Z8h19AMP0GjbS5/eTRA+h0OoaOuhB+J5FIGDJyErU1leSdsw4/6SqvxEQMeh1lBw+a0ww6LRWHD+MaFo6Du3u7ZQMGD0HT0EDJvnSg/WuxpbzcouNvPIaO2qxMHDw8kJqeBnc3vUZDS1X7v1UdCRs7hubKKorb/GapamrI37SZkFEjzHV1j4zEo3cvzv220iLEJ2vZciRSKaHjxl5WHWzZffoMUomESakXAv8c5HImpCRzprCI8routPeDB9rcXlBZyaFz57h28CDcnZ1Qa7VoeyiEqZVnbBwGvZ6KjCPmNINOR+WxDFxDQlC0eZrUHokE5PKujbd6REUjUypFuI/Q7bp0JTo7O5OXl4efnx8nT55k2LBh+Pn5kZaWxu+//86nn37Knj17SE5O7qnzJTPvPGGBAbg4Wd7tt47GZ+Wfx/+iH9+OVJk6nx6ddGg27jH+iEwYOqQrp2u3M9nZhIeE4Opi2YlPio0F4Gz2OQL9/LrlWPuPZjDy2jno9HqC/P25afa13GQabe5u50pKCfbxxvmi0c4YU5x0Tmkpfh7t/4iX19aydetWHrlmGspOOoSbjx7jjwOHMAChvj7MGzGc0R2ES12O7OJiQnx8cHZ0tEiPM4V/nCsuwc/Ts8N9NDQ30yBRk1tTxapdu2lSqUiNvhCXrdFqkUqlKGSWI6hKB+PfIbOwiCm2fx8vi6OvL6qaGvQXdRSbSkuN23180TQ0dLiPiRMnIpfL0WnU1OXkULJrJ9o2neT2KJyd0Ws06HvgBi6roIBQf3/rtiMyAoDsggL8vb063EdzczM1eg219Q0s37yFppYW0uJiOz12dV1rO+NyiWdvn6L8HELCeiOVWo7rhEVEs2/nRsrLiggKiehwH/m5mRxM38oDT75m7LHYUFiQg4NSiX+gZRhHWGS06Txy6RWdcBk1MY62tlRWolerLNIbioxhLU6Bgajb6Uy69+pNQ0E+gYMGkzp6LMpZs1DX11O8cztl+/d1emyFqys6tdrqO3Al8IyLoSYz0yq96uRJombPwi08jNrsc3jGGUNgq09ZDsq1VFTSVFqKVwchspcqp7SUYG9b7X2QaXsZfh3ctJXX1rF161Yenjal3fb+aI4x/MXTxYUXvv+RY3nnkUokpPaK5K+TJxHg6dFNtbnAyT+Aluoq9Gq1RXqjKQTSyc8fTX19h/voc/d9pDg4oJs4kdqsTAq3bkbb1NRhGa+ERPQaDTVnL/9mWhDa6lLnv6WlxfyShueee45Ro0axfPly5HI5er2em2++mX/84x+sWmUdt9ZdKmtr8PGw/nL7eHgCUFFd06X9fb/mD6RSKaMHDGg3j06vZ/O+/ST07kWojUm03aGiqhofb+ubFl9TWsUljhJdLLpXJKlJSUSEhlBbV8/qjRtZ8NnnVFRW8sjdd3XLMdqqbmjA28aNlZcpraq+407kNxs3ExwczIikxA7zxYeGMCIxAX9PT6rq6/njwCEWrFhJk0rF1K7E09qpuq4ebxujPa1plXaMcD316WcUVhhjqp0cHLhx7Bgm9b8wJSzEzw+9Xs/p/HyLOQTHc/PsPsalUDi72HzE3JqmcGm/A6tTtVBxLINclRrfynJcA4Pw6dMXZ/8Asn75qcPOlIO7B+69o6jNzrKKh+0OVbV1+Ni40WxNq7zokbstH330EeWmp3BOSiU3T53MVBshgm3VNTayZvce+kZH2Wy7ulN9XbXNTre7h/Gmpq62usPOv8Fg4Lefvyal/zAiesdRVWm9OABAfW01rm6eSC66OXAzH+fy2yuFq6vNm0yNqc1wcLXdiZQ5OqJwccE1LAz3yF6cysxEeeYUfimpREydjkGnp/zQgXaPq/Tyxis+gaqTJ3rkOrxcjj4+lGccs0pvNj1VcvT1pTb7HE4+vhbpF+d19PXt9nOrbmjEy8YNrrcprbqTQYNFm03tfWIiYPtvX1xtfEL3yR/riAkK5KlrZ1JRV8ePO3fx0g8/8f49d3Y6UNRVClcXtDbOXdvYYNre/uChrqWF8kMHqS8ppsLXnwi5FP+UNJwDgzizZJHVDUUrmaMj7pG9qM3KRK+xned/zRX4dbpqXXLM/6FDh/juu+/Mj7GkUilPP/0006f37IQ2tVqDQm79xXYwfdlVXRip2bgnnTU7dnDT1CmEdjAx9NDJk1TX1XFLD07WU6lU5jq05WAa5W1Rqay2XYoFL79k8e8Zkyby6Asv8t2vK5g3cyYBft37g6DWaK1GrgEc5MY0tbb9zysjN4/0U6d5+JFHOj3OWxfNHZiQmsKTXy7k2y3bGJfct9t/DFRaDQobj3AVCmOaPaFHj8+dw2mNDofyMjYdOoRao0FvMJhj8cakJPPD5i28u+xXHpw5gxBfHw5lZvF7+l7jMXpoVFIil9tcCURvSpN08Oi6MiMDvURCYXAoiqIC6rOzaSorI3ziJHz69KX88KF2jxk+eQp6rZaSPXu6pyIXUWna+8zsbzvmzZtHMHpKKytZtycdtdryM7uYXq/njYWLaGxu5uF5cy/n9O2iUauR22gf5aY6atvpaLQ6kL6VksLz3HLPkx0fR6O2GcLQemxNN3RWpHKFzSdABlOaVGH7OpSZQnUUzi5kLl9KtkxB4KmT1Jw4QZ/7HyR45Kh2O/9SuYKoufPQazUUbNp42XXoCTKlEr1aYxW029qJlJlG3WVK49/BVsdRr1Yj7+Am/lKptFoUMhvfMVOaStN+u3gsL4/002c6be+bTfX0cnHh+XlzkZpuQH3c3Hjnt1VsP3GSiakXrzd2eaRyubn9a6v1+pTa+M61Kj9kDFvTS6UUR+mQZZ+luaiIyGtm4peaRum+vTbLecbGIZXLqRIhP0IP6FLnXyKRmEd6pFIpHheNYnl6elJd3XncrEqlQnVRZ7appcW82k5HHBQK1BoNuosmzDSbHg0r5HKrbW3pTBNOjpw+y78XfsPAPkncOfvaDsus35OOVCpl1IABHeazxd5YRKWDAyq12ip/a1y+QqHocF+t2/Sm89PpdHYf+4aZM0k/eIj9R48wZax9caD2RlgqFHLUOp1V/hatMUUuV9jcl06v54t1GxjVtw9hYWHo6y5cVwY7ji+VyZgyoD+f/bGWzOISEuxcVQjsmwjjIFeg1mqt62X6cZPL5Z2eY0x4OAa5A7FRvRiVkswD776PHrh7mnHeh4ebG8/fejMLflnK8wu/AcBZqeSvM67h3aXLUDoo7f4cAPTthHBY5dNpQSa3zm/q7Ol0ug731bqt9X+rszIJGjYcl7AwSk0TiC1IJEROmozS25uc31ehbm5qN9zEFp2dw0nGtkNrlb/F1JlQyBUd7ktnMBAREUEfZyUyiYRR/ftx76uvowfum3OtzTIf/fwL+0+e4m+33UJkSIjd52rUfluj1WppbrQciXRxc0ehcECr1YDBsmxrp1+ukFttA8Cgp6WlhbW//cCoCTPw9PI25jPnNViUMx5Ha30cjakdVihsH6e1ZtLOv2V6rRaJXG6d1zQgotPpbO7H3BbqdFScOQ2JfU359FSeOkHo6LHIPT2tQ4YkEqLnXo+Tnx9nfvwOVVMj2HGelud2CXMEWgcmZHK7yutUaqSOjqBuscgvNXXmdTodODgY/7c1vdEyvETq6IhOrbb7fHXY9310kMvR6HRW+VtM56JQKGzuS6fX88WGTYzqY2rvqy88OdIjsSjTOvg3NCEeg0RqbgMHx8cjW/U7pwqLGJeaatf52nMdQgfXosL492vvWrTYh0Rq/t/Ks2cIaWjANaIXxQf228zvlZiEtrmZmrzcrl+HgtCJLnX+DQYDsbGxSCQSGhoayMjIsIjvz8rKIjAwsNP9vPHGG7zyyisWaTfccAM33XRTp2UVLi4UVlVxsNLyJiPzvDEOtEYmt9p2saKiIj777DP8AwKYecONHKlpP3xCo9Gw/eAhoqOjydHqyOlk31bszC9TKskvKWHHScv4zExTbGdZY5PVNlvyyo1hJPsys/G289ildcZYxcOZ2bgE2LkUoHvHsdGtHD29KK2tJeui/JmlxvNUBQRabQPYv38/hVVVXHP99VRVVdE2iKDMIGGf1oCrqysOHfx4qQONdTkrkaGw83ztpfTwoKS2llNyy+NnNhnj2pu8vK22tees3AHcHIiMjmbT0QyGzbww/0IWE8eTzzxLSUkJarWaoKAg6kydFkd/f7uPAUCwfcvsBWl1OHl4kHtRfl9TmECh0pFSO/Z1PujC8rHhajUSVzerfQKkpqbiHh7OwYMHKTRI7D5Ps0b7Jq47uLpSVFPD0Yvyt16LdY5OVttsOd7UOnAhJSIqivX79jN48hSrfBs2bGDD9p1MnToVvz7Jdu27LQntL+13Pjubzz77zCLtmWeewc3NlfqqIiSNlmXry7MA8HBosdrWatu2bei0alITI6nON96k1ZlCoVpqi6jOP4y7uztyuRx3ZznZtVXQkGsR+tNQaQwx8XCi3eMAlPRNbXdbq16Ak6+fVd7W67DU25fSdvaTqtOh0WgoSzROli9LMv5OOXp6EwrU9E01f4/MZVJT8Wy9Dt08wY5zvJjyEso4mOYGyadMRJnU8fsmAFR6HS79UiE9HeUjD5jT3cLDAdBNn4Jy1HC0pvlH7o88iP6iBQicIyOorq5G+eRjdp1jtl25wNHL2N5ne/lYpGdWGFtwVWCQ1TZobe+rueb6eW3ae+N1VS6RsN8gudDe+/sDoPHzt9qXk7MzpTq9zWPYZGe+ML0BJy9vCqIs5/e0XovFbu6URnU+9wegqLdxXkxvjQaJh4fVPgGcnJxwDQklNzeXgl4dvzemPX/OW0W6Ri/ifq4YXer8L1y40OLf0dGWF2V6ejqzZ1uuH2/Ls88+y/z5lsvqlR/YZ9fI/4HevVi6YSPxzo4WE/dOpxvjcCcnJXQ4aS+/pJTXvvoKH3d33n9qPp6dzNLfsm8/KpWKOSNH0N+n6x1IZzvnCBzp24efVvxGv8hwi5V7so9nAHDt6JEEdDDhV6vTsedMJhGmsJ1BMVEE2XnsnQ3Gzn//uBhGJnb+4wNQnG5faEaijzersrIILi+xmAR2JNM4gWmYmwu+ddY3KQdKitHpdHzyySdW2w4ePMjBgwf5+/XXMbiDyZZnTRMD4yV6om0coz0K584fh/cJDOC37GwiGuosJv0eyzMuszrK3xc/bcehDzqMHf9YrRoZ4KhWoWppIcFGuST/C+FYv58x3gSO6x1pM297mm283M2mokJck1PoXV5qEaPvbwqNcz97BqfG9mN39RIJ54NCCC8uNC/16eqopKW8gsgiyxd4BQ0dhn9EBIU7d6A4lkGk3bW5wKOTl6q1SgkPY/mWbKKlBou246Rp0t746F74uzi2VxydwcDxJpV55B9ghUGPusW4/GdbK7dtZ8OGDcweO4b7r7m0lw4dof3vb2C0D/c8Yhmi5xoYT3B4NDlZp9E5hVlM+j1fvA6FgxLfiP4YbIXAGfTU1NTQ3NzMO+9YLyu8efNmNm/ezGPPvEVwWARBkcalJkvr5QQEXbhZyztpfAlcUO80DC7tzy0ISv+t3W2ttP5+uA4eQsiZk8ZRapPg4caldZX79hDYzryXpv79cA0OIeDUcUoT+uB/IgOpXo+PtycAHkcP4dwmhjts/ESCIyLIXbcW3f69dD6EZVve+m1dLqOOi4XRo9Gu3YBq7bpO81e7e+KbYrypUX34KZj+Nu5PzUcbH0/V62+h12goj4yExV/jevAwpStWmss7+vjgNGsW2d/9gGpx50tUAiTe1fkSnQAJ3l6szsoiqKTIsr0/ewaAoS5O+FZbz0E4UFzUaXv/9HWzGRwbS52HG2sBaWkJUW32pdHpaGpsJEght0jviKrKvnz6kCBc+w0gPD/XIkY/0NQncM44QmhDxxN+9RIpRb2jCT6XhdSgx3XiBJrKygjNtp7MGzBwEBKJBPW+PYTa8Q4BQeiqLnX+b7/9dsC44oXBYMDZ1EnNy8vj119/ZdCgQUyePLmjXQCgVCpRXrQaQKNj+z+6bY0ZOJCf161nzfYd5nX+1RoN63buJqF3b4JaR4UqK2lRq4kIujCSXVlby7PvvY9EIuGt+Y/bNfluy959ODo4MGpAf2SX8OhNbiPe3ZaJI0fw/fJfWbluvXmdf7Vaw5qNm+kTF0eI6YlKSVkZLSoVkWG2w1haf/BlMpnVsWvr63F1dkbWJl2r1bJk6TIUcjmDUlPtPl97V/AenhDHb+l72XjoiHmdf41Wy5ajGcSGBBNgmmxZXluLSqMl1Nc4EjM6KZGowAD0QLGTC0HNjUiBN35ZRv/oKCalpRIbHIwMqG1swuOiVZKaVCpW79uPu7MTMUFBdp+vvXUb2SeJX3fsZP3+A+Z1/jVaLZsOHiYuLJRA02heWU0NKrWGMP8LN241DQ0W6/PLgIrqao5mnyMmJLjD49c2NLJs+3Z6BQbSPyqqS2v1trfm/sXqsrLwT03DNzHJvM6/RCrFOy6eppISdA31SDFOcpPK5ajajCrKHB3RmEL6pAYDUoMB76Q+KJycKT+fZ3EOvqlp+KemUXbwAFUZRy953WGZnSFCo/ulsXTTZtbu2mNe51+t0bAhfS/xkZEEmSbXl1ZVoVKrCW/zFLO6vh5302cmk0iQSSSUVFZy5MxZYiPCLc5hy4GDfPrLMsYPHMCDc+dYTYq1X/t/EWcXd2ISUq3S+6YN5djhvRw/ut+8zn9jQx3HDqWT0Lc/cocL7W5leQkAPn7Geg4fPpyk/mOhTYhFQ0Mty7//nP5DxpCUPBAvvwCQSElMGcTqZYvYs2O9eZ1/g8HA3p0bcff0JiIqHiTtn7+tdc4vVnPyOMFDhxGQ1s+8zr9EJsMvOZWGgny0NTVIMU4UlyoUtFReeCFZ9YnjuIWG4d83mVKtHqlej0wixTepL81lZejq6sx/3cChwwkeOoyiHdsp37vn8ta/7mROhU2tN9g6rVV5Rx8fFK4uNBQUmufhFGzaRNjY0QQFBZGrVoNajYOHB2FjRlO0cxf6RuPE/LqzZ6nLzaX3NdM5t3Q5BtPfPHrGdAx6PfkbN9l9vrJ2Jt9ebERcLCv37mPTkSPmdf41Wi1bMjKIDQ4iwN0NMFBeW4dKqyHUx9jej0qMp3eAP3qgxMWNwEZjG/Pmsl/pH9WbiakpxAYHIcNASngYHs7O7DhxknnDhuBgCkfcmJGB3mAgLTLC7vO15zoEqD19msABg/Dvk2xe518ik+GT1IfGoiJ0dbXGNtHNuEyxqs0CHXInJ+NKZ6YLS2rQ45+cgsLZhfqcczbPwScuAXVdLU35+Zd3PQpCOy5pwu+sWbOYM2cO999/PzU1NQwePBiFQkFFRQULFizggQce6HwnlygxqjdjBg7gi2XLqamvJ8Tfn3W7dlNSWcnTd91hzvevL77i6JkzbG3zIpin33mX4vJyxowZw7HMLE5kXXiY6e3hzoCL3txb19DA3mPHGDWgv9WSjt2tT3w8E0aO4ONvFlFdW0toUBC/b9pEUWkpzz9+4dHsS28v4NCxY+z/43dzWkNjIz+s+I288gpqK4xPQH5euQo3V1fcXFyYN3MGANvT0/n6h58YN2I4IYGB1NbXs27rVrJz83jwjtvNKwt1p7iQEIYnxPPtlq3UNjUa3/iYcYyy2loeuWaaOd97v63m+Pnz/Pb8s4Bxqc5QXx90QJa7F9F11eZOcYCnB0PajPivOXCQvWfPMjAmGj93D6oaGth0NIPy2loenzXD5oTjyxUfFsaIPn34Zt16ahoaTG/4PUxpdTWP/b/27js6quJt4Pg3vXfSSSGENAgk9F6kSBGRqoiAiPKzoCBY4FVBREBEsCGKFRAQFQFp0kF6L4YkhFBCSSGB9LbZ7Ob9I8mSTd2EBNA8n3P2KHNn7p3J7p2dnfvcuSXivxf+vpawqzFsnfuhJu3lz7+kRePGNHJzJcPCkqOJt9h58hQqlYpxpX48v/Xt9wR6euDq4EBKRgbbTpwkJy+P98eMLrOcY23JSbxF6qVoXNq1x9DMrPAJv/4BGFtZcWXvHk2+hj17Y+nuTtiSxXf/LqPHknr5Egb5KmztbLF0ccWmSRNykpIKV08pYt3IB9eOnVCkpqJIScbWT/sKTuaNGzotDVodgY286doylB/+3EhqRgZuTo7sPHqMhDt3mPrM05p885f/zD/Rl9i15EtN2gsfziPE3w9zJ2diba2JT0ziryNHyFepeH7Q45p8F2Ji+HjFSqwtLAgN8Gf3ce0bS4MaN8KtDlZZKRbcsj2ee5vw+89LSEy4iYWFNUf2b0ddoKbPYyO08n73+QcATPuwcLa1YcOGuFt4aQ3ai1f7cXb1oGlIW026rZ0DnXsM4O9dG1GpVHh4+RJ+7jhXL0Xy1LjX7vkBXwBZsbEkh5/H/ZFeGFpYoEhOxqFFCMa2tlzddPfKQaMnBmPt3YgTH9xdzCDx1EkahLbEu29/VFeuYGRiTIPgYExsbYhes/puO/wD8Ojdh9w7t8m9nYRDsPYy1WlXLpOfVTcPV/IdNgQjKyvMij4Pbp07YVYU0nLpt7Uos7IIfvl/NBrQn82Dh5EdX/hj7eaefdw+H07Lli0xHzsaRXIyvkMGo2egT/h32g8LO/flEjov+Iiuny/ixq7dWPv44DtsCFc2biYjpvafGOvn7kbHAH9+3ref1KxsXO1s2RsWTmJaOhP7370C9tnmLYRfv8GG6W8B0NDBgYYODqjQ47KdA41T7mgG8M42NrQvsSypkaEhzz7Snc83b+Wdlavp1qwpt9PT2XziFEEeDbW+G2pLdkI8KVEXcOvSFUNzcxSpKdg3bYaJtQ3R2//S5PPq/xhWHp6c+WS+Jq3phJdIibpA9u3bGNrZ4+HfBDv/QLJv3Sr3IXKmDRpg5uREwrG6WfjgQSqQsJ+HRo0G/6dPn+bTTz8FYO3atTg7O3PmzBn++OMPZsyYUaeDf4DpLzyP87r17Dh8hIysLBp7eDBv0mu08PevtNzlG4WXpPft28e+ffu0trXw9y8z+N934iT5KlWdPdirtPffmIrLip/ZunsPGZmZ+DZqxKezZtKyiqfWpmdm8u3KVVppq9atB8DVyUkz+Pf19qaRpwfb9uwlJS0NIyMj/Hx8mPd/0+jVpfyH+dSGyYMGsmrffvaFnSczJxdvZyfefXI4Tb08a2X/gR4NuXDzJjvPniMjOwcTY2OauLny6mP9ad7Iu1aOUZ43hg/l51227Dl7lsycXBq5OPP+mNEEN6r8CdD927XlRNRFTkVHk61QYGtpQcsmvozo3o1Gpe6Z8XV348D589xJz8DcxIRQ38aM7t1LM0tdV27u3oWybTts/fwxMDEh984dYrZuITs+rtJyqdEXMXdxxd/KCgN9fZQZGSSdOU3SqZOaVVoAzTKDJra2ePTqU2Y/VzasJz+n9i93Txs7mp/s7dl1/AQZ2dn4uLvx4csv0ryK0KGBXTpz7Hw4N8Ij2K5QYGtlRevAAEY++ig+7m6afNfiE1Dm55OamcknP68qs583R4+q08G/vr4B4175P7au+5lDe/9CqczDw6sxI8a8gqOze9U7qIa+T4zCzNySYwd3curoPho4uvLUs68R2qb2+pIrG9bj3iMNh+AWGJqZkn3rFtFrVpF5vfKBa0F+PlErltOwdx+8AoMwbNSI7IR4Lv6yivTLdyd9zIvON1OHBvgMHlpmPxeW/0RGHQ3+/UeNxKLElemGPbrTsEd3AK5t246yguMWqNUceGs6Lb/+kiZDh2BgYkxy5AWOz55DxvUbWnnjDx3m0LR3aDp+HKFTJqNITeXC8p8J/+GncvddGyYPHMDq/Qf4+3w4mbm5eDs58u7woTStxqILVekR3AxDAwP+OHKM5Xv2YWFqSp/QEEZ361KjK/S6uLZ1M3mdu2Af1BQDU1NykhK5vP4Psm7erLRccmQEFm7u2Dbxw93IiLy0NBKPHyPh6BGtPrGYXWDhstbyYC9Rl/QKavBTzNzcnAsXLuDp6cmIESNo2rQpM2fO5MaNG/j7+5NdxYMryhN/uPzHeNc2lVrNqTsptHKwq7NOoiQLHW6Arg35KhUHIi7QJShA59CdexF36D69X5Sd+a9rusT81wYVEGloTGBRzH9dK35IV11T6+kR49YQ77ibOoca3QvbOpjpK4+qoIBzWYXx/bqGGt2LUzWOPK+BAjV6WdcK4/QrCdepLe6H/qjzY0Dhai4JwSG4hJ3VOcTjXlzdurvOjwGAsTEmUyehWPh5zUKNqin4xXF1fgyg3Jn/upR7+3bVmWqJWl+fm439aHj54n35LIa+8XadH6O61vxVzmpvD4Gn+oU+6CrcdzXq5X19fdmwYQM3btxg+/bt9OlTOHOXmJiIdSVP7xNCCCGEEPWPuuDhfNVHNRr8z5gxgzfeeANvb2/atWtHhw6FN5bt2LGD0ND69wtKCCGEEEKIf4MaxfwPGzaMzp07Ex8fT4sWd5+k17NnT52W+hRCCCGEEELcfzUa/AO4uLiUeaBX27ZtK8gthBBCCCHqK3nI18NDlpAVQgghhBCinpDBvxBCCCGEEPVEjcN+hBBCCCGE0EVB3a9wKnQkM/9CCCGEEELUEzL4F0IIIYQQop6QsB8hhBBCCFGnZLWfh4fM/AshhBBCCFFPyOBfCCGEEEKIekLCfoQQQgghRJ2SqJ+Hh8z8CyGEEEIIUU/I4F8IIYQQQoh6QsJ+hBBCCCFEnZLVfh4eMvMvhBBCCCFELUpOTmbUqFFYW1tja2vL+PHjyczMrLRM9+7d0dPT03q9+OKLWnmuX7/OgAEDMDc3x8nJiTfffJP8/Pxq1U1m/oUQQgghhKhFo0aNIj4+np07d6JUKhk3bhwTJkxg9erVlZZ74YUX+OCDDzT/Njc31/y/SqViwIABuLi4cPjwYeLj4xkzZgxGRkbMnTtX57rJ4F8IIYQQQtQpdT2K+omMjGTbtm2cOHGC1q1bA/Dll1/Sv39/PvnkE9zc3Cosa25ujouLS7nbduzYQUREBLt27cLZ2ZmQkBBmz57N22+/zfvvv4+xsbFO9ZOwHyGEEEIIIWrJkSNHsLW11Qz8AXr16oW+vj7Hjh2rtOyqVato0KABzZo1Y/r06WRnZ2vtNzg4GGdnZ03ao48+Snp6OuHh4TrXT2b+hRBCCCFEvaRQKFAoFFppJiYmmJiY1HifCQkJODk5aaUZGhpib29PQkJCheWefvppvLy8cHNz459//uHtt98mKiqKdevWafZbcuAPaP5d2X5Le2gG/6q8vPtznKK7zVVKJejp1fnxlFlZdX4MgHy1uvB42dkU6Nf9BR0jS8s6PwbcvTRlZGmJwX054gOgX/efQwCbJk3uy3FUBQWQo8C6cWMM7sM5pm9oVOfHACgoKABy0Tc0Qv8+tMvV5v6cYwBqtYrELHC2t0Bfv+7PNFt//zo/BoAKSKDws38/+o9gT8/7cBRQocdlIOi5ZzCg7mMpwr75qc6PAYCxMSZTJxHx40q4D2OC1tOm1PkxiqmK/mvt0/i/+11WhYKHdLWfefPmMWvWLK20mTNn8v7775fJO23aNObPn1/p/iIjI2tclwkTJmj+Pzg4GFdXV3r27Mnly5dp3Lhxjfdb2kMz+BdCCCGEEOJ+mj59OlOmaP8QrGjWf+rUqTz77LOV7s/HxwcXFxcSExO10vPz80lOTq4wnr887dq1A+DSpUs0btwYFxcXjh8/rpXn1q1bANXarwz+hRBCCCFEnXpY1/mvToiPo6Mjjo6OVebr0KEDqampnDp1ilatWgGwZ88e1Gq1ZkCvi7NnzwLg6uqq2e+cOXNITEzUhBXt3LkTa2trgoKCdN6v3PArhBBCCCFELQkMDKRv37688MILHD9+nEOHDjFx4kSeeuopzUo/sbGxBAQEaGbyL1++zOzZszl16hQxMTFs3LiRMWPG0LVrV5o3bw5Anz59CAoKYvTo0Zw7d47t27fz7rvv8sorr1TrHgUZ/AshhBBCCFGLVq1aRUBAAD179qR///507tyZb7/9VrNdqVQSFRWlWc3H2NiYXbt20adPHwICApg6dSpDhw5l06ZNmjIGBgZs3rwZAwMDOnTowDPPPMOYMWO0ngugCwn7EUIIIYQQdeohjfqpM/b29pU+0Mvb21vrJmgPDw/+/vvvKvfr5eXF1q1b76luMvMvhBBCCCFEPSGDfyGEEEIIIeoJCfsRQgghhBB1Sq2uZ3E/DzGZ+RdCCCGEEKKekMG/EEIIIYQQ9YSE/QghhBBCiDolUT8PD5n5F0IIIYQQop6Qwb8QQgghhBD1hIT9CCGEEEKIOlXfHvL1MJOZfyGEEEIIIeoJGfwLIYQQQghRT0jYjxBCCCGEqFNqift5aMjMvxBCCCGEEPWEDP6FEEIIIYSoJ/6VYT95SiXLNm5m17FjZGRn4+PuzrhBj9M6KLDScgfPnGXj/v1cvHGT3JwcbCwtCfRpxNjHBtDI3b1M/sPnzrF80xauxcdjZ2XFox07MHpAfwwMDOqsXd+t+ZXt+w+QnpWJr6cXE0Y+RdsWzSstt+/oMXYeOsS5qItkZWbi3MCBjq1aMW7YUKwsLLTy7jp0mIMnTxIRfYmbCQmEBgXx1Qfv10l7iinz8/l55y72nD5LZk4O3q4ujOnTm5ZNfCstd/h8OFuOHedSwi1ysrOxsbAgwNODUb164u3irJU3R6FgxY5dHAw7T1pWFq729jzeqQMD2rd7KNu19dhxYhJukZadje1D1i4o/Cwu37KVXcdPkJmTg4+bG88+NoBWgQGVljt47hybDhwiOjaW3JzswnPM25vR/fvRyM1NK+/Xf6zjn+hL3EpOJk+pxMnenu4tQxneqydmJiZ11q5lGzex8+jdvuO5Jx6ndVBQpeX2nz7D3hMnCbt6layMDBzt7enQPJjRA/pjaW6ulTcnN5cf/tzI/lOnScvMxLVBAwY/0oNB3bvVSZtKy8rK5NdVP3Dq+GEUeQoaN/Zn5OgX8Pap/HOpVqs58PcuTp84wrWYy2RmZuDo6EL7jt3oN3AoxsbGmrwH9u3ku68XVbivFye+Sccuj9xzW5T5+azcs5e95/4hMycXb2dnRvfsQahv42rtZ8aynzl35QoD2rbhpcf6a9KT0tLYefoMJy5GE3cnGQN9PTydnHiqW1dCGvvcc/0ro8zPZ/WBg+w7H05WrgIvR0dGdetCSCPvau1n5i+/ci7mGv1bhjLh0d5ltqdmZbF6/0FOXrpMRk4OtpYWNPfy4tUB/WqpJdoMzczwHzUS+6ZNsQ8KxMTGmuOz5xCz5S/dyhsa0uyNKbh36YShqSnJEZGc/WIxqVEXy+R169KJps8/h7W3N7kpqcRs3kLET8spUKlqu1nk5efz846d7Dl9hsycHBq5ujCmTx9a+jWptNyh8+FsPXqMmISEEv29J8/07om3i4v2MZRK1h88xO7TZ0hMScHSzIxAL0+e6dULr1LfDf9GEvXz8PhXzvx/vHwFa3ftomfbNrwyYjj6+vr835eLCbt0qdJyV2JjsTQ3p3Pnzkwc+SSPd+vKpes3eGXefC7fuKmV99j588z4eimW5ma8+tSTdAppwaqtf/Hlml/rrF0fLv6KNZu30KdLZyaPG4e+vj5T587jXOSFSsvNX/ot12LjCA0NZdK4Z2kXEsIff21jwv+9i0KRp5V3/fYdHDxxEqcGDlhZWlSwx9q16Pc/WH/gED1CW/C/gQMw0NNn5k/LCY+JqbRcTMItLM3M6Ny5My898TgD2rflclw8r3/1NVfi4jX5VGo17/64jC1Hj9GleTD/GzgAd8cGfLVhI7/u3ffQtmtgp44MHjyYfg9ZuwAWrFzFH3v20rNNa14eOgR9fT3e+fobzl++XGm5q3FxWJkXvmevjBjOY507c+nmTV5dsJDLN2O18kZdu04z38aM6d+Pl4cNJcSvCWt27mL6V1+jVqvrpF3zly3n95276NmuLROfHIG+vj7Tv1hMWHTlfcein1dyPSGB0NBQXn5qBG2bBrFh7z4mfvQxiry755hKreatz79g09/76d66FS+PGI6HszOfr/6FVVt1G/zcC7VazaKPZnLk4D56Pfo4T40aT3p6KnM/eIuE+NhKyyqVSn745jPS09N4pFd/Ro39Hz6+fqz7fSUL571HQYlvbv/AZvxv4ptlXt6NfNHX1ycoOKRW2vPp+j/ZcPgo3ZsHM6F/X/T19Xh/5WrCr13XeR9hYWFE3bxR7rajF6L44+Ah3OztGd2zB09260qOIo93l//MztNnaqUNFfli81Y2Hj9Jt6ZBjO/1CPr6esz+bS0Rpb6LKnM0Koqo2LgKtyelp/PGshWcvnKFR0ND+N+jvendojnp2dm10YRyGdvaFA3IvUir4ju5DD092rdvj2evnlxau45/Fn+NiZ0dPZZ8iaVHQ62sLh3a02n+PPIyMjmz6DPi9u8ncNxYQqdOrr3GlLDot99Zf+AgPUJD+N/jA9HX02fGT8s4fzWm0nIxCQlYmpnxeOdODB48mP4d2nM5Lo7Ji5do9fcAH6/5lZ937KS5TyNefHwg/dq15fzVGF5f8jW3UlLqpF2ifqqVmf/8/HwMDe/PRYQLV2PYe+Ik/xs6hBF9Cmc5+nRoz/hZs/n2j/V8+fabFZYd89gAVAUFnE3PJMTaEgM9Pfp17sRTb09n4/79vD7qaU3epWvX4ePuzseTXtPM9JubmrJ623aG9HwEz1K/2O9VRPQldh06zMTRz/D0oMcB6NetK89MmcpXP6/k27kfVlh2ztQpNA8K5GjMddp7e2Kor0+Ajw+zF3/F9gMHeLxXT03eGa9NxNHeHn19fUa9PrVW21CeqBs3+PvcP4zv35ehXbsA0LNlKC999gU/bt3Owpf/V2HZp3s9ggqI1DciUK3EAHi0TRvGzJvPlmPHeHXwE0DhTHrktetMHjqYPm1aAzCgfTvmrFzNL7v38mib1thaWj5U7QK02tbvIWkXwIWYa+w7dZoJTwxieNFnp3e7trwwZx7fbfiTz6dOqbDs6H79UBUU8E+OguZmJhjo6dG/YwdGvjuDTQcOMnnkk5q8n02ZXKa8a4MGfLt+AxeuXSOoUaNabVfk1auFfcewITzZpw9Q2Hc89/4HLP1jHYunvVVh2fdfnECwnx9n0jIItbHCQE8PPy8vPvppGbuOHWdAl84AHDh9hvDLV3hzzGj6de4EwKDu3Xj/m6X8vGUr/Tt3ws7aulbbVdKJYweJvhjBxNf/j7btCz+XbTt04a3JL7Du95W8/NrbFZY1MDDgnVkL8A9opknr0bMfjo7OrPt9JeFhZ2nWPBQAJ2dXnJxdtcrn5SlY/sNigpq1wNbW/p7bEnUzlv1h53muT2+GdO4IwCMtWvDKV0v4acdOPnlhfJX7yFPms3nzZoZ07sTqPfvKbG/eyJsfp7yOjcXdqzf927Tm1SVLWbVnH71bht5zO8pzMS6eA5EXePaR7jzRri0APYKb8dp3P7J87z7mj3mmyn0olUqW797L4Pbt+OXAwXLzfP3XDgz09VkwdgzW5ma12oaK5N6+w8b+j5ObnIxdgD+9l/2gc9mG3bvi4ODA4ffe5+bOXQDc2L2Hfr/9QtPnx3Ns5ixN3havvkLqpcvsnzRFM9OvzMomcOxoon/9nYxq/ECsyt3+vh/DunUFoFfLUF789DN+3PoXi155qcKyo4r6UBUQoWdAUIGKfm1aM3ruR2w5epRXhwwG4HZaGofOhzO0axeeH3D36lSzRt5M+/Z7Dp8PZ3BRPyPEvarWzP+2bdsICwsDCmeYZs+ejbu7OyYmJjRs2JCPPvpIa3aoLvx9+jT6+vqaL1sAYyMj+nXqSMSVKyQmJ1drf3ZWVpgaG5NZYiYkJi6ea/HxDOjSWSvE5/Hu3SgoKGD/qdP33pBS9h49ioG+PoN699KkmRgbM/CRRzh/8SK3bt+usGzLZk3LpHUt+kKJidWe7XNu0AB9/ft3wedgWDj6+vr0a9tGk2ZsZESf1q2JvH6dpNTUau3P1tICEyMjsnJyNWnhMdcA6FoqPKpbi+bk5edzNCKy5g2owH+1XQAHzp5FX1+f/p06atKMjYzo26E9EVdjSKzmDJStlRUmxsZk5eRUmdfFvnDQqEve6tp/qrDveKxLF02asZER/Tt3qrLvCPH3L5PWOTQEgOsJCZq04quPPdq00crbo01r8pRKDp07dy9NqNKJowexsbGjddtOmjRra1vate/C6ZNHUCrzKixraGhIE7+yoZOt2hZ+DuJiKx9MnTl1jNycHDp07lHD2ms7FB6Bvr4efVu30qQZGxnSu2UoF27cJCktrcp9rDt4iIKCAp4o8VkuycvJSWvgD2BkaEhrP19up6eTrVDcWyMqcPhCFPp6evQJaaFJMzY0pFeL5kTFxpGUnl7lPvbt24e6oIAn2rUpd/vNO3c4feUKT7Rri7W5GXn5+eTXQThMaWqlktxqfg8X8+jWjdzcXG7uP6BJU6SmcmP3Hty7dkbfyAgAa29vbHwaceXPjVohPpf+WIeevj4NH6mdz2Cxg2HnC/v7ou9VKOw7Hm3Tpob9vSUmRkZklujvc4o+a6UndOytrDTH+7dTFxQ8lK/6qFqjwMmTJ5Na9CGfP38+n3/+OW+88QZbtmzhzTff5LPPPuPjjz+ui3pqXLpxg4bOTliYac9iBHh7F22v+pJpTk4OqRkZXImN5ZOfV5KVm0vLgLuxzJduFF4i9vfy0irXwNYWRzs7zfbadPHqVTzcXLEoFT8c5FsYpxtdRShJaclF75NtUcfxoFyOi8O9gQPmpqZa6f5Fl3BLX/YsT05ODmmZWVxNSODzP9aTrVAQUiLmV5mfj76+Pkal7sUwKeoso2MrD3eoidpoV2ZODpmZmcQ8RO2CwnOooZNjmXPM37vwfLh8U9dzLJOrsXEsWv0L2bm5hPr7lcmnUqlIy8zkdmoaJyMj+WnzFsxNTcqce7Xh0o0beNxj31FSctHg06bEl7VSWfSeGZZ6z4ri5aNrcTayPNdiLuPVqHGZH/g+vv7kKRRVhv6UJy218MeelbVNpfkOH9yLsbGJ1g+Pe3ElPgF3BwfMTbXv//Aruj/rSnxCecU0ElPT+OPgQfr37685Z3SVkpmFiZFRtcvp6uqtW7jZ22Ne6t6WJm6uRdsTKy2flJbOvn37GN2jW4V1PHe1cPLA1sKC91avYcSCRYxYsIgPfv2dW6lV/3B6EGz9fElLSysTHJ4cEYGhmRlWnh6F+fwL4+xTSoXE5t6+Q/atW9hVEYdfXZdj43Bv0ACLUv29X1F/f7k6/X18Ap+tXVemv3d1cKCBjQ3rDhzkaEQkSalpRN24wZfrN+Bib0e3Ku79E6I6qhWrExMTg1fRl/Lq1av5+uuvGT58OAB9+/bF19eXyZMn8/bbFV9avlfJaWk4lPMlZG9TmHZHh9mgxYsXk5SUBICZiQnP9O9HvxIzQ8Vf6vY2ZS/P29tYc7sOOs7bKak42NqVSXewK0y7nVy92daVG/7EQF+fHh3a10r9aiolI0Mzc1FScdqdjIwq96H1fhkb89Qj3elTYjbQ3bEBarWaCzdu0LRoIAdwvugH0520qmfRqqs22vXGkm+ITSq8ovOwtAsgOT0d+3LOMYeicBVdjlv6HBvV91H6lvNZjLp+nUkLP9X828PZiQ8mTMDaovbvR7mTlq7pJ0oqPs/vVHP2bs32Hejr69O1RGiIh4szarWaiCtXCS5x43fxPQXVnSGsrtSUZPwDm5VJty3qR1KSk/HwrF441ZaNazEzM6d5SOsK82RmZhB29iQt23TEzMy8wnzVkZyZgZ1lxedYchXn2A/bd+Dj4kpISAjkZul83Lg7yRyJiKRT0yAM6ugqaUpmFnbl3HNlX5SWkplZafnle/bg5uZG56AgoPyZy/iiK3RL/tpOE1cX3njicW6np7Pm4CFm/vIrnz8/rs5+3NSUqb0DyUllf/jk3L5TuL1BA9IuX8HMoYFWeum8pg0a1Gq9kqvo75N1uFLzxldfc7PE99jIR3rwaJu755ShgQHvjh7F/F/WMGv5Ck16E3d3Fr78EpZm9ydsS9QP1Rr829vbExcXh6enJ0lJSfj6aq8e4efnR2wdzUYWU+QpMTIqW23jorS8vIovaxcbMWIE7vp63Lpzm22Hj6BQKlEXFGgugyiUSqDw8m+Z4xgakZ2bWyb9Xiny8sq9rGdsbKTZrqsdBw6yafceRg16HA9X16oL1CGFMr/cv2NxWl7R37oyI0aMwCkni8TkZHaePEWeMl/r/eoe0oJfdu/l07XreHnQ47g7OHA6OpotR44VHiM/v9baU6w22jV52FAu5OVjfCeJ3Q9JuwAUyrzyP/tFn8+8SkJHio0YMQLXAhWJd+6w/egxFHna51gxLxcX5k98hdw8BeFXrnImKkpz+bu2KfIqb5dCh/es2O5jx9l68BBPPdqHhs53V+Ho2bYNKzZvYcHyFbz29FM0dHLiZEQkG/f9DUBenu7HqIm8vDwMDcv2I0ZGhVcelMrq/W03rl9DeNgZxo5/BQuLiu8vOXH0APn5+XSspZAfKIzXL30FBQrDY4q3V+SfK1c5HBHBggnPU51bx3PzlHz06+8YGxnybIkQzNqmyM/HyKCc/qMoTVFJ28KuXePohSgmvvpqpcfIKfrOsLOw4N0Rw9DX0wPAwcqKhX9uYn94BL1LhB09DAxMjMu92V9d1BaDoislBiaFn2d1OX2ROi8Pw1qePFAolRV8FnXvOyYNH8oFhRKTO7fZdfIUilL9PYClmRk+rm50CQ4mwNOTuDt3+G3vPuauXM3c55/714f+qOtnhM1DqVqD/8GDBzNnzhw2bNjAoEGDWLJkCd9++y16RZ3Kl19+WTjLUgWFQoGi1Bd8tkKhuTReGWNjI/KU+ahKXRbMLfpSNTQyKrOtJFVBAV5eXgRbWWCgp0fXVq15ftYHFBQUMGHYUODuAC5XqSyzrzylEuMqjlFSvo6rlpgYG6FQ5pXJXzwQMjQyqnRfxdtOh0cwd8nXtG3RgvFPPVnF8QsooEDnOpaka+SosZEhefn5ZfLnFg1cDY2MKt2XCvDy8sKv6Ibfzs2b89Kiz1AD44uWqrOxsuLdMc+w6Le1vPvDTwCYm5jwv8cH8unvazExNta5vrq613YBNPHypEDfCD+1D13vQ7v0dfzMGhsZocwv+9nPKT7HDHU7x5qaGmOgp0eXli2Z8OFcCijghaKbmYuZmprSoigcqF1wMHtPnmTmt9+x+K038WlYdvndcunYLpMq+g4jHfoOgHMXo1mw4mdaBwXx7KDHtcrYWFvzwcsvMf+nZbz12RdA4UIBE596ko+XLcfUxETnvkOtrvjdzc9Xkllqdtja2hpjY2OUyrwyZRWKwgkLQ0PDcvdbnFZy27Ej+/nj1xV07dGHHr36VVqfwwf2YmFpRbPmoZXmK6bL59bYyBBlvqpM3hzNOWZY7n5UKjVLt26je4sW+Li7c6nE8QoqObZKrWb+72u5npTEzNGjsLW2qna/oUJPp3zGhoYoVaoy+XOL4teNjIzK3ZdKrea7nbvp2qwZHh4eqFPuxtar0dMqY1Q0MO0QGECBnr6mLe0CAjDYtIXI2Dge0eH7urDCVX83l6t4sGpgqNM+VHl5hSFrpfLqFw3mVSoVGBsX/rc4PUt75SJ9U1NUeXm6HU+XNlDYJ+aV81nMzS/Rd1SxDz8vLwr0DPAv8KVrixa8uHARBcD4oqVns3JyeePrpQzp1pUhXe/el9S4oTvTl37H9pOn6P+Ar+SL/45qDf7nzp1Lr169CAgIoEOHDvz+++/s3LkTPz8/Ll26RHJyMtu3b69yP/PmzWPWrFlaaU8++SQjR46ssqyxhSVxKSmcTdf+4osuiv9MNzYps608YRl3LwN7+fiw/dhx2vZ5FIAM48LZhaNxCXgaancgCampeHh46HSMwgrpls/Q1IybiUkcjdGOCY6OjgbgjjK/zLbS4uLiWLp0KU7OzgwcNoyTNyq/CpOdp0QvV1Hlfsulr9sMhIm1DQlpaUSWyh+dWdhhZ9vYldlWnovFeSyN8Pb1ZffZc3Qc+Lhmu4GvH1OnTSMhIYG8vDxcXV1JL7oUa+ropNMxqqO22gVFbbsf7crRbdbX2NKKuNQ0/imVP7ooRCnDzLzMtvKE5xbNyukZ4NW4MTtOnKRd38rXFrf2C6AA+P34Cfo56HjpXsd2GRX1HWfStMNFooviddOMjMtsK63kOTZo5Ej+ySxnyURnF6a89Va575mRrW2Vx9BIi6hw0+XLl1m6dKlW2rRp07C0tCAx/jqJN7TL3rgSDoBakVpmW0m3Y6MAuHjxIj/99BMBAQH069Oj0jIpKSlcjAqnbdu2JMeXXYu9PImmVc/MmtjYkpCWRlSpvNGKwqUtcxwcy2wDOHHiBDfv3GHAsGEcz1ZAtoLjRdtuqdQcyVZgaWmp9dwCgN9++41TF6N56qmnMAlqRpROLSlFh3YBmNrZcSstjct2Dlrp0bcLB/MKF9cy26CwbbHJKTw2fATJyckU5i4c8Cfp6XGiQO9u25ycAFA6OpXZl5m5ObdU6nKPUR6TqZN0yleasa0tAIZ9e2PStPJnhAAoVCpMTU0xeVV79RwrT08AVAP6YtK1E/kNC2PtrV99GXWpUDpzby9SUlJ0qnPFn2ptJtbWJKSlEaGnPfsfXTSOyLKxLbOtIlF6BmBhibevL7vOnqXDwIEAnAiPIDUzE4egplr7MmjcBFNTU45cu453R93vp6ndux7Ef021Bv82NjYcPnyYH374gU2bNuHt7Y1arSYvL4+RI0fy0ksv0bBhwyr3M336dKZM0V4uMOHIIZ1m/lt4e7Fu9x6aGBlo3bgXmXgLgF5+vjhZV3x5WlVQQFhGlmbmH2BDQQF5ubmEFJWz9fNlDcDtJEKa3X34z53UVNLS0hjUtYsmb1VM7XVb8u50gD+/b9lKsFMDrZt+o0+fAmBA29Y4VxLHeC0untk//ICDrS1L3p+BrQ7LCZobG2FtakJ7b0+d6lhS2pXK13sv1szVmT8vX8YrO0Pr5tiw6zEAdHVxxFFd8SVTFYWD4+KZfwDTPAWK3FwCyynX1MVR8/9bLhbeDPZI40bl5r0X99ouKNu2um6XUSVhGyU19/Rg/d7LNKYAC7O7bYuILxx09fTxxtGs4odwqQoKCM/N08z8A2xQq8jLzaV5JeUAslBTUFCAhTKvyrzFDHSclQzx9uKP3XvwMzYst+/o7d8EJ5uKb5C/kZjI7B9+wN7aik8nv1b1zfR2d+8v2BhROPjuG9Kc0EqOUVKstUeF2yzsPHnTQXu7j38QjXwPcPFCOA3cA7Ru+k3athtjExOCQrtiVE7ogFqt4nZsFA3c/bl65RI//7ySRo39eH3ahxgbV/4+nDizloKCAh7pOxgnj8ofllbMLvpElXmaOjVg4+VLeKQma930+09R39PZwRbHcmL5TyclolKpWLJkSZltp06d4tSpU0wf+STBJR5Y99P2HZw8eZLn+z3KwEC/at0jUFJ+jm4hoYH2dmy+dAnXhDitm37PXiz8ydHBwowGKWXj2U/Gx1XZtreGDqadnx/pNlZsA/RvJdC4xL6UKhXZWVm4GhlqpVcm4seVOuUrLc/fD7p1I3/bThTbqp4YTLG1x7FdGxSLv4ES0QHWb0whPyCA5DnzUSuVJHl7w4ofsTx1hlsbNmrymTo4YDZoEJdX/YJiRdV1Dp0yUad2BLu6sOHyZbxzsrT6+/PXC2+q7ubqjGNB5XP/KgoH/v4FqsL+XplHXm4uQUXlzmcUThD4qPPxKLGvgoICUKuxVKk0ef+t6no1SKG7at/NZGRkxNixY/ntt9+IjIwkKiqKZcuW4ejoSESEbr+jTUxMsLa21nqZmxSuCV7Vq3urlqjVarYdPKRJU+Xns+PIEQIbeePq4ICBnh63U1KIvXVLq2x6RoZmMFKclnQnmbNRUfh5eWnSGru74+niwl8HD0FBgSZ9y/4D6BXVQZe6GujpYaivr9OrZ4cOqNRqtuzeo0lTq1T8te9vmjZpgruTE4b6+ty+k8zN+Hitsmlp6bw9bx56enosfGc6DWxtdTom6KGH7nUs+TIAnV5dmjVDrVaz4/gJTZo6P5/dJ0/j7+GBi60tBhT+sIpLTNIqm5GZqRnwF6fdTk7h3OUrNHF3r/S4mZlZ/PH3ARq5uNDKt7HO9b2f7SrZtvvSLh0/s91CQ1Cr1Ww/fFj7HDt2nABvL1zs7THQ0+NOSgqxtxK1z7HMzLLnWHIyZy9exM/TU5OWk5NDgVpd5tjbjxwFwN/LU+f66vrq3qoVarWavw4eLKfvaHS370hOITZBu+9IS0/nnc+/RE9Pj49eew0Ha2udj5uRmcmv23fg09CdNoGBOpfT1zeo8GVlbUNwi1ZaL1NTM9q270J6WiqnTx7V5M3KzOTEsUOEtmyHiYmpJj0p8RZJibc0/wZIiI/j049n0cDRmalvz8LU1LzSeujrG3D00N84NHAiILB5lXmLXzqdY0FBqNUF7Dx5SvscO3MW/4buuNjYFJ1jacQl3dbk6RbcjHdGPsk7I59k+sgnGTNmDNOLni/RukkT3hn5JIEN755nGw4eYsOhI4zo2pknOrS/x76hQKdXZ38/1AUF7D57VpOmzley959/8HNzxdnaCgMKSE5LI/7ObU2erkEBTBs6mLeGDmbMmDG8NXQw04YWrhPfqrEP04YOJsDNFQMKaOHpgY25OQfCI1DlKzX7+Puff1AXFBDq7aVzfcnLq9mrOBZelV9mm6mVFVauLuipVJq0m3v3YmpqSsP27TRpxmZmeHTvRtzBQ6izsiAvj/SLF0mPicHnsQHo5d/dt+/AARSo1dzYtVun+unc3wcX9vfbjx3XpKny89l18pR2f5+SSlxiom79/aXLNCnxOfQomtw7eO4frfInIiLJzcvD192tWp9FISpToydzDRo0iCFDhvDiiy+SmppK+/btMTIy4vbt2yxatIiXXqr4gRf3KrBRI7q1asn36zeQkpGBu6MjO44eJeH2Hd4YPVqTb/5Pyzh3MZrdS7/WpD3/wYeEBvhj5uhEnJ0tcUlJ/HXoMPkqFS8MeULrOBOGDuG9JV/z9mdf0KNNa67GxfHn3n3079QJrzq4ibapXxMe6dCer1f/Qkp6Ou4uLvy172/ik5KY/vKLmnyzv1zMmYgIDq/9TZM2Zc4c4m4l0r17d8IuRBF+8e6ld3sbW9qWWCLsTEQEZ4vWh09NTydXkctPa/8AICQokNAg3WbudBXg6UHn4GYs27aD1Mws3Bzs2XX6DLdSUphU9KUFsPDXtYRdvcrWj+Zo0l7+7AuaN26MpXtDrpsaE3/7DjtOnkSlUjGuXx+t47y19DsCPT1xdbAnJSOTbcdPkJOXx/vPjq6T5xrca7taNG5MIzdXMswtOZqUyM6HpF0Agd7edA0N4YeNm0jNzMStQQN2HD/OrTt3mDrqbmje/BUr+efSJXYu/kKTNmHuR4T4NcHc2YVYayvib9/mr8NHyFepGT9ooCbfuehLfLX2D7qGtMDdyRFlvorzly9z8Nw/+Hl60rPUOvm10i6for5j3QZS0zNwd3Ji+5EjhX3HmDGafB/99BPnLkaz59tvNGlvf/4l8bdv0717d85fukREiScd21lb0brEeTN5wUKCGvvg7uhIcno6W/YfIEehYO7EV+r8GRtt23dm+9YAvv/6U+JuXsfSyobdOzajVqsYMmK0Vt75H04HYNHi5QDk5uby2ecLyMrMpP/AoZw9oz077+TsWuY5ADevx3Dj+lUeGzRCc+9XbfH3aEjnpkEs37Wb1KzCc2z3mXMkpqYy6Ym7oXGL1q3nfMw1Nn8wEwAPxwZ4OBYOpFRAlKkF/kUz+c52tnQoMeN/OCKSn3bsws3BHg9HR/ae+0erDiGNfbCrgwfp+bm70THAn5/37Sc1KxtXO1v2hoWTmJbOxP53Q+M+27yF8Os32DC98AF0DR0caOjggAo9Lts50DjlTuHgHHC2saF9iSUujQwNefaR7ny+eSvvrFxNt2ZNuZ2ezuYTpwjyaEj7cpberS2+w4ZgZGWFWdGA1q1zJ8yKwpAu/bYWZVYWwS//j0YD+rN58DCyi8J2b+7bT3JyMm2mv4W1R0MUaWn4DhmMnoE+4d9pPyzs3JdL6LzgI7p+vogbu3Zj7eOD77AhXNm4mYyiZ6TUlgBPT7oEB7Ns23bSsrJwdXBg96nT3EpJYXLRvYIAn/z2G2FXrvLX/HmatJc+/ZwQ38Z4u7qSYW7B0dtJ7DxxorC/79tXk69dYABezs6s3r2HxJRUAjw9iLtzh02Hj2BvZaW1MpAQ96pGg//Tp0/z6aeFy/OtXbsWZ2dnzpw5wx9//MGMGTPqdPAPMG3cs/xkv5FdR4+RkZ2NT0N35kx8heZVrO37eLeuHA0L48b5cLYrFNhaW9E6KJCn+/XFx1375sIOzYN5/8UJ/Lx5C1+u+RVbKyue7teX0Y8NqLN2vffqRFzW/Mq2v/eTkZVFYy9PFkx/u8oBeXRRR7dv3z727duntS00KEhr8H8q7Dw//r5WK893a34F4Lnhw2p98A/wxohh/LxzF3vOnCEzJ5dGLs68/+wYgn0qX3Kwf7t2HI+KIvZidOH7ZWlByyZNGNGjG41KPWHZ192dA2HnuZOejrmJCaFNfBnduxeuDvf+pNG6aNeJqChOXYwm+yFsF8DbY0azbPMWdh0/UXiOubsx+8X/0bzUCl+lDezciaPh4dyMiCx8z6ysaBUYwNN9+tDI3U2Tr5GbKyFNmnA4LIzktHQKALcGDXim76MM79Wz3FV5asP058bx458b2Vmi75j76iu0qKLvKH62QeE5pr2thV8TrcG/n5cnf588xe3UVCzMzGgVGMC4QY/j5uhIXdPXN+CNaR+wZuUP7Ni2kbw8BT6N/Xjh5Sm4ulUekpmdnU3yncKlCH9b/VOZ7Z279Soz+D98cC8AHTp3r50GlDJlyGBW7tnD3nP/kJmbg7ezMzNGjaSZd+08B+JqQmHIV9ydZBb+sb7M9rnjxtbJ4B9g8sABrN5/gL/Ph5OZm4u3kyPvDh9KU8+Kw72qq0dwMwwNDPjjyDGW79mHhakpfUJDGN2tS50tYwrgP2okFiUmyRr26E7DHt0BuLZtO8qs8sOqCtRqjh49SoC6gCYjhmFgYkJy5AWOz55DxvUbWnnjDx3m0LR3aDp+HKFTJqNITeXC8p8J/6HsZ7c2vPHkcFbssGX36TNk5uTQyMWFWc+OrbK/H9C+HccvXOBk1MWi/t6Slk2a8GSPHjRyvdvfGxkasuDF//HL7t0cvxDFvnPnMDMxoUPTIJ7t+yg2dbD88f0mq/08PPQKahCEZW5uzoULF/D09GTEiBE0bdqUmTNncuPGDfz9/cnOLucmuCrc3Len2mVqQlVQwNn0TEKsLTXhCXXJzMGhzo8Bhav9HI25Tntvz6KQnrqVeim6zo8BhTN3kfpGBJaI+f+vuN9tMypnzfS6oCoo4J8cBc3NTO7LOaZrzP+9UhUUcCYtg1Abq/vSrps2tf+gs4qo1SoSb0Tg5BGkCQGqS/ZRR+v8GKA9838/zrH8OngydXnKm/mvS2Hf1M2AugxjY0ymTkKx8PPC0Jw61nralKoz1RIVEKFnQFBRzH9d83liyH04SvXMX3H4QVehXG+PKf8J4P9lNRol+vr6smHDBm7cuMH27dvp06cwVCExMRFrHW40FUIIIYQQQtx/NRr8z5gxgzfeeANvb2/atWtHhw4dANixYwehoaFVlBZCCCGEEPVJQUHBQ/mqj2oUWDts2DA6d+5MfHw8LVrcfUJgz549GTx4cCUlhRBCCCGEEA9Kje+qc3FxwaXUzYlt27a95woJIYQQQggh6kbdLKkhhBBCCCFEEbX6QddAFKv7ZWGEEEIIIYQQDwUZ/AshhBBCCFFPSNiPEEIIIYSoU/KQr4eHzPwLIYQQQghRT8jgXwghhBBCiHpCwn6EEEIIIUSdqq8P1HoYycy/EEIIIYQQ9YQM/oUQQgghhKgnJOxHCCGEEELUKVnt5+EhM/9CCCGEEELUEzL4F0IIIYQQop6QsB8hhBBCCFGn1LLaz0NDZv6FEEIIIYSoJ2TwL4QQQgghRD0hYT9CCCGEEKJOSdTPw6NWZv5VKhVnz54lJSWlNnYnhBBCCCGEqAM1mvmfPHkywcHBjB8/HpVKRbdu3Th8+DDm5uZs3ryZ7t27V3uf5k5ONalKteWr1JCeiVkDRwwN6j7qycrDs86PAaDMz4eY61h5emFkWPcXdGK2bK7zYwCo9fXBP4i06Gj01er7ckzLhg3vy3FUAFa25GdlcT8mRGx8Gt+Ho0C+Wg3Xb2Lm6Iihft2fY4ampnV+DIB8lQrSMjB3csLQwKDOj5cQm1Xnx9AoKDy3ElOyQa/u3zM7larOjwFozqsCleq+nGO5t2/fh6MU9Yt2DiiS79yXfrH1tCl1fgwo7BMjgNApE6n7MwxOfrToPhyliLExJlMncWbRYsjLq/PD+TwxpM6PIf69atTLr127lhYtWgCwadMmrl69yoULF3j99dd55513arWCQgghhBDi301d8HC+6qMaDf5v376Ni4sLAFu3bmX48OH4+fnx3HPPERYWVqsVFEIIIYQQQtSOGg3+nZ2diYiIQKVSsW3bNnr37g1AdnY2BvfhcrgQQgghhBCi+moUHD5u3DhGjBiBq6srenp69OrVC4Bjx44REBBQqxUUQgghhBD/bvKQr4dHjQb/77//Ps2aNePGjRsMHz4cExMTAAwMDJg2bVqtVlAIIYQQQghRO2q8LMywYcMAyM3N1aSNHTv23mskhBBCCCGEqBM1ivlXqVTMnj0bd3d3LC0tuXLlCgDvvfceP/zwQ61WUAghhBBC/LsVFDycr/qoRoP/OXPmsGzZMj7++GOMjY016c2aNeP777+vtcoJIYQQQgghak+NBv8rVqzg22+/ZdSoUVqr+7Ro0YILFy7UWuWEEEIIIcS/34Nez1/W+b+rRoP/2NhYfH19y6Sr1WqUSuU9V0oIIYQQQghR+2o0+A8KCuLAgQNl0teuXUtoaOg9V0oIIYQQQghR+2q02s+MGTMYO3YssbGxqNVq1q1bR1RUFCtWrGDz5s21XUchhBBCCPEvVlBf7659CNVo5n/QoEFs2rSJXbt2YWFhwYwZM4iMjGTTpk2ap/0KIYQQQgghHi41Xue/S5cu7Ny5szbrIoQQQgghhKhDNZr59/Hx4c6dO2XSU1NT8fHxuedKCSGEEEKI/44HvaqPrPZzV40G/zExMahUqjLpCoWC2NjYe66UEEIIIYQQovZVK+xn48aNmv/fvn07NjY2mn+rVCp2796Nt7d3rVVOCCGEEEIIUXuqNfh/4oknANDT02Ps2LFa24yMjPD29mbhwoW1VjkhhBBCCPHvV19DbB5G1Rr8q9VqABo1asSJEydo0KBBnVSqKnlKJd/9soZt+/4mPSsLXy8v/vf0SNqGtKi03LXYWP74azvHz5/n3bg48pRK1i39GlcnpzJ5s3NyWLr6F/YeOUJqWjpuzs6MeKw/Q/r2ratmkZeXx+JvlrJp61bSMzLw8/Xl1ZdeomP7dlWWTUxMZOXKlXzwwQcUFBTQtlUr3pryOh4NG1ZY5vTZs4x5/gUADuzaiZ2tbW01RYuegQFuXbpi3zQYQ1NTcpISid3/NxkxVyst59q5C26duxb9a5AmXZ2fz5lP5mvlNTS3wL17D2wa+2JgbEzunTvEHzlEalTdPXFamZ/Pqn372Rd2nszcXLydnBjVoxuhPo2qtZ/3V67m3NUY+rduxYv9Hq0wX8T1G0xb/jMAK6dOxtrc/J7qX5k8pZLvf/2NbQcOkpGZia+XJy889SRtmzevtNy+Y8fZdegw5y5eJCszEycHBzq1asmzQ4dgZWGhlXfX4cMcOnmaiEuXuJmQQGhQIIvfn1lnbYLCdn27ajV/7dtHRmYWvt5e/G/UKNqFhlRa7trNWNb+9RfH/gnT9B3rv1uKm7OzVr5TYWG8/M57Fe7nxWdGMW7E8NpoSoVysrPYsv5nws8eJy9PgYe3L48NHUtDz6rvxzp2cBenTxwkKSGWnJwsrG3saezXlF4DhmPvoN1PZqSn8teGVUSGnUKhyMXJxZ1HHh1M81Yda60tyvx8Vu39m73/hBWeY85OPNOjO6GNq3dv2cyfV3HuylUGtGnNi/3v9uEKpZKlW7cRFRvH7fR01Go1LvZ29A4JoX+bVhiWeIJ9bdMzMMC1U2fsg5piYGJKzu0k4g8eIONaTKXlXDp2wrVjZ1qVSlfn53Pus7uTb/ZNm+HVb0CF+4nZsomUyIh7aEH58vLz+XnHTvacPkNmTg6NXF0Y06cPLf2aVFru0Plwthw9xqWEBHKys7GxsCDA05NnevfE28VF+xhKJesPHmL36TMkpqRgaWZGoJcnz/TqhZeLcwVHuDeGZmb4jxqJfdOm2AcFYmJjzfHZc4jZ8pdO5Y0sLWjRogUuG9dhaGJCckQkZ79YTGrUxTJ53bp0ounzz2Ht7U1uSioxm7cQ8dNyCsoJtxaiJmq02s/Vq3cHbbm5uZiamtZahXTx4RdfsufIUZ58bAAebq5s2bOPKR/O4asPZtEiKLDCcuejovjjr604OTnj5e5OdExMuflUKhWTP5jNhUuXGdqvLx5urhw7c5YFS78jPTOLZ4cNrZN2vfP+LHbu3s0zT4/Ey8ODDZs38/KkSfy49BtahoRUWC47O5sXXplIckoK48eOxcTYmBWrV/Ps//7HH6tWYVvOoF6tVjP34wWYmZmRk5NTJ+0p5j1gIHb+Adw6eRxFcgoOwc1pMvxJon5ZSdbNm1WWP3fuHFY3rqFXtEZwQdGP0GL6xsb4PzMGIwsLEk+eQJmViV1AII0HD+XKxg2kRITXSbs+27iZw5EXeLxdG1zt7dlz7h8++OVX5oweRZCnh077CAsLI+pm1ffJqAsKWLptB6ZGRuTeh6doz/nqa/YeO8aI/v3wcHVh676/eWPefL6c+R4tAgIqLPfxt9/hYGdLaGgoLRv7EHPjBn9s286RM2f4af5HmBgba/Ju2LGTC1euEti4MWkZGXXeJoAPPvuCPYcP89TjA/FwdWXLnj28/sFslsyZTUhQUIXlwqIusHbLVpycnPBq2JDoq+X/cPVu6MH7r08uk/7Xvn0cO3O2yh8Z90qtVvPjV3OJj71Gt16PY2FpxZH921n66Uxem/4xjk6ulZaPuxGDvYMTQc1bY25uQfLtRI4d2k1k2Ckmv/MJNrb2AOTmZLPkk3fJzEijc4/+WFnbcu70EVZ+v4iRKhWhbbvUSns++3MjhyIu8Hi7trg52LP77D/MWr2GOWOfoamnp077CAsLI+pG+f1MXn4+15Nu07qJL062Nujr6RF54ybfb99BVGwsbw4dXCvtKI9X3/7Y+vmTePokipQU7JsG03jIMKJ/+4UsHe6dO3fuHNZxN9Er7g9LraGeefMGMVs2lSnn1KoNZk5OZFy7VivtKG3Rb79zMOw8T3TuhFuDBuw6eYoZPy3jowkv0KyRd4XlYhISsDQzo3PnzjQxNyM1M5MdJ04yefESFr38Ej5udz+7H6/5laMRkfRt2wZf987cSU9n85GjvL7ka75+fRLOdna13i5jWxuaPv8cWfEJpF26hFOrlroX1tOjy/x52DZsyIUVK8m7k0zjoYPpseRLdj47nswSn0+XDu3pNH8eiafPcGbRZ9g09iFw3FhM7O04/bFEVojaUaPBv1qtZs6cOXzzzTfcunWLixcv4uPjw3vvvYe3tzfjx4+v7XpqhF+MZufBQ0wcO4ZRTxTOBvfr3p1Rk15n8Yqf+e6juRWW7dymDX8tX865+ARiwsIqHPzvO3qMsAtR/N8rLzOwV08AhvTty/99vICffl/L4716YW9rU27Zmgo7H85fO3YwddJrjBs9GoDHBwzgiSefYuEXX7Dqxx8rLLvm97Vcv3GDV199lWdHPY2RoSGdO3Vk8JNPsWzVKia/8kqZMr+vW0/CrVsMfWIQK39ZU6ttKcnc1Q37oKbc3LOLW8ePAXDn/D8EPT+Bht17ErVyeZX7iIuLo0FEOPqlBv3FHENaYmpvz8VfVmq+0JJOnyJgzDg8HulF6oXIMj8Y7tXF2DgOhEcwrtcjDO7QHoBHmgcz8ZvvWLZ7Dx+PG1vFHgoHHps3b2Zwxw788vf+SvNuP32G2+np9A4NYdPxE7XShopEXLrErsOHeeWZUTz9+EAA+nbtyuipb7Jk5SqWfji7wrIfTplM88BAjl2/STvPhhjq6+Pv48OHXy1h+4GDPN7zEU3e9ya+gqO9Pfr6+jwz9Y06bRNA+MWL7DxwgFfHPcszg58AoP8jPXh64mssXrac7z+eX2HZLm3bsm1lO87ejONa+PkKB/8Odrb069G9TPr3a37Fw82NoCaVz37eq7AzR7l2JYpnXphK85YdAGjeqiMLZr7Gzk2/8vT4yZWWHzzyedDTXgeiaYu2fPHR25w+9jc9Hi0cDB89sJM7SQlMmDQT34BgANp3fZSvPv4/Nv+xnOCW7TE0NLqntlyMjWX/+QjG9e7JkI6FbXmkRXMmLlnKsp17WDD+2Sr3oTnHOnXkl31/l9luZWbGJ8+P00rr17oVFiYmbD5xkucf7Y2dpeU9taM85i6u2AUGEbtvL4knjwOQHH6ewGfH49a1B9G/rKxyH3FxceRHRlTYL+alpZGXlqaVpmdoiEevPmRcv0Z+dta9N6SUqBs3+PvcP4zv349h3Qqv2vZqGcqLn37Gj1v/YtErL1VYdlSvnqiACD0DggpUGAB927Rm9NyP2HL0KK8OKfzs3U5L49D5cIZ27cLzA/pryjdr5M20b7/n8PlwBnfpXOtty719h439Hyc3ORm7AH96L/tB57INH+lBg+BmHD9+nJhlKyAvjxu799Dvt19o+vx4js2cpcnb4tVXSL10mf2Tpmhm+pVZ2QSOHU30r7+Tce16rbftflHLQ74eGjVa7efDDz9k2bJlfPzxxxiXmMlr1qwZ33//fa1Vrjx7jxzBQF+fJ/rcfZiYibExA3v15HxUFLdu366wrI2VFeZmZlUe41xkJAC9S3UgvTp3Ji8vjwPHj9ew9hXbsXs3BgYGDB98d6bJxMSEIYMe59w/YcQnJFRatmlQIB4ed2ebfby9ademDdt37iqTPy0tjS+//pqJL/4PK0ur2m1IKXb+ARSo1SSdPaNJK1CpuHPuHJYNG2Jkpdvx9Ut8zkqz9PBAmZVVZiYr5UIERpaWWHp61azylTgUeQF9PT0ebRmqSTM2NKR3SAsu3IwlKS29yn2sP3yEgoICBnWoPKwrIyeHlXv/ZlT3rliYmtxz3auy9+gxDPT1GVT0wxcKz7HHHunB+YvRlZ5jLZs2LZPWtW0boDDsriTnBg3Q169RF1Qjew4dLuw7Hu2jSTMxNmZg716EXYjiVlJShWVtrKyw0KHvKE/4xYvcjI+nb7euVWe+R2Gnj2BpbUuzkLufKUsrG5q36kj4PyfIr8FVI7uicJ+cEoPFq5cisbC01gz8AfT19WneqgMZ6alcib73cJJDEYXnWN8SM6zGhob0Dg3hws2bJJUa2JZn/aHDFBQU8ETH9tU6tlPR1dLM3NxqldOVrZ8/BWo1t/85q0krUKm4E/YPlu7utdIvlsemsS8GJiZ1Eu4DcDDsPPr6+vRr11aTZmxkxKNt2hB5/TpJqanV2p+tpSUmRkZk5tx9H3IUCs22kuyL/mbGRvf2o7MiaqWS3OTkGpX16NGdnDvJxMfHa9IUqanc2L0H966d0S+qs7W3NzY+jbjy50atEJ9Lf6xDT1+fho/0uKc2CFGsRt+8K1as4Ntvv2XUqFEYlIiJbNGiBRcu1F2MNcDFq1fxcHPDolS8c1ATX832e5WnVGKgr4+hofaFEVOTwo72wuUr93yM0iKjovDy9MSyVIcWXDSYirpYNi4QCq/CXLx0iaCAsuFOwU2DuHHzJllZ2jM8X37zDQ0cHBg+ZEgt1b5i5s7O5CbfQZ2Xp5WeFR9XtN2lvGJaevfuTavJUwmZ8ibejz2Oobl27LiegQHq/Pwy5dTKwjRzl6qPUV1XEhJwd7DH3ER7MO7nXnhp+uqtW5WWT0pLY92hI/Tv3x+TKr6sVu37GztLC60fGnXp4tUYPFxdy55jvo0BiI6pXrhActEXvo2OA5q6cvHKVTzc3bAs1a6mRbHItdF3lGdb0VWdR7t1q5P9lxR74yruHo3K/Kjy8PZFmacgKTFOp/1kZWaQmZ7GjWuX+G3FVwBaA31VvhKjcgaeRsaF50Ps9XvvIwvPMYdyzjE3AK4mVH6OJaal8cfBwzqdY0qVirTsbJLS0jgSeYH1R47iZGODm739vTWiAmZOzuSmJJftFxMKB4dmjmXvQyutd+/ehE6cRPPXXser/2MY6nAPkF1gEGqlktQKvk/u1eXYONwbNMCiVCiwn0fhvWeX4+LLK6YlJyeHtMxMrsYn8NnadWQrFIQU9T0Arg4ONLCxYd2BgxyNiCQpNY2oGzf4cv0GXOzt6Nai8vuSHgRb/yakRkeXSU+OiMDQzAyrojBRW//CviglUnsclXv7Dtm3bmFXxX0TQuiqRmE/sbGx+Pr6lklXq9Uo6zge+U5yCg7lxPM1KEq7nZxyz8fwcnNDpVYTHnVR6x6CsxGFVwSSkss+4Oxe3b59G8cGDmXSHYtuqk5MKn+2NS09nby8PBpUWjaJRkU3W0ZFR/P7uvUs+fwzrR9udcXI0hJlZmaZ9OI0o0ouqatyc7l16iQ3CsD25nWs3Bvi1LIVFm5uRC77UfPFqUhOxtq7EcbW1uSl351xtyy6EmJcB4POlMzMcsMBitOSq4hh/2HnbnxcXAgJCYGM1ArzXb2VyLZTZ5g58kkM7tMs+Z3UFBzsbMukF593t1Oqd46t/HMjBvr69NDhxvW6dDslRdNPlORgVzjAS6qFvqM0lUrFrgMHaerXBA+3yuPta0NGeio+Tcreu2BlU9ju9LQUXN2rvhI2Z/oE8vML+3JzCysGjXgOv8C7Cyo4OrsRfSGMlDtJ2Dk4atKvXirsI9NSazZDWlJyRiZ2VuWcY0Vpd6o4x37csQsf16JzLKvyK3FHIi+w4I/1mn/7urky6fGBdXbOGVlakF9Ov5ifpVu/mHjmNNdVauziY7Fyc8cxJBRzF1eiVi4v84OimIGpKdbejUi7FI1aWX6ee5WckaGZgS+pOC05veoroosXLyap6CqcmbExIx/pwaNtWmu2GxoY8O7oUcz/ZQ2zlq/QpDdxd2fhyy9hWcMrdHXJ1MGBpH/CyqTn3C4cS5g2aEDa5SuYOTTQSi+d1/QBLbJSWyTq5+FRo8F/UFAQBw4cwMtL+0tk7dq1hIbW7eykIi8PY6Oy1S6+1KeooOOrjj5du/Djb78zZ/FXvDHhhcIbfs+eZd227bV2jNJyFQqMjcrOpBWHVSkU5V9+zi26LF1+WZOisgpN2rwFn9C5Ywc6ta/eZfCa0jc0KneFguKZen3Dij+CiSdPoNbXJ84/iIKLUaRdiCQrPg6fx5/AsWUrbh09AsDtc2dpENoSnyeGcGP3TpRZWdgHBGHr56+pQ23Ly8/HqJy6GxelKcq5ElHsn5gYjkReYL4OMcvfbd9BK9/G1V7d5F4o8vIwKmemtCbn2I6DB9m8Zy+jim6wfZAUeYpy22ViXNSuEudJbTnxzz8kp6by7PBhtb7v8ijz8sqNtTcqSlPq+N49N/Ed8pV5JCbEcvr4fvLytP82bTv15OiBnaz8fiEDhz1beMPvqcOEnz1ereNUJi9fiVE5ExTF51heZefY1RgOR0Ty8fPPoct4I9jbi9mjnyYrV8G5K1e5eiuR3DoaIENhv6eutF+suM9KOn0Ktb4+sY390Lt8kfSoC2THx+H92OM4hoRq7q0qzdbPH31DQ5LrKOQHCldPMjIs7z0z0myvyogRI3DKySYxOZmdJ0+hUOajLijQClOwNDPDx9WNLsHBBHh6EnfnDr/t3cfclauZ+/xzdRb6U1MGJiao85RlYi2Kf6gZFF3dMiiKLijvx5k6Lw/DUiumCVFTNRr8z5gxg7FjxxIbG4tarWbdunVERUWxYsUKNm/eXGV5hUJR5os2KydXayWQihgbG6PIU5Kv0r7JKTu3cH9GhkZltpWUX3RzVPGNJ/kqdZn8NtY2zJv2Nh9+8SWTZn0AgIW5GZOfG8+cxYsxNTGt9BglKSv5girJxMQERZ6iTP6sopV4DI2Myt2XQdEXYW7Rj4P8EnmKV/ExMDREmZ/P9p27OPvPP6xdvUqzr+LlW5X5+TrXFUCt44yYKj8fPUPDsvmLBlwqlarSfRVvK/7vnQuRNHykF1bejYgv+pLLunObK5v+xKtPXwJGPwtAXmYm1/fswrtPX/KVSp3rC6DLYmpGhobk5eeXyZtb9Dc0MjQsdz8qtZpvt+2kW/NgfNzcuFLieAWljn0wPIILN27y2YsvaOUprmN1F33L1/GmZxMjY/LylGXyF8faGhkZVbqv4m2nIyKY9/VS2rZoznNPjqj8+AWFs0K61lGLjsvfGRe3q1T+7KIf0EZGRmW2lVR8zquLFqtWqdWV5gf4a+/fhVc9OnaoMm8ZBZX8jfPzycnSnjm2sLLGyNiIfGVembJKZfF7Z1j+fovTiv7r61d49SCgaQhNm7di4YdTMTY2oVP3wmUyXd09GTnuNdb98h1LPnkXACtrWwYOG8v6Nd9jYmJSaf11+UsYGxqRp1LV6Bxbum073VsE4+PuxmUqPseKWVtaElw0294+KJDfDxzkvZ9X8/WrL1frhl9d+xl1Rf1i0SROlf1i0U3Zaj190Ic7F6Nwz8zE0qsR8SfLXxDALqgp+Tk5pF6LgWpe0dD1k2tsZERefnnvWeGg38jIqNJ9qQAvLy/8i2747dKiBS8uXEQBMP6xwpt7s3JyeePrpQzp1pUhXe+uKtW4oTvTl37H9pOn6N9Bx8mtat4zoVH848LAUKd9qBR56JuaQl6uVn79osG8SqUCY+PC/xanZ2Vr7UPf1BRVXl7N6yxECTUa/A8aNIhNmzbxwQcfYGFhwYwZM2jZsiWbNm2id+/eVZafN28es2bN0kp78sknGTlyZNUVNjXlZmIiR65ox+dGF8XT3c7LK7OtPDeKQhdOX7+BfWY5qx6YmvH6G2+QkJBAXl4erq6upBddsjQwN9fpGADomE/fwICY6zfYuf+AVnpxu2JvJZbZBoWDd0NDQ/4Jj6Cxnz97Dx/RbDt+pvAm27Coi0Rfu85HCxfSrFkzjp4+w9HThdvCo6IA+POvbVhaWmo9tblS/hUvi1iSV0EBZvYOxJXKX/yMiAQbO27psK+EJneXl/RVKtGztdPaZxwQsWsXNjY26OnpkZqaSoMGDfAGbhkZlzn+vTK1teNWWhrRVrZa6dEJhZerc51cymwDOHHiBLHJyTw2fDgnlWpITqY4QCKxAI4p1VhaWmJsbMwPe/bRrHlzblrbcVNZOJCKLRpPnc4vwFKtp/v7BXC96mVVoXA965tJSRwrlb/4s3gnX1VmW2lxcXEsXboUJ2dnBg4bzqnYymN9s5VK9BSKKvd7LwxNTblx6xaHoi9rpRe3KylXUWZbea4X3fR38uo17NMqDj1RKpXsPXKExr6+RCbdgaTaCxe8dvkyS5cu1UqbNm0aVpaWpCfHQWaM1raMxEsAWBvllNmmJavsSiIOZuDu5saZo7vo1Pruedjcz4Wgd6YTHx+PWq3G3d2dK1cKY/0b2BhXepyLFtaVNxAwsbXlVlpambzRcYWx/jmOzuXu58SJE8TeSeaxYcM5ocgHxd1z7Ja6gKOKfM05VhG3Vm3I3bOPTVev0746V0kbV90uAA91AWZ29txs7KeVXtwvxltZc6vUtvLE+dwNv/VRKtGzsSmzTwAzMzMs3RsSExPDzUZlQ3Zri4m1NQlpaUToac/+R2cUfsdm2diW2VaeqOI8FpZ4+/qy6+xZOgwsXHnsRHgEqZmZOAQ11dqXQeMmmJqacuTadbw7dtKtvlMn6ZSvNOOiG8IN+/bGpGnFSx8XU6hVWLQMgaNHMXn17opHVkXL1aoG9MWkayfyi57LY/3qy6hL3Rxt7u1FSkpKjev8MKjlRffEPajR4B+gS5cu7Ny5s0Zlp0+fzpQpU7TS0qIv6jTzfzowgN83b6G5i7PWDYnRRQPdx9q3w7mSuLh8tZoTMdfwKIr9benpUe5DvjRK3Gi0vijs5/EuXWir44OcLCt5yFZJ58+dZdWaX+nQqiWWJS7tXb9SOBh5cvATuDiX//CSFU2akFbUUfTo2EFzo/K6tWtp6O7OwKKVkd56K5WzZ89y9uzZMvv4/PPP8WvShF9/XlFmW3nCv1tadSZA5eqMZeu2NLx6SSsW1dWucOk+szMncaskdletr09CkwBcoi9olrSz7NWL7MRbuEVVfPnaDGjYrXBlBL3jR3FL0T0G2cLNrco8QQ3s2XTpEu63b2ndkHjuUuGNdJ2sLWlQTiz/qVvxqFQqlixZUnbbqVOcOnWKacOH0i7An9TUyt8vb2cnPp3wvM7tsm/aTKd8p/39+H3rXzRrYK91jl08dRKAAa1b4VTOPSbFrsfHM/uHH3CwteGrGe9ia131gMjcyAhrExPaeep2vpRkaKLbCkhnggL5bdNmQty1b2a+dO4sAI936lB536FSc+zKVTyLbgJt3cir0r5j18FDKBQKnuz3KJ2aNK4wX0UOxVc8R+rapAEvvOaolWblGoCbZxOuXo5Ebe6pddPv9fjtGBmb4Ojd+u6sZUkF6sKBv4VnmaU+AZQqvcKripbeWumGgIft3cFkdMxRAJq06A6WFZ9Hfrf+qXBbsaYNHNh46RINk5O0z7HLhT/WOtla4VhOLP+pxISqz7Enh9M+wL/CYxulpwJgmZ6KXxX3C5SUXcmqbCWp3V2xbNkazxsxWv2ii0Ph95L5P2dpmFlJv6inT5yPL25XLqFfdIXFsncvshMTaXi57M28zm3aoqenR97xIzTU4RkCpVn76Pb5DXZ1YcPly3jnZGFe4qbf89cLFwno5uqMY0HFn2sVhQP/4pl/AFNlHnm5uQQVlTufUfh++Kjz8Sixr4KCAlCrsVSpNHmrcmbRYp3ylZbn7wfdupG/bSeKonFBZVKsbWnQovCGecWXX0PRe279xhTyAwJInjMftVJJkrc3rPgRy1NnuLVho6a8qYMDZoMGcXnVLyhWVL0MLACDBlWdR9RbNR78A5w8eZLIomUxg4KCaNWq9DMHy2diYlJ4WbiEfDPdHhTWq1NH1mzcxObduzXr/Ocplfy1by9N/Zrg7lz4ZZyQlESuQoF3BYNvfT09AAwN9DE0qPoSaEpaGqv/3ICvtxftQ1vovERheXHh5enbuzcrVq1mw8aNmnX+8/Ly2LhlK82bNcPD3R2A+IQEcnJz8fH21pR9tGdPPl28mBs3bmBo2AUjQ0OuxsRw4tQpnn1mlKYOn3+yoMxx/9q+g207dzJ31ixcnJ10rm9Fa0uXlhoZiWvb9jg3b6GJRdUzMKBBs+ZkxsaSn5aGPmBkbY2+oRGKEjdTG5qZk1cUzqSvVqOvVuMY2gojCwvSr1yutA4mdnY4hYSSeika5Z3b1VrWSpfboDsHBvDnkWPsOn1Gs86/Mj+fPef+wc/dDWebwgFvUloaCqWShkWDym5Ng2hc9CNODcSZWeCWk8VHv/9Ba9/G9AkNwc/dHQPg/4aXfZjcgfAIDkRE8vqggThYW+lU12KGOn5mH+nQnjWbt7Blz17NOv95SiXb/t5PUBNf3JwKB50Jt2+jUCjwKvpsAtxJTeXtefPR09Pjk+nTaaDrU6P1QE9P9zqWpOtTWHt17swvf25k067dmnX+85RKtu7ZS1M/P9yL3pcq+w79wr7DQF+/0mPvOnAQUxMTHunYsWZPitWrOFrd3MKaJoEhZdKDW3Yg7MxRzp87oVnnPysznbDTRwkKboWh8d1+905S4UDVwbFwNSyVSoUiJxvzUrPp12OiSYi7TkibzuX+MCiWlBjP0YM7CQxuhaNL5T/idDrHggLZcOQoO0+d1qzzr8zPZ8/Zc/i7u+NSdNUrsegc8yg+x5o1pXHRCl9qIM7EDDdFDh/9+jutm/jSp2Uo/u5uGABp2dlYm5mhV/R9UGx30ZVRPzfXap1juvaLaRcu4NK6LU7NmmvW+dczMMChaTOy4uJQpRf1i1ZW6BsZoSixxKShmRl5RSF4+gWF/WKDkFCMzC3IuHql3Do4+AeSl55G9o0bNVriT9e/QZfgZqzbf4Dtx45r1vnPy89n18lT+Ht44FLUHySmpKJQ5uFR4sdzamYmVkUhVgZFr1vJKZy7dJkmDd01dSh+nw+e+4dnevfSlD8SEUluXh6+Re+tTmp6b0rxvQuq/DL7MHVwwMjSgsybsZr73W7u3o1Hj264uroSk5cHeXkY29jg0b0bcQcPoS5akS/94kXSY2LweWwAV9au0zyfxnfgAArUam7s2l3zOgtRQo0G/zdv3mTkyJEcOnRI8/TY1NRUOnbsyJo1a2io42x3TTT18+ORjh34euUqUtLSaOjqwta9+4hPTOL/XnlZk++Dz7/kTHg4R9b/oUnLzMri181buZGSQmrRUoy/b/0LKwsLLC3MGd7/7gNDXnrnPYL9/Wjo6sqd1FT+3LGT7NxcFrzzf3WyNnnzZs14tFcvPl/8FcnJKXh6NOTPzVuIi4vjg/fe1eSbPmMmJ0+f5nyJuM6nhg9j7Yb1/PTTTxgUqDExNmb5qtU42Nsz9plnNPl6du9e5rgXih4t3qVTR+x0HahVQ3Z8HMmREbh364GhuQWKlBQcgoMxsbHh2l937w9p9NjjWHl6ceqjOZq04JcncudCJGZ6+liamWLt7o5dUFOybyWQdOa01nGCnp9AyoUL5KWnYWJji2PLluTn5nB9m26PXq8uf3d3OgUGsGLPPlKzsnG1t2PPuTASU9N49bEBmnyf/rmJ89eus/G9/wOgYYMGmh8CKiDaypYmRVcInGxttWYjy5uZvFL0uW3l2xhrHZb2q4mmTZrwSPv2fPPLGlLS02no4sxff+8nPimJ6S/+T5Pvw8VfcSYikkO/3X1I3JQ584hLTKR79+6ERUURUWJJQTtbG9o2v7sM39mISM4WTR6kpmeQm6tg2R/rAAgJDCSkkqd110Qzfz96durIkhU/k5KaSkNXV7bu2Ut8YiLvvjpRk2/Wp59x+nw4xzZu0KRlZmWxZtNmrt9JJi0xEYDft2zFysICKwsLhpd4zwHSMjI4cvo0PTp00OnZIrWlecv2HNzjx28rvuJW/M3CJ/z+vR11gZrejz2plffbzwpDL6fP+RoonGyY+/5LtGjVCWdXD4xNTEiIvc6JI3sxNTOnZ//hWuU/mTWZ5i07YGvfgOTbiRw9sB1zc0uGPD2hVtri39CdTkGBrNi9lzTNOfYPialpvPb4Y5p8n67/k/PXrrNpZmE/6dGggWaAqKIwxKh49t7Z1pYOJc6rff+E8dfJ07QP8MfFzpYcRR6nL1/m7JWrtPVrQotGul3hra7shHhSoi7g1qUrhubmKFJTsG/aDBNrG6K33+2zvPo/hpWHJ2c+ufsAuqYTXiI56gIm6GFtaY6lmzt2AYFk37rF7aKrWCWZNmiAmZMTCceOlNlW2wI8PekSHMyybdtJy8rC1cGB3adOcyslhcnD7k5mfPLbb4Rducpf8+dp0l769HNa+DbGws2d66YmJNy5w/YTJ1CpVIzr21eTr11gAF7OzqzevYfElFQCPD2Iu3OHTYePYG9lpbUyUG3zHTYEIysrzIo+X26dO2FW9APm0m9rUWZlEfzy/2g0oD+bBw8jO77wB/bNPfu4fT6cli1bYj52NIrkZHyHDEbPQJ/w77QfFnbuyyV0XvARXT9fxI1du7H28cF32BCubNxMRjWXWX7YqGW1n4dGjQb/zz//PEqlksjISPz9CzvSqKgoxo0bx/PPP8+2bdtqtZKlzZj0Gt+u/oVtf/9NRmYWjb28+OSd6YSW84ChkjKysvh+jfbTbH/5s/DSmoujo9bgP6CxD3sOHyEpORkLMzPahLRgwsincK+DNeOLzZ31Pl+6urBp61bSMzLw8/Xlq88+pXXLyh8jbmFhwXdLlvDmO+/y/U/LUBcU0KZVS96eMgX7OnjMeXXFbN5IXtduODQLxsDUlJzERC6t/Y3MGzcqLXcn/DyWDRtia2OLQWAgeWlp3Dp6hPgjhygodXNyTmIiDYKbY2hhQX5ODimRkcQd3E9+dnYFe793rz/xOKv2/c2+sDAyc3LxdnbivadG0MzLs86Oeb+8O/FlnH/9je37D5CRlUVjT08WvP1WlQPyS0UPWtu3bx/79u3T2hYaFKg1+D91/jw/rv1DK893v/4GwHPDhtb64B9g5uuTcVm1mr/2/U1GZia+3t4seu9dQptV3nekZ2by3epftNJWb/gTAFcnxzKD/92HDpOfn8+j3bpwP+nrG/DcK//HlnU/c2jvVpTKPDy8GjNi7Cs4ubhXWtbIyIi2HXty+WI4YaePolTmYW1jR0jrzvTsPxR7B+0QJ9eGXpw8speMjFQsLKxp3rIjfR57Ekvr2nv6+ZTBg1i5Zx97/wkjMycHb2dnZox8kmalVpqrqSBPDyJv3GT/+fOkZmZhoK+PewMHxvfpzcB2bWrlGBW5tnUzeZ27YB/UtLBfTErk8vo/yLpZ+X0vyZERWLi5429jU9gvpqeRePwYCUePlOkXoXBtf6DOHuxV2htPDmfFDlt2nz5DZk4OjVxcmPXsWIKrCJUd0L4dxy9c4GbURbYrFNhaWtKySROe7NGDRq53v3eNDA1Z8OL/+GX3bo5fiGLfuXOYmZjQoWkQz/Z9FJs6XBHHf9RILEqsWtawR3ca9ugOwLVt21FmlXP/IFCgVnPgrem0/PpLmgwdgoGJMcmRFzg+ew4Z17W/B+MPHebQtHdoOn4coVMmo0hN5cLynwn/4ac6apWoj/QKCqq/8qqZmRmHDx8us6znqVOn6NKlC9k1GHAlR5yvdpmayFepOXLlKh18GukU7nOvrDzuz0BQmZ/Pzv0H6N21i86hO/fin6++rPNjAJqlPt2iKn6MfW3T9T6Ne1Vy5r/un7gADsH35+E3+Wo1x67fpJ1nwxqF8VSXoaluIYP3Kl+l4lD0ZTo1aVyzMJ5q+jtW99W37lmBuvAGXUvvSkN7aktgwtk6PwZoz/zfj3MsK063h6jdK7W+Pjcb+9Hw8sX70i/a+N6fh0upgAg9A4JKxPzXpZMfLboPRylibIzJ1EkoFn5+X0J3Rhw9WOfHqK5XFu170FUo11dTuj/oKtx3NRolenh4lPswL5VKhZsON0sKIYQQQoj6owZzzaKO1GiKZ8GCBbz66qucPHlSk3by5EkmTZrEJ598UmuVE0IIIYQQ4t8mOTmZUaNGYW1tja2tLePHjyeznCd7F4uJiUFPT6/c1++//67JV972NaVC2qui88y/nZ2d1ooIWVlZtGvXTrOsZH5+PoaGhjz33HM88cQT1aqEEEIIIYQQ/xWjRo0iPj6enTt3olQqGTduHBMmTGD16tXl5vfw8CA+XvuZON9++y0LFiygX79+Wuk//fQTfUvcCG9bzQVbdB78f/bZZ9XasRBCCCGEEFC/VvuJjIxk27ZtnDhxgtatC1eg+vLLL+nfvz+ffPJJuSHyBgYGuJRaVGb9+vWMGDECy1JPGre1tS2Ttzp0HvyPHTu2xgcRQgghhBCiPjhy5Ai2traagT9Ar1690NfX59ixYwwePLjKfZw6dYqzZ8/y1Vdfldn2yiuv8Pzzz+Pj48OLL77IuHHjyjyvpDL3vCxMbm4ueaXuXLfW4YmeQgghhBBCPEgKhQJF0YPzipX3MNrqSEhIwKnUE+ANDQ2xt7cnQccngf/www8EBgbSsWNHrfQPPviARx55BHNzc3bs2MHLL79MZmYmr732ms71q9ENv1lZWUycOBEnJycsLCyws7PTegkhhBBCCFFMXfBwvubNm4eNjY3Wa968eeW2Ydq0aRXelFv8unDhwj3/rXJycli9ejXjx48vs+29996jU6dOhIaG8vbbb/PWW2+xYMGCau2/RjP/b731Fnv37uXrr79m9OjRfPXVV8TGxrJ06VI++uijmuxSCCGEEEKI+2r69OlMmTJFK62iWf+pU6fy7LPPVro/Hx8fXFxcSCx6Gnyx/Px8kpOTdYrVX7t2LdnZ2YwZM6bKvO3atWP27NkoFAqdr1bUaPC/adMmVqxYQffu3Rk3bhxdunTB19cXLy8vVq1axahRo2qyWyGEEEIIIe6b6oT4ODo64ujoWGW+Dh06kJqayqlTp2jVqhUAe/bsQa1W065duyrL//DDDzz++OM6Hevs2bPY2dlVK0ypRoP/5ORkfHx8gML4/uTkZAA6d+7MSy+9VJNdCiGEEEKI/6j69IyvwMBA+vbtywsvvMA333yDUqlk4sSJPPXUU5qVfmJjY+nZsycrVqygbdu2mrKXLl1i//79bN26tcx+N23axK1bt2jfvj2mpqbs3LmTuXPn8sYbb1SrfjWK+ffx8eHq1asABAQE8Ntvv2kqVd21RoUQQgghhPgvWbVqFQEBAfTs2ZP+/fvTuXNnvv32W812pVJJVFQU2dnZWuV+/PFHGjZsSJ8+fcrs08jIiK+++ooOHToQEhLC0qVLWbRoETNnzqxW3Wo08z9u3DjOnTtHt27dmDZtGgMHDmTx4sUolUoWLVpUk10KIYQQQgjxn2Bvb1/hA70AvL29KSjncsjcuXOZO3duuWX69u2r9XCvmqrR4P/111/X/H+vXr24cOECp06dwtfXl+bNm99zpYQQQgghxHRzI70AABkgSURBVH+Huj7F/Tzk7nmdfwAvLy+8vLxqY1dCCCGEEEKIOqLz4P+LL75gwoQJmJqa8sUXX1SatzoPGhBCCCGEEELcHzoP/j/99FNGjRqFqakpn376aYX59PT0ZPAvhBBCCCE01BL189DQefBfvLpP6f8XQgghhBBC/DvoPPgv/fSziujp6bFw4cIaV0gIIYQQQghRN3Qe/J85c0br36dPnyY/Px9/f38ALl68iIGBgeZJZkIIIYQQQoCE/TxMdB787927V/P/ixYtwsrKiuXLl2NnZwdASkoK48aNo0uXLrVfSyGEEEIIIcQ9q9ETfhcuXMi8efM0A38AOzs7PvzwQwn5EUIIIYQQ4iFVo3X+09PTSUpKKpOelJRERkZGjSpiH9SsRuWqS6FQcOaPdfTt2xcTE5P7csz7Qa1QcObMGfr27YvRfWhXq2nv1PkxoPD92jJvHn2nT/9PvV9Q2Lbf/oNtUygUnPlz03/uHFMoFJz5be19a9cg/zo/hIZCoWDevPVMn36/3rPg+3CMwnb9+h89xzb9R9u16j62y+eJIXV+jGKF59g8pu/86z/1nlWHhP08PPQKynu2cBXGjBnDgQMHWLhwIW3btgXg2LFjvPnmm3Tp0oXly5fXekVrS3p6OjY2NqSlpWFtbf2gq1NrpF3/Pv/Vtkm7/n3+q22Tdv27/FfbBf/ttulq9Nw9D7oK5fr5/x550FW472o08//NN9/wxhtv8PTTT6NUKgt3ZGjI+PHjWbBgQa1WUAghhBBCCFE7ajT4Nzc3Z8mSJSxYsIDLly8D0LhxYywsLGq1ckIIIYQQ4t+v+nEmoq7UaPBfzMLCgubNm9dWXYQQQgghhBB1qEar/fybmZiYMHPmzP/cDTfSrn+f/2rbpF3/Pv/Vtkm7/l3+q+2C/3bbxL9PjW74FUIIIYQQQldPf/hw3vC7+t36d8NvvZv5F0IIIYQQor6Swb8QQgghhBD1xD3d8CuEEEIIIURV1BJl/tCQmX/xQHTv3p3JkyfX6j6XLVuGra1tre7zXtVFO4UQQtS+kv21t7c3n332mc5lH8bvHyEqIoN/8Z/x5JNPcvHixQddDQGEh4czdOhQvL290dPTq9aX6MPsu+++o0uXLtjZ2WFnZ0evXr04fvz4g67WPVu3bh2tW7fG1tYWCwsLQkJC+Pnnnx90tWrdmjVr0NPT44knnnjQVblny5YtQ09PT+tlamr6oKtVK1JTU3nllVdwdXXFxMQEPz8/tm7del/rcOLECSZMmHBfjwmgp6fHhg0b7vtxRf0iYT/iP8PMzAwzM7MHXQ0BZGdn4+Pjw/Dhw3n99dcfdHVqzb59+xg5ciQdO3bE1NSU+fPn06dPH8LDw3F3d3/Q1asxe3t73nnnHQICAjA2Nmbz5s2MGzcOJycnHn300QddvVoRExPDG2+8QZcuXR50VWqNtbU1UVFRmn/r6ek9wNrUjry8PHr37o2TkxNr167F3d2da9eu3fdZdUdHx/t6vPpALVE/D43/zMz/tm3b6Ny5M7a2tjg4OPDYY49pnj4McPjwYUJCQjA1NaV169Zs2LABPT09zp49q8lz/vx5+vXrh6WlJc7OzowePZrbt28/gNZoW7t2LcHBwZiZmeHg4ECvXr3IysoC4PvvvycwMBBTU1MCAgJYsmSJptxzzz1H8+bNUSgUQGGnGhoaypgxYx5IO0rLz89n4sSJ2NjY0KBBA9577z2KV5719vbmww8/ZMyYMVhaWuLl5cXGjRtJSkpi0KBBWFpa0rx5c06ePKnZ38N62bWqds6ePZuRI0diYWGBu7s7X3311QOuse4q+my2adOGBQsW8NRTT/0r17WuqF2rVq3i5ZdfJiQkhICAAL7//nvUajW7d+9+0FXWSUXt6t69O4MHDyYwMJDGjRszadIkmjdvzsGDBx90lXVWWT+pUqkYNWoUs2bNwsfH5wHXtHoqa5eenh4uLi6al7Oz8wOure4qatePP/5IcnIyGzZsoFOnTnh7e9OtWzdatGhRq8fPysrSfL+4urqycOFCre2lw34WLVpEcHAwFhYWeHh48PLLL5OZmVlmvxs2bKBJkyaYmpry6KOPcuPGDa3tf/75Jy1btsTU1BQfHx9mzZpFfn6+5pgAgwcPRk9PT/PvqsoVFBTw/vvv4+npiYmJCW5ubrz22mu18FcS/1X/mcF/VlYWU6ZM4eTJk+zevRt9fX0GDx6MWq0mPT2dgQMHEhwczOnTp5k9ezZvv/22VvnU1FQeeeQRQkNDOXnyJNu2bePWrVuMGDHiAbWoUHx8PCNHjuS5554jMjKSffv2MWTIEAoKCli1ahUzZsxgzpw5REZGMnfuXN577z2WL18OwBdffEFWVhbTpk0D4J133iE1NZXFixc/yCZpLF++HENDQ44fP87nn3/OokWL+P777zXbP/30Uzp16sSZM2cYMGAAo0ePZsyYMTzzzDOcPn2axo0bM2bMGB72R1VU1c4FCxbQokULzpw5w7Rp05g0aRI7d+58gDXWTWWfzX+z6rQrOzsbpVKJvb39A6hp9ejaroKCAnbv3k1UVBRdu3Z9QLWtnqra9sEHH+Dk5MT48eMfcE2rp6p2ZWZm4uXlhYeHB4MGDSI8PPwB11g3lbVr48aNdOjQgVdeeQVnZ2eaNWvG3LlzUalUtVqHN998k7///ps///yTHTt2sG/fPk6fPl1hfn19fb744gvCw8NZvnw5e/bs4a233tLKk52dzZw5c1ixYgWHDh0iNTWVp556SrP9wIEDjBkzhkmTJhEREcHSpUtZtmwZc+bMAQpDjQB++ukn4uPjNf+uqtwff/zBp59+ytKlS4mOjmbDhg0EBwfX6t9L/Lf8Z8J+hg4dqvXvH3/8EUdHRyIiIjh48CB6enp89913mJqaEhQURGxsLC+88IIm/+LFiwkNDWXu3Lla+/Dw8ODixYv4+fndt7aUFB8fT35+PkOGDMHLywtAc1LPnDmThQsXMmTIEAAaNWqk6RjGjh2LpaUlK1eupFu3blhZWfHZZ5+xd+9erK2tH0hbSvPw8ODTTz9FT08Pf39/wsLC+PTTTzXvS//+/fnf//4HwIwZM/j6669p06YNw4cPB+Dtt9+mQ4cO3Lp1CxcXlwfWjqpU1c5OnTppfqD5+flx6NAhPv30U3r37v0gq12lyj6b/2bVadfbb7+Nm5sbvXr1up9VrJGq2pWWloa7uzsKhQIDAwOWLFny0H8Gi1XWtoMHD/LDDz9oXeX9t6isXf7+/vz44480b96ctLQ0PvnkEzp27Eh4eDgNGzZ8kNWuUmXtunLlCnv27GHUqFFs3bqVS5cu8fLLL6NUKpk5c2atHD8zM5MffviBlStX0rNnT6Bwkqayv1vJhRuKr0y/+OKLWlfblUolixcvpl27dpp9BgYGcvz4cdq2bcusWbOYNm0aY8eOBcDHx4fZs2fz1ltvMXPmTE2oka2trdZ3WlXlrl+/jouLC7169cLIyAhPT0/atm1bK3+r2iRhPw+P/8zMf3R0NCNHjsTHxwdra2vN5bLr168TFRVF8+bNtW6GKn1inDt3jr1792Jpaal5BQQEAGiFD91vLVq0oGfPngQHBzN8+HC+++47UlJSyMrK4vLly4wfP16rzh9++KFWfTt06MAbb7zB7NmzmTp1Kp07d35gbSmtffv2WjGqHTp0IDo6WjPD07x5c8224svZJQcrxWmJiYn3o7o1VlU7O3TooJW/Q4cOREZG3tc61kRFn81/O13b9dFHH7FmzRrWr1//r7jRsqp2WVlZcfbsWU6cOMGcOXOYMmUK+/bte3AVroaK2paRkcHo0aP57rvvaNCgwYOuZrVV9p516NCBMWPGEBISQrdu3Vi3bh2Ojo4sXbr0Ade6apW1S61W4+TkxLfffkurVq148skneeedd/jmm29q7fiXL18mLy9PM0iHwvte/P39Kyyza9cuevbsibu7O1ZWVowePZo7d+6QnZ2tyWNoaEibNm00/w4ICMDW1lbTn587d44PPvhA6zv7hRdeID4+Xms/pVVVbvjw4eTk5ODj48MLL7zA+vXrNSFBQpTnPzP4HzhwIMnJyXz33XccO3aMY8eOAYVx7rrIzMxk4MCBnD17VusVHR39QC99GxgYsHPnTv766y+CgoL48ssv8ff35/z580Dh6iMl63v+/HmOHj2qKa9Wqzl06BAGBgZcunTpQTWjRoyMjDT/Xzx4Li9NrVbf34oJoOLP5tWrVx901e6JLu365JNP+Oijj9ixY4fWj9SHWVXt0tfXx9fXl5CQEKZOncqwYcOYN2/eA661bipq26VLl4iJiWHgwIEYGhpiaGjIihUr2LhxI4aGhg90YkcX1TnHjIyMCA0N/Vf085W1y9XVFT8/PwwMDDT5AwMDSUhI0Pn7vLbFxMTw2GOP0bx5c/744w9OnTqluTerOnXKzMxk1qxZWt/ZYWFhREdHVzqBUFU5Dw8PoqKiWLJkCWZmZrz88st07doVpVJ5z22vTeqCh/NVH/0nBv937twhKiqKd999l549exIYGKg1o1UcalF84yvcja0r1rJlS8LDw/H29sbX11frZWFhcd/aUh49PT06derErFmzOHPmDMbGxhw6dAg3NzeuXLlSpr6NGjXSlF2wYAEXLlzg77//Ztu2bfz0008PsCXain+gFTt69ChNmjTR6vT/C6pqZ8kfa8X/DgwMvG/1uxflfTbXr1//oKt1zypr18cff8zs2bPZtm0brVu3fsA1rZ7qvF9qtVqrz3zYlde2v/76i7CwMK1B0+OPP06PHj04e/YsHh4eD7raVdL1PVOpVISFheHq6voAall9FbWrU6dOXLp0SWtS5+LFi7i6umJsbFwrx27cuDFGRkZafXNKSkqFS0WfOnUKtVrNwoULad++PX5+fsTFxZXJl5+fr7UIRVRUFKmpqZr+vGXLlkRFRZX5zvb19UVfv3A4ZmRkVOb+Bl3KmZmZMXDgQL744gv27dvHkSNHCAsLu7c/lPjP+k/E/NvZ2eHg4MC3336Lq6sr169f18RQAzz99NO88847TJgwgWnTpnH9+nU++eQT4O7s8SuvvMJ3333HyJEjeeutt7C3t+fSpUusWbOG77///oENSI8dO8bu3bvp06cPTk5OHDt2jKSkJAIDA5k1axavvfYaNjY29O3bF4VCwcmTJ0lJSWHKlCmcOXOGGTNmsHbtWjp16sSiRYuYNGkS3bp1eyhWvLh+/TpTpkzhf//7H6dPn+bLL78ss+LCf0FV7Tx06BAff/wxTzzxBDt37uT3339ny5YtD7DGuqnss5mXl0dERARQODMWGxvL2bNnsbS0xNfX9wHXvHKVtWv+/PnMmDGD1atX4+3tTUJCAoDmUvzDrLJ2zZs3j9atW9O4cWMUCgVbt27l559/5uuvv37Q1dZJRW0LDQ2lWbNmWnmLVwQrnf4wquw9++CDD2jfvj2+vr6kpqayYMECrl27xvPPP/+gq12lytrVrFkzFi9ezKRJk3j11VeJjo5m7ty5tbp6jaWlJePHj+fNN9/EwcEBJycn3nnnHc1AujRfX1+USiVffvklAwcO5NChQ+WGIRkZGfHqq6/yxRdfYGhoyMSJE2nfvr0mzHjGjBk89thjeHp6MmzYMPT19Tl37hznz5/nww8/BArvJ9i9ezedOnXCxMQEOzu7KsstW7YMlUpFu3btMDc3Z+XKlZiZmWnupxCitP/E4F9fX581a9bw2muv0axZM/z9/fniiy/o3r07ULgW8qZNm3jppZcICQkhODiYGTNm8PTTT2sutbm5uXHo0CHefvtt+vTpg0KhwMvLi759+1bYIdwP1tbW7N+/n88++4z09HS8vLxYuHAh/fr1A8Dc3JwFCxbw5ptvYmFhQXBwMJMnTyY3N5dnnnmGZ599loEDBwIwYcIEtmzZwujRo9m/f/8Dn2EfM2YMOTk5tG3bFgMDAyZNmvRAHqpS16pq59SpUzl58iSzZs3C2tqaRYsW/SvWVq/ssxkTE0NoaKgm7yeffMInn3xCt27dHvo48sra9dJLL5GXl8ewYcO0ysycOZP333//wVRYR5W169ChQ7z88svcvHkTMzMzAgICWLlyJU8++eSDrrZOquon/60qa9eOHTt44YUXSEhIwM7OjlatWnH48GGCgoIedLWrVNX7tX37dl5//XWaN2+Ou7s7kyZNKrNC371asGCBJtzXysqKqVOnkpaWVm7eFi1asGjRIubPn8/06dPp2rUr8+bNK7Nstrm5OW+//TZPP/00sbGxdOnShR9++EGz/dFHH2Xz5s188MEHzJ8/HyMjIwICArR+sC1cuJApU6bw3Xff4e7uTkxMTJXlbG1t+eijj5gyZQoqlYrg4GA2bdqEg4NDrf7N7tW/fCG4/xS9gn/7unw1tGrVKsaNG0daWpo8GEo8MN7e3kyePFlrJQkhhBDiv2bwzIfzeSjrZ/V80FW47/4TM/+6WLFiBT4+Pri7u3Pu3DnefvttRowYIQN/IYQQQghRb9SbwX9CQgIzZswgISEBV1dXhg8frnlAhhBCCCGEqDv1dWWdh1G9DfsRQgghhBD3x6AZD2fYz58f1L+wn//EUp9CCCGEEEKIqtWbsB8hhBBCCPFgSNjPw0Nm/oUQQgghhKgnZPAvhBBCCCFEPSFhP0IIIYQQok5J2M/DQ2b+hRBCCCGEqCdk8C+EEEIIIUQ9IWE/QgghhBCiTqnVD7oGopjM/AshhBBCCFFPyOBfCCGEEEKIekLCfoQQQgghRJ2S1X4eHjLzL4QQQgghRD0hg38hhBBCCCHqCQn7EUIIIYQQdUrCfh4eMvMvhBBCCCFEPSGDfyGEEEIIIeoJCfsRQgghhBB1SsJ+Hh4y8y+EEEIIIUQ9IYN/IYQQQggh6gkJ+xFCCCGEEHVKJWE/Dw2Z+RdCCCGEEKKekMG/EEIIIYQQ9YSE/QghhBBCiDolq/08PGTmXwghhBBCiHpCBv9CCCGEEELUExL2I4QQQggh6pSE/Tw8ZOZfCCGEEEKIekIG/0IIIYQQQtQTEvYjhBBCCCHqlIT9PDxk5l8IIYQQQoh6Qgb/QgghhBBC1BMS9iOEEEIIIeqUSsJ+Hhoy8y+EEEIIIUQ9IYN/IYQQQggh6gkJ+xFCCCGEEHVKVvt5eMjMvxBCCCGEEPWEDP6FEEIIIYSoJyTsRwghhBBC1ClZ7efhITP/QgghhBBC1BMy+BdCCCGEEKKekLAfIYQQQghRp2S1n4eHzPwLIYQQQghRT8jgXwghhBBCiHpCwn6EEEIIIUSdktV+Hh4y8y+EEEIIIUQ9IYN/IYQQQggh6gkJ+xFCCCGEEHVKwn4eHjLzL4QQQgghRD0hg38hhBBCCCHqCQn7EUIIIYQQdUql1nvQVRBFZOZfCCGEEEKIWjRnzhw6duyIubk5tra2OpUpKChgxowZuLq6YmZmRq9evYiOjtbKk5yczKhRo7C2tsbW1pbx48eTmZlZrbrJ4F8IIYQQQohalJeXx/Dhw3nppZd0LvPxxx/zxRdf8M0333Ds2DEsLCx49NFHyc3N1eQZNWoU4eHh7Ny5k82bN7N//34mTJhQrbrpFRQUyP3XQgghhBCizvi+vOdBV6Fcl5Y8Uqf7X7ZsGZMnTyY1NbXSfAUFBbi5uTF16lTeeOMNANLS0nB2dmbZsmU89dRTREZGEhQUxIkTJ2jdujUA27Zto3///ty8eRM3Nzed6iQz/0IIIYQQQjxAV69eJSEhgV69emnSbGxsaNeuHUeOHAHgyJEj2Nraagb+AL169UJfX59jx47pfCy54VcIIYQQQtRLCoUChUKhlWZiYoKJicl9rUdCQgIAzs7OWunOzs6abQkJCTg5OWltNzQ0xN7eXpNHFzL4F0IIIYQQdaquw2tq6v3332fWrFlaaTNnzuT9998vk3fatGnMnz+/0v1FRkYSEBBQm1WsdTL4F0IIIYQQ9dL06dOZMmWKVlpFs/5Tp07l2WefrXR/Pj4+NaqHi4sLALdu3cLV1VWTfuvWLUJCQjR5EhMTtcrl5+eTnJysKa8LGfwLIYQQQoh6qTohPo6Ojjg6OtZJPRo1aoSLiwu7d+/WDPbT09M5duyYZsWgDh06kJqayqlTp2jVqhUAe/bsQa1W065dO52PJTf8CiGEEEIIUYuuX7/O2bNnuX79OiqVirNnz3L27FmtNfkDAgJYv349AHp6ekyePJkPP/yQjRs3EhYWxpgxY3Bzc+OJJ54AIDAwkL59+/LCCy9w/PhxDh06xMSJE3nqqad0XukHZOZfCCGEEEKIWjVjxgyWL1+u+XdoaCgAe/fupXv37gBERUWRlpamyfPWW2+RlZXFhAkTSE1NpXPnzmzbtg1TU1NNnlWrVjFx4kR69uyJvr4+Q4cO5YsvvqhW3WSdfyGEEEIIIeoJCfsRQgghhBCinpDBvxBCCCGEEPWEDP6FEEIIIYSoJ2TwL4QQQgghRD0hg38hhBBCCCHqCRn8CyGEEEIIUU/I4F8IIYQQQoh6Qgb/QgghhBBC1BMy+BdCCCGEEKKekMG/EEIIIYQQ9YQM/oUQQgghhKgnZPAvhBBCCCFEPfH/W5qe9EVj10wAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"\n",
"# Calculate correlation matrix using NumPy\n",
"correlation_matrix = np.corrcoef(data.values.T)\n",
"\n",
"# Plot correlation matrix using seaborn\n",
"fig, ax = plt.subplots(figsize=(8, 8))\n",
"tick_labels = list(X.columns) + ['diabetes']\n",
"hm = sns.heatmap(\n",
" correlation_matrix,\n",
" ax=ax,\n",
" cbar=True, # Show colorbar\n",
" cmap=\"vlag\", # Specify colormap\n",
" vmin=-1, # Min. value for colormapping\n",
" vmax=1, # Max. value for colormapping\n",
" annot=True, # Show the value of each cell\n",
" square=True, # Square aspect ratio in cell sizing\n",
" fmt='.2f', # Float formatting\n",
" annot_kws={'size':\n",
" 12}, # Font size of the values displayed within the cells\n",
" xticklabels=tick_labels, # x-axis labels\n",
" yticklabels=tick_labels) # y-axis labels\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Simple Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Simple linear regression is a linear regression model with a single explanatory variable. `bmi` seems to show a discernible linear relationship with the target variable, so let's go with that one. "
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Create a vector of the single predictor values\n",
"simple_X = X.bmi.to_numpy().reshape(len(X), 1)\n",
"\n",
"# Split for simple linear regression\n",
"simple_X_train, simple_X_test, y_train, y_test = train_test_split(simple_X,\n",
" y,\n",
" random_state=0,\n",
" test_size=0.2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model Creation"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"model = LinearRegression()\n",
"_ = model.fit(simple_X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model Application"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"simple_y_pred = model.predict(simple_X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model Evaluation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we'll plot our predicted values alongside the observed values, as well as the regression line estimated by our model."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAJwCAYAAABF4Ox2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADY1UlEQVR4nOzdeVxU9f7H8fdhRBEBzXJBhsTUNEvLbNFqFNI0NcPGya6aadqqFlgu2W0xW8y6JrSo/W6ldktbxslbZot1RUezW9k1W03NBQkrKzVXcDi/P8YZGdlxYFhez8eDB8453znnM8MB4XM+38/XME3TFAAAAAAAAIAyCQt1AAAAAAAAAEB1RGINAAAAAAAAKAcSawAAAAAAAEA5kFgDAAAAAAAAyoHEGgAAAAAAAFAOJNYAAAAAAACAciCxBgAAAAAAAJQDiTUAAAAAAACgHEisAQAAAAAAAOVAYg0AAITM1KlTZRhGqMNACGVkZMgwDGVkZFT6uRMSEnTVVVdV+nkBAEDNQWINAAAExfz582UYhv8jIiJCLVq0UJ8+ffT000/rr7/+CnWIIeNLIPo+IiMj1aFDB913333at29fqMNDBdq2bVvA194wDMXExOi8887Ts88+K4/HEzA+MTFRhmGobdu2hR5v+fLl/uM4nU7/dt/33xdffFGhrwcAAASqE+oAAABAzTJt2jS1atVKubm52rVrlzIyMpSamqqnnnpKb7/9tjp16uQfe9999+mee+4JYbSVa86cOYqKitL+/fv14Ycf6tFHH9V//vMfrVmzptZW7nXv3l2HDh1S3bp1Qx1KhRoyZIj69esnSdq7d6+WLVumO+64Q9u3b9eTTz4ZMDYiIkKbN2/WZ599posuuihg36uvvqqIiAgdPny40mIHAABFI7EGAACCqm/fvrrgggv8j6dMmaL//Oc/uuqqq3T11Vfr+++/V/369SVJderUUZ06tefXEYfDodNOO02SdNttt2nQoEFyuVz69NNP1a1bt0Kfc/DgQUVGRlZKfAcOHFCDBg0q5Vw+YWFhioiIqNRzhsL555+v66+/3v94zJgxuvjii7Vw4cICibXWrVvr6NGjWrRoUUBi7fDhw3rrrbfUv39/LV68uNJiBwAARWMqKAAAqHCXX3657r//fm3fvl2vvPKKf3thPdaWL1+uyy67TI0aNVJUVJTatWune++9N2DMkSNH9OCDD6pNmzaqV6+e4uPjNWnSJB05ciRg3Lx583T55ZeradOmqlevnjp06KA5c+YUiO+LL75Qnz59dNppp6l+/fpq1aqVRo0aFTAmLy9PaWlpOvvssxUREaFmzZrp1ltv1Z9//nlS74skbd26VZJ3GuA555yjdevWqXv37oqMjPS/9l9//VWjR49Ws2bNFBERoXPPPVcLFiwocMzff/9dw4cPV0xMjBo1aqQRI0boq6++kmEYmj9/vn/cyJEjFRUVpS1btqhfv36Kjo7WsGHDyvRaS/O+vfbaa+rSpYuio6MVExOjjh07Kj093b+/qB5rb775prp06aL69evrtNNO0/XXX6+srKyAMb7XkJWVpYEDByoqKkpNmjTRhAkTCkyxLM6HH36o8847TxEREerQoYNcLpd/308//STDMDRr1qwCz/vkk09kGIYWLVpU6nP5GIahZs2aFZlYHjJkiF5//XXl5eX5t73zzjs6ePCgBg8eXObzAQCAikFiDQAAVIrhw4dL8iYxivLtt9/qqquu0pEjRzRt2jTNnDlTV199tdasWeMfk5eXp6uvvlr/+Mc/NGDAAD3zzDMaOHCgZs2apeuuuy7geHPmzFHLli117733aubMmYqPj9eYMWP03HPP+cf8+uuv6t27t7Zt26Z77rlHzzzzjIYNG6ZPP/004Fi33nqrJk6cqEsvvVTp6em68cYb9eqrr6pPnz7Kzc0t13uyZcsWSdKpp57q3/b777+rb9++Ou+885SWlqakpCQdOnRIiYmJ+te//qVhw4bpySefVMOGDTVy5MiAJFVeXp4GDBigRYsWacSIEXr00UeVnZ2tESNGFHr+o0ePqk+fPmratKn+8Y9/aNCgQaV+raV535YvX64hQ4bolFNO0YwZM/T4448rMTEx4OtZmPnz52vw4MGyWCyaPn26br75ZrlcLl122WXas2dPwFiPx6M+ffro1FNP1T/+8Q/16NFDM2fO1P/93/+V6muwadMmXXfdderbt6+mT5+uOnXq6Nprr9Xy5cslSWeccYYuvfRSvfrqqwWe++qrryo6OlrJycklnufgwYPavXu3du/erZ9++knPPfec3n///SK/NkOHDlV2dnZAwnHhwoXq2bOnmjZtWqrXBgAAKoEJAAAQBPPmzTMlmZ9//nmRYxo2bGh27tzZ//jBBx808/86MmvWLFOS+dtvvxV5jH/9619mWFiY6Xa7A7bPnTvXlGSuWbPGv+3gwYMFnt+nTx/zjDPO8D9+6623Sozb7XabksxXX301YPv7779f6PYT+V7nxo0bzd9++83cunWr+fzzz5v16tUzmzVrZh44cMA0TdPs0aOHKcmcO3duwPPT0tJMSeYrr7zi35aTk2N269bNjIqKMvft22eapmkuXrzYlGSmpaX5x3k8HvPyyy83JZnz5s3zbx8xYoQpybznnnvK9VpL876lpKSYMTEx5tGjR4scs2LFClOSuWLFCv/ratq0qXnOOeeYhw4d8o9bunSpKcl84IEHCryGadOmBRyzc+fOZpcuXYo8p0/Lli1NSebixYv92/bu3WvGxsYGXKfPP/+8Kcn8/vvv/dtycnLM0047zRwxYkSx59i6daspqdCP22+/3czLywsY36NHD/Pss882TdM0L7jgAnP06NGmaZrmn3/+adatW9dcsGCB/z178803/c8rzfcfAAAIPirWAABApYmKiip2ddBGjRpJkv79738HTIHL780339RZZ52l9u3b+yuAdu/e7Z9WuWLFCv9YXy83ydswfvfu3erRo4d++ukn7d27N+CcS5cuLbLy7M0331TDhg11xRVXBJyzS5cuioqKCjhncdq1a6cmTZqoVatWuvXWW9WmTRu9++67AT3U6tWrpxtvvDHgecuWLVPz5s01ZMgQ/7bw8HDdeeed2r9/v1auXClJev/99xUeHq6bb77ZPy4sLExjx44tMqbbb7+9XK+1NO9bo0aNdODAAX/1V2l88cUX+vXXXzVmzJiA3mv9+/dX+/bt9e677xZ4zm233Rbw2Gaz6aeffirV+Vq0aKFrrrnG/zgmJkY33HCD/ve//2nXrl2SpMGDBysiIiKgau2DDz7Q7t27A/qmFeeWW27R8uXLtXz5ci1evFhjx47V888/r7vuuqvI5wwdOlQul0s5OTlyOp2yWCwBsQIAgNAjsQYAACrN/v37FR0dXeT+6667TpdeeqluuukmNWvWTH/729/0xhtvBCTZNm3apG+//VZNmjQJ+DjzzDMleaco+qxZs0a9evVSgwYN1KhRIzVp0sTfs8yXWOvRo4cGDRqkhx56SKeddpqSk5M1b968gH5tmzZt0t69e9W0adMC592/f3/AOYuzePFiLV++XBkZGdq8ebO++eYbdenSJWBMXFxcgRUyt2/frrZt2yosLPBXt7POOsu/3/c5Nja2wGIHbdq0KTSeOnXqyGq1Bmwr7Wstzfs2ZswYnXnmmerbt6+sVqtGjRql999/v9j3yPda2rVrV2Bf+/bt/ft9IiIi1KRJk4Btp5xySql737Vp06ZAnz/ftbRt2zZJ3gThgAEDtHDhQv+YV199VXFxcf6Ebknatm2rXr16qVevXrLb7Xr22Wc1ZswYpaWl6euvvy70OX/729+0d+9evffee3r11Vd11VVXFfv9AwAAKl/tWYYLAACE1M6dO7V3794ikzySt8Js1apVWrFihd599129//77ev3113X55Zfrww8/lMViUV5enjp27Kinnnqq0GPEx8dL8vYv69mzp9q3b6+nnnpK8fHxqlu3rpYtW6ZZs2b5k3WGYcjpdOrTTz/VO++8ow8++ECjRo3SzJkz9emnnyoqKkp5eXlq2rRpoX22JBVI7BSle/fu/lVBi3sPKku9evUKJOtK+1pL8741bdpU69ev1wcffKD33ntP7733nubNm6cbbrih0IUXysNisQTlOCW54YYb9Oabb+qTTz5Rx44d9fbbb2vMmDEF3r+y6Nmzp5599lmtWrVKHTt2LLA/NjZWiYmJmjlzptasWcNKoAAAVEEk1gAAQKX417/+JUnq06dPsePCwsLUs2dP9ezZU0899ZQee+wx/f3vf9eKFSvUq1cvtW7dWl999ZV69uxZoNIov3feeUdHjhzR22+/rdNPP92/vahpm127dlXXrl316KOPauHChRo2bJhee+013XTTTWrdurU++ugjXXrppZWa+PJp2bKlNmzYoLy8vIBEzg8//ODf7/u8YsUKHTx4MKBqbfPmzaU+V1lfa3HvmyTVrVtXAwYM0IABA5SXl6cxY8bo+eef1/33319oktX3WjZu3FigGmzjxo3+/cGyefNmmaYZcC39+OOPkqSEhAT/tiuvvFJNmjTRq6++qosvvlgHDx70L8hRXkePHpXkreQsytChQ3XTTTepUaNG6tev30mdDwAABB9TQQEAQIX7z3/+o4cfflitWrXSsGHDihz3xx9/FNh23nnnSZJ/iuHgwYOVlZWlf/7znwXGHjp0SAcOHJB0vJLJNE3//r1792revHkBz/nzzz8DxhR1To/Ho4cffrjAOY8ePVpgpcpg69evn3bt2qXXX3894LzPPPOMoqKi1KNHD0nyr9qZ/73Jy8sLWAW1JKV9raV5337//feA/WFhYerUqVPAmBNdcMEFatq0qebOnRsw5r333tP333+v/v37l/q1lMbPP/+st956y/943759evnll3XeeeepefPm/u116tTRkCFD9MYbb2j+/Pnq2LGj/7WU1zvvvCNJOvfcc4sc43A49OCDD2r27NkFpggDAIDQo2INAAAE1XvvvacffvhBR48e1S+//KL//Oc/Wr58uVq2bKm33347oCH9iaZNm6ZVq1apf//+atmypX799VfNnj1bVqtVl112mSRp+PDheuONN3TbbbdpxYoVuvTSS+XxePTDDz/ojTfe0AcffKALLrhAvXv39ldL3Xrrrdq/f7/++c9/qmnTpsrOzvafc8GCBZo9e7auueYatW7dWn/99Zf++c9/KiYmxl8h1KNHD916662aPn261q9fr969eys8PFybNm3Sm2++qfT0dDkcjgp7T2+55RY9//zzGjlypNatW6eEhAQ5nU6tWbNGaWlp/r5bAwcO1EUXXaS7775bmzdvVvv27fX222/7E5bFVfj5lPa1luZ9u+mmm/THH3/o8ssvl9Vq1fbt2/XMM8/ovPPO8/eHO1F4eLhmzJihG2+8UT169NCQIUP0yy+/KD09XQkJCRo/fnyQ3lWvM888U6NHj9bnn3+uZs2a6aWXXtIvv/xSIAEreaeDPv3001qxYoVmzJhRpvN8+eWXeuWVVyRJf/31lz7++GMtXrxYl1xyiXr37l3k8xo2bKipU6eW6VwAAKDykFgDAABB9cADD0jyTgFs3LixOnbsqLS0NN14440lNl6/+uqrtW3bNr300kvavXu3TjvtNPXo0UMPPfSQGjZsKMlb9bRkyRLNmjVLL7/8st566y1FRkbqjDPOUEpKir/xfLt27eR0OnXfffdpwoQJat68uW6//XY1adJEo0aN8p+zR48e+uyzz/Taa6/pl19+UcOGDXXRRRfp1VdfVatWrfzj5s6dqy5duuj555/Xvffeqzp16ighIUHXX3+9Lr300mC/jQHq16+vjIwM3XPPPVqwYIH27dundu3aad68eRo5cqR/nMVi0bvvvquUlBQtWLBAYWFhuuaaa/Tggw/q0ksvLTapmV9pXmtp3rfrr79e//d//6fZs2drz549at68ua677jpNnTq12N5kI0eOVGRkpB5//HFNnjxZDRo00DXXXKMZM2b4VyMNlrZt2+qZZ57RxIkTtXHjRrVq1Uqvv/56oVOWu3TporPPPlvff/99sZWXhVm0aJEWLVokyVv9dvrpp2vixIl64IEHTqpPGwAACC3DPLGGHwAAADXKkiVLdM0112j16tUVngSs6Tp37qzGjRvr448/DnUoAACgCuD2GAAAQA1y6NChgMcej0fPPPOMYmJidP7554coqprhiy++0Pr163XDDTeEOhQAAFBFMBUUAACgBrnjjjt06NAhdevWTUeOHJHL5dInn3yixx57LCQrmtYE33zzjdatW6eZM2cqNjZW1113XahDAgAAVQSJNQAAgBrk8ssv18yZM7V06VIdPnxYbdq00TPPPKNx48aFOrRqy+l0atq0aWrXrp0WLVpU6l51AACg5qPHGgAAAAAAAFAO9FgDAAAAAAAAyoHEGgAAAAAAAFAO9FiTlJeXp59//lnR0dEyDCPU4QAAAAAAACBETNPUX3/9pRYtWigsrPiaNBJrkn7++WfFx8eHOgwAAAAAAABUEZmZmbJarcWOIbEmKTo6WpL3DYuJiQlxNAiV3Nxcffjhh+rdu7fCw8NDHQ6qGK4PFIfrA8Xh+kBJuEZQHK4PFIfrA8Xh+ii/ffv2KT4+3p8vKg6JNck//TMmJobEWi2Wm5uryMhIxcTE8EMHBXB9oDhcHygO1wdKwjWC4nB9oDhcHygO18fJK027MBYvAAAAAAAAAMqBxBoAAAAAAABQDiTWAAAAAAAAgHKgx1opeTwe5ebmhjoMVKDc3FzVqVNHhw8flsfjCXU4hbJYLKpTp06p5nkDAAAAAICKRWKtFPbv36+dO3fKNM1Qh4IKZJqmmjdvrszMzCqduIqMjFRsbKzq1q0b6lAAAAAAAKjVSKyVwOPxaOfOnYqMjFSTJk2qdMIFJycvL0/79+9XVFSUwsKq3ixp0zSVk5Oj3377TVu3blXbtm2rZJwAAAAAANQWJNZKkJubK9M01aRJE9WvXz/U4aAC5eXlKScnRxEREVU2YVW/fn2Fh4dr+/bt/lgBAAAAAEBoVM3sQRVEpRqqiqqa9AMAAAAAoLbhL3QAAAAAAACgHEisAQAAAAAAAOVAYg0nZeTIkRo4cGCFnmP+/Plq1KhRhZ4DAAAAAACgrEis1VAjR46UYRgyDEPh4eFq1aqVJk2apMOHD1daDIsXL5bFYlFWVlah+9u2bau77rqr0uIBAAAAAAAIJhJrlcTj8SgjI0OLFi1SRkaGPB5PhZ/zyiuvVHZ2tn766SfNmjVLzz//vB588MEKP6/P1VdfrVNPPVULFiwosG/VqlXavHmzRo8eXWnxAAAAAAAABBOJtUrgcrmUkJCgpKQkDR06VElJSUpISJDL5arQ89arV0/NmzdXfHy8Bg4cqF69emn58uX+/Xl5eZo+fbpatWql+vXr69xzz5XT6fTv93g8Gj16tH9/u3btlJ6eXurzh4eHa/jw4Zo/f36BfS+99JIuvvhinX322XrqqafUsWNHNWjQQPHx8RozZoz2799f5HELm36ampqqxMTEUr+2P//8U8OGDVOTJk1Uv359tW3bVvPmzSv1awMAAAAAACCxVsFcLpccDod27twZsD0rK0sOh6PCk2s+33zzjT755BPVrVvXv2369Ol6+eWXNXfuXH377bcaP368rr/+eq1cuVKSNzlltVr15ptv6rvvvtMDDzyge++9V2+88Uapzzt69Ght2rRJq1at8m/bv3+/nE6nv1otLCxMTz/9tL799lstWLBA//nPfzRp0qSTer0lvbb7779f3333nd577z19//33mjNnjk477bSTOicAAAAAAKhd6oQ6gJrM4/EoJSVFpmkW2GeapgzDUGpqqpKTk2WxWIJ+/qVLlyoqKkpHjx7VkSNHFBYWpmeffVaSdOTIET322GP66KOP1K1bN0nSGWecodWrV+v5559Xjx49FB4eroceesh/vFatWmnt2rV64403NHjw4FLF0KFDB3Xt2lUvvfSSunfvLkl64403ZJqm/va3v0nyVpv5JCQk6JFHHtFtt92m2bNnl+t1l+a17dixQ507d9YFF1zgP29eXp727dtXrnMCAAAAAIDah8RaBXK73QUq1fIzTVOZmZlyu90B0xiDJSkpSXPmzNGBAwc0a9Ys1alTR4MGDZIkbd68WQcPHtQVV1wR8JycnBx17tzZ//i5557TSy+9pB07dujQoUPKycnReeedV6Y4Ro0apfHjx+uZZ55RdHS0XnrpJV177bWKjo6WJH300UeaPn26fvjhB+3bt09Hjx7V4cOHdfDgQUVGRpb5dZfmtd1+++0aNGiQvvzyS/Xu3VsDBw5U165dy3wuAAAAAABqK4/HI7fbrezsbMXGxspms1VI4VBVxlTQCpSdnR3UcWXVoEEDtWnTRueee65eeukl/fe//9WLL74oSf4eZu+++67Wr1/v//juu+/8vchee+01TZgwQaNHj9aHH36o9evX68Ybb1ROTk6Z4vBVpr3xxhvatGmT1qxZ458Gum3bNl111VXq1KmTFi9erHXr1um5556TpCLPExYWVqAKMDc31//v0ry2vn37avv27Ro/frx+/vln9ezZUxMnTizT6wIAAAAAoLYKVT/5qoaKtQoUGxsb1HEnIywsTPfee6/uuusuDR06VB06dFC9evW0Y8cO9ejRo9DnrFmzRpdcconGjBnj37Zly5Yynzs6OlrXXnutXnrpJW3ZskVnnnmmbDabJGndunXKy8vTzJkzFRbmzfOW1MOtSZMm+uabbwK2rV+/XuHh4ZJUqtfmO86IESM0YsQI2Ww2TZw4Uffff3+ZXx8AAAAAALWJr5/8iUUvvn7yTqdTdrs9RNFVLirWKpDNZpPVapVhGIXuNwxD8fHx/iRTRbv22mtlsVj03HPPKTo6WhMmTND48eO1YMECbdmyRV9++aWeeeYZLViwQJLUtm1bffHFF/rggw/0448/6v7779fnn39ernOPHj1an3zyiebOnatRo0b5t7dp00a5ubl65pln9NNPP+lf//qX5s6dW+yxLr/8cn3xxRd6+eWXtWnTJj344IMBibbSvLYHHnhA//73v7V582Z9++23Wrp0qc4666xyvTYAAAAAAGqLkvrJS95e6h6Pp7JDCwkSaxXIYrEoPT1dkgok13yP09LSKm3+cZ06dTRu3Dg98cQTOnDggB5++GHdf//9mj59us466yxdeeWVevfdd9WqVStJ0q233iq73a7rrrtOF198sX7//feA6rWyuOyyy9SuXTvt27dPN9xwg3/7ueeeq6eeekozZszQOeeco1dffVXTp08v9lh9+vTR/fffr0mTJunCCy/UX3/9FXBMSSW+trp162rKlCnq1KmTunfvLovFooULF5brtQEAAAAAUFuUpZ98bWCYhaUYa5l9+/apYcOG2rt3r2JiYgL2HT58WFu3blWrVq0UERFRruO7XC6lpKQEXHjx8fFKS0urNaWR1YFvVdCYmBj/tNSqKBjXJMouNzdXy5YtU79+/fzTjgEfrg8Uh+sDJeEaQXG4PlAcrg8Up6Kuj0WLFmno0KEljlu4cKGGDBkStPNWpuLyRCeix1olsNvtSk5OrvUrZQAAAAAAgOqtKvWTrwpIrFUSi8WixMTEUIcBAAAAIAQ8Hg832gHUCL5+8llZWYX2WTMMQ1artdL6yYda1Z3vBgAAAAA1gMvlUkJCgpKSkjR06FAlJSUpISFBLpcr1KEBQJlVtX7yoUZiDQAAAAAqiMvlksPhKNDoOysrSw6Hg+QagGrJbrfL6XQqLi4uYLvVapXT6axV/eSZCgoAAAAAFcDj8SglJaXQqVKmacowDKWmpio5ObnWVHYAqDnoJ+9FYg0AAAAAKoDb7S5QqZafaZrKzMyU2+2mHzOAaol+8kwFBQAAAIAKkZ2dHdRxAICqh8QaAAAAAFSA2NjYoI4DAFQ9JNYAAAAAoALYbDZZrdYCq+b5GIah+Ph42Wy2So4MABAsJNZw0kaOHKmBAwf6HycmJio1NbXS48jIyJBhGNqzZ0+FnscwDC1ZsqRCzwEAAIDqz2KxKD09XZIKJNd8j9PS0mpdo28AqElIrNVQI0eOlGEYMgxDdevWVZs2bTRt2jQdPXq0ws/tcrn08MMPl2psZSXDcnJydNppp+nxxx8vdP/DDz+s2NhY5ebmVmgcAAAAqF3sdrucTqfi4uICtlutVjmdTtnt9hBFBgAIBlYFrSwej+R2S9nZUmysZLNJFXxn6sorr9S8efN05MgRLVu2TGPHjlV4eLimTJlSYGxOTo7q1q0blPM2btw4KMcJprp16+r666/XvHnzdM899wTsM01T8+fP1/DhwxUeHh6iCAEAAFBT2e12JScny+12Kzs7W7GxsbLZbFSqAUANQMVaZXC5pIQEKSlJGjrU+zkhwbu9AtWrV0/NmzdXy5Ytdfvtt6tXr156++23JR2fvvnoo4+qRYsWateunSQpMzNTgwcPVqNGjdS4cWMlJydr27Zt/mN6PB7dddddatSokU499VRNmjRJpmkGnPfEqaBHjhzR5MmTFR8fr3r16qlNmzZ68cUXtW3bNiUlJUmSTjnlFBmGoZEjR0qS8vLyNH36dLVq1Ur169fXueeeK6fTGXCeZcuW6cwzz1T9+vWVlJQUEGdhRo8erR9//FGrV68O2L5y5Ur99NNPGjVqlL788kv17t1bp512mho2bKgePXroyy+/LPKYhVXcrV+/XoZhBMSzevVq2Ww21a9fX/Hx8brzzjt14MAB//7Zs2erbdu2ioiIULNmzeRwOIp9LQAAAKheLBaLEhMTNWTIECUmJpJUA4AagsRaRXO5JIdD2rkzcHtWlnd7BSfX8qtfv75ycnL8jz/++GNt3LhRy5cv19KlS5Wbm6s+ffooOjpabrdba9asUVRUlK688kr/82bOnKn58+frpZde0urVq/XHH3/orbfeKva8N9xwgxYtWqSnn35a33//vZ5//nlFRUUpPj5eixcvliRt3LhR2dnZ/h4U06dP18svv6y5c+fq22+/1fjx43X99ddr5cqVkrwJQLvdrgEDBmj9+vW66aabClSinahjx4668MIL9dJLLwVsnzdvni655BK1b99e+/fv1w033KDVq1fr008/Vdu2bdWvXz/99ddfZXuz89myZYuuvPJKDRo0SBs2bNDrr7+u1atXa9y4cZKkL774QnfeeaemTZumjRs36v3331f37t3LfT4AAAAAAFA5mApakTweKSVFOqGiS5J3m2FIqalScnKFTgs1TVMff/yxPvjgA91xxx3+7Q0aNNALL7zgnwL6yiuvKC8vTy+88IK/meq8efPUqFEjZWRkqHfv3kpLS9OUKVP8vSDmzp2rDz74oMhz//jjj3rjjTe0fPly9erVS5J0xhln+Pf7po02bdpUjRo1kuStcHvsscf00UcfqVu3bv7nrF69Ws8//7x69OihOXPmqHXr1po5c6YkqV27dvr66681Y8aMYt+L0aNHa8KECXr66acVFRWlv/76S06nU08//bQkqXv37oqJiVFYmDfn/H//939q1KiRVq5cqauuuqoU73ZB06dP17Bhw/xVfG3bttXTTz/tfx07duxQgwYNdNVVVyk6OlotW7ZU586dy3UuAAAAAABQeahYq0hud8FKtfxMU8rM9I6rAEuXLlVUVJQiIiLUt29fXXfddZo6dap/f8eOHQP6qn311VfavHmzoqOjFRUVpaioKDVu3FiHDx/Wli1btHfvXmVnZ+viiy/2P6dOnTq64IILioxh/fr1slgs6tGjR6nj3rx5sw4ePKgrrrjCH0dUVJRefvllbdmyRZL0/fffB8QhyZ+EK86QIUPk8Xj0xhtvSJJef/11hYWF6brrrpMk/frrr7rlllvUtm1bNWzYUDExMdq/f7927NhR6vhP9NVXX2n+/PkBr6VPnz7Ky8vT1q1bdcUVV6hly5Y644wzNHz4cL366qs6ePBguc8HAAAAAAAqBxVrFSk7O7jjyigpKUlz5sxR3bp11aJFC9WpE/jlbtCgQcDj/fv3q0uXLnr11VcLHKtJkybliqF+/fplfs7+/fslSe+++26B1ZPq1atXrjh8YmJi5HA4NG/ePI0aNUrz5s3T4MGDFRUVpby8PI0ZM0Z79+5Venq6WrZsqXr16qlbt24BU2jz81W25e8zd+LKovv379ett96qO++8s8DzTz/9dNWtW1dffvmlMjIy9OGHH+qBBx7Q1KlT9fnnn/ur+AAAAAAAQNVDYq0ixcYGd1wZNWjQQG3atCn1+PPPP1+vv/66mjZtqpiYmELHxMbG6r///a+/B9jRo0e1bt06nX/++YWO79ixo/Ly8rRy5Ur/VND8fBVzHo/Hv61Dhw6qV6+eduzYUWSl21lnneVfiMHn008/LflFyjsdNDExUUuXLtUnn3yiJ5980r/vv//9r5599ln169dPkreX2+7du4s8li/hmJ2drVNOOUWSt0ovv/PPP1/fffddsV+LOnXqqFevXurVq5cefPBBNWrUSP/5z39Yfh0AAAAAgCqMqaAVyWaTrFZvL7XCGIYUH+8dVwUMGzZMp512mn8p8K1btyojI0N33nmndh6b0pqSkqLHH39cS5Ys0Q8//KAxY8YErIh5ooSEBI0YMUKjRo3SkiVL/Mf0TcVs2bKlDMPQ0qVL9dtvv2n//v2Kjo7WhAkTNH78eC1YsEBbtmzRl19+qWeeeUYLFiyQJN12223atGmTJk6cqI0bN2rhwoWaP39+qV5n9+7d1aZNG91www1q3769LrnkEv++M844Q6+88oq+//57/fe//9WwYcOKrbpr06aN4uPjNXXqVG3atEnvvvuuv++bz+TJk/XJJ59o3LhxWr9+vTZt2qR///vf/sULli5dqqefflrr16/X9u3b9fLLLysvL8+/UisAAAAAAKiaSKxVJItFOrbKZYHkmu9xWlqFLlxQFpGRkVq1apVOP/102e12nXXWWRo9erQOHz7sr2C7++67NXz4cI0YMULdunVTdHS0rrnmmmKPO2fOHDkcDo0ZM0bt27fXzTffrAMHDkiS4uLi9NBDD+mee+5Rs2bN/Mmmhx9+WPfff7+mT5+us846S1deeaXeffddtWrVSpJ3CuXixYu1ZMkSnXvuuZo7d64ee+yxUr1OwzA0atQo/fnnnxo1alTAvmeeeUZ79uzR+eefr+HDh+vOO+9U06ZNizxWeHi4Fi1apB9++EGdOnXSjBkz9MgjjwSM6dSpk1auXKkff/xRNptNnTt31gMPPKAWLVpIkho1aiSXy6XLL79cZ511lubOnatFixbp7LPPLtXrAQAAAAAAoWGYZmFLVtYu+/btU8OGDbV3794CUyAPHz6srVu3qlWrVoqIiCjfCVwu7+qg+RcyiI/3JtWY6ldl5OXlad++fQGrglZFQbkmUWa5ublatmyZ+vXrp/Dw8FCHgyqG6wPF4fpASbhGUByuDxSH6wPF4foov+LyRCeix1plsNul5GTv6p/Z2d6eajZblalUAwAAAAAAQNmRWKssFouUmBjqKAAAAAAAABAkVXe+GwAAAAAAAFCFkVgDAAAAAAAAyoHEGgAAAAAAAFAOJNYAAAAAAACAciCxBgAAAAAAAJQDq4ICAAAA1ZjH45Hb7VZ2drZiY2Nls9lksVhCHRYAALUCiTUAAACgmnK5XEpJSdHOnTv926xWq9LT02W320MYGQAAtQNTQVGtbNu2TYZhaP369SGNIyEhQWlpaSGNAQAA1G4ul0sOhyMgqSZJWVlZcjgccrlcIYoMAIDag8RaDTVy5EgZhiHDMBQeHq5WrVpp0qRJOnz4cKhDOynx8fHKzs7WOeecU6HnmTp1qs4777wi93/++ee65ZZbKjQGAACAong8HqWkpMg0zQL7fNtSU1Pl8XgqOzQAAGoVEms12JVXXqns7Gz99NNPmjVrlp5//nk9+OCDFXpOj8ejvLy8Cju+xWJR8+bNVadOaGcxN2nSRJGRkSGNAQAA1F5ut7tApVp+pmkqMzNTbre7EqMCAKD2CWlibc6cOerUqZNiYmIUExOjbt266b333vPvP3z4sMaOHatTTz1VUVFRGjRokH755ZeAY+zYsUP9+/dXZGSkmjZtqokTJ+ro0aMVFrNpSgcOhOajkBuSxapXr56aN2+u+Ph4DRw4UL169dLy5cv9+/Py8jR9+nS1atVK9evX17nnniun0xlwjLfffltt27ZVRESEkpKStGDBAhmGoT179kiS5s+fr0aNGuntt99Whw4dVK9ePe3YsUNHjhzRhAkTFBcXpwYNGujiiy9WRkaG/7jbt2/XgAEDdMopp6hBgwY6++yztWzZMknSn3/+qWHDhqlJkyaqX7++2rZtq3nz5kkqfCroypUrddFFF6levXqKjY3VPffcE3ANJCYm6s4779SkSZPUuHFjNW/eXFOnTi3bm3mCE6eCGoahF154Qddcc40iIyPVtm1bvf322wHP+eabb9S3b19FRUWpWbNmGj58uHbv3n1ScQAAgNopOzs7qOMAAED5hDSxZrVa9fjjj2vdunX64osvdPnllys5OVnffvutJGn8+PF655139Oabb2rlypX6+eefA5qwejwe9e/fXzk5Ofrkk0+0YMECzZ8/Xw888ECFxXzwoBQVFZqPgwfLH/c333yjTz75RHXr1vVvmz59ul5++WXNnTtX3377rcaPH6/rr79eK1eulCRt3bpVDodDAwcO1FdffaVbb71Vf//73wt5Tw5qxowZeuGFF/Ttt9+qadOmGjdunNauXavXXntNGzZs0LXXXqsrr7xSmzZtkiSNHTtWR44c0apVq/T1119rxowZioqKkiTdf//9+u677/Tee+/p+++/15w5c3TaaacV+rqysrLUr18/XXjhhfrqq680Z84cvfjii3rkkUcCxi1YsEANGjTQf//7Xz3xxBOaNm1aQJIxGB566CENHjxYGzZsUL9+/TRs2DD98ccfkqQ9e/bo8ssvV+fOnfXFF1/o/fff1y+//KLBgwcHNQYAAFA7xMbGBnUcAAAoJ7OKOeWUU8wXXnjB3LNnjxkeHm6++eab/n3ff/+9Kclcu3ataZqmuWzZMjMsLMzctWuXf8ycOXPMmJgY88iRI6U+5969e01J5t69ewvsO3TokPndd9+Zhw4dMk3TNPfvN01v7Vjlf+zfX/r3ccSIEabFYjEbNGhg1qtXz5RkhoWFmU6n0zRN0zx8+LAZGRlpfvLJJwHPGz16tDlkyBDTNE1z8uTJ5jnnnBOw/+9//7spyfzzzz9N0zTNefPmmZLM9evX+8ds377dtFgsZlZWVsBze/bsaU6ZMsU0TdPs2LGjOXXq1EJjHzBggHnjjTcWum/r1q2mJPN///ufaZqmee+995rt2rUz8/Ly/GOee+45MyoqyvR4PKZpmmaPHj3Myy67LOA4F154oTl58uSAbR6Px/zzzz9Nj8djPvjgg+a5555baAymaZotW7Y0Z82a5X8sybzvvvv8j/fv329KMt977z3TNE3z4YcfNnv37h1wjMzMTFOSuXHjxiLPU5gTr0lUjpycHHPJkiVmTk5OqENBFcT1geJwfaAk5blGjh49alqtVtMwDFNSgQ/DMMz4+Hjz6NGjFRg5KgM/Q1Acrg8Uh+uj/IrLE50otI2q8vF4PHrzzTd14MABdevWTevWrVNubq569erlH9O+fXudfvrpWrt2rbp27aq1a9eqY8eOatasmX9Mnz59dPvtt+vbb79V586dCz3XkSNHdOTIEf/jffv2SZJyc3OVm5sbMDY3N1emaSovL095eXmKiJCODa90ERFSaduXmaapxMREzZ49WwcOHFBaWprq1Kmja665Rnl5efrxxx918OBBXXHFFQHPy8nJUefOnZWXl6cffvhBF1xwQUDPtAsuuECS/O9HXl6e6tatq3POOcc/7quvvpLH49GZZ54ZcOwjR46ocePGysvL07hx4zR27Fh9+OGH6tmzp+x2uzp16iRJuvXWW3Xttdfqyy+/1BVXXKHk5GRdcskl/vPmP/93332nrl27yjRNf6Pebt26af/+/dqxY4dOP/10SVLHjh0DXkfz5s31yy+/BGzzPT//sYrrF+e7Lnzyvwf169dXTEyMdu3apby8PK1fv14rVqzwV+Xlt2nTJrVp06bI85woLy9PpmkqNzdXFoul1M/DyfH9bDjxZwQgcX2geFwfKEl5r5H09HQNHz5c0vHfYyRviwpJSktL8//OhOqLnyEoDtcHisP1UX5lec9Cnlj7+uuv1a1bNx0+fFhRUVF666231KFDB61fv15169ZVo0aNAsY3a9ZMu3btkiTt2rUrIKnm2+/bV5Tp06froYceKrD9ww8/LNCQvk6dOmrevLn279+vnJyc8rzEoPnrr9KPzc3NVb169dS0aVNJ0qxZs3TZZZfpueee0/Dhw/296l5//fUCUwTq1q2rffv26ejRo8rNzfUnHiXvtE9vLH8pLCxMhw8fVkREhP7KF9xvv/0mi8WiFStWFEj8NGjQQPv27dPgwYN1ySWX6MMPP9SKFSv0+OOP65FHHtEtt9yiSy+9VBs2bNDy5cu1YsUKXXHFFbrpppv08MMPa//+/ZKkAwcOFBmjb8xff/3lH2OaZsAYj8ejI0eOBGw7/j7/pSNHjsjj8RS6X/Imtw4fPhyw/+jRowXGHzx4UPv27dOePXt05ZVXFtrbrVmzZkWepzA5OTk6dOiQVq1aVaH9BFG4YE8hRs3C9YHicH2gJGW9RiwWixYuXFjsGF8PW1R//AxBcbg+UByuj7I7WIZeXCFPrLVr107r16/X3r175XQ6NWLECH+Pr4oyZcoU3XXXXf7H+/btU3x8vHr37q2YmJiAsYcPH1ZmZqaioqIUERFRoXEFU3h4uOrUqRPwev7+979rwoQJGjVqlC688ELVq1dPu3fvVt++fQs9xtlnn6333nsv4BjfffedJCk6OloxMTGKiIiQYRgBYy655BJ5PB4dPHhQNputyBg7dOigDh06KDU1Vffee69eeeUVTZgwQZIUExOjW2+9Vbfeequef/55TZ48Wenp6f6KrwYNGigmJkYdO3aUy+VSdHS0/+7shg0bFB0drbPOOkthYWGqU6eO6tatGxBjnTp1FB4eHrDNNE399ddfio6OVr169WSxWApcDz5hYWGKiIgI2O+rUvMxDMM/5qKLLpLL5dI555xz0iuaHj58WPXr11f37t2r1TVZ3eXm5mr58uW64oorFB4eHupwUMVwfaA4XB9l884772jy5MnKysryb4uLi9OMGTM0YMCAEEZWcU72GvF4PFq7dq127dql5s2bq1u3blS11yD8DEFxuD5QHK6P8itL8UvIE2t169b1T4Pr0qWLPv/8c6Wnp+u6665TTk6O9uzZE1C19ssvv6h58+aSvNP5Pvvss4Dj+SqxfGMKU69ePdWrV6/A9vDw8AIXm8fjkWEYCgsLU1hYSNd6KBPDMPxx+1x33XWaPHmy5syZowkTJmjChAm6++67JUmXXXaZ9u7dqzVr1igmJkYjRozQbbfdplmzZmnKlCkaPXq01q9frwULFkjy3iHN/57kP0/79u01bNgwjRw5UjNnzlTnzp3122+/6eOPP1anTp3Uv39/paamqm/fvjrzzDP1559/KiMjw58Ie+CBB9SlSxedffbZOnLkiJYtW+bfl/98YWFhGjt2rNLT05WSkqJx48Zp48aNmjp1qu66666ABNaJ70Vh749vmoRv36FDh7Rhw4aA9zU6OlqtW7cu9JiFXSO+bePGjdMLL7ygYcOG+Vcn3bx5s1577TW98MILZfrlNywsTIZhFHq9ouLxvqM4XB8oDtdHyVwulxwOR8C0RknasmWLHA6HnE5nwEJWNU15r5Hw8HAlJSVVQESoSvgZguJwfaA4XB9lV5b3q8plivLy8nTkyBF16dJF4eHh+vjjj/37Nm7cqB07dqhbt26SvL20vv76a/3666/+McuXL1dMTIw6dOhQ6bFXdXXq1NG4ceP0xBNP6MCBA3r44Yd1//33a/r06TrrrLN05ZVX6t1331WrVq0kSa1atZLT6ZTL5VKnTp00Z84c/6qghSUm85s3b55uuOEG3X333WrXrp0GDhyozz//3N/zzOPxaOzYsf7znnnmmZo9e7Ykb7J1ypQp6tSpk7p37y6LxaLXXnut0PPExcVp2bJl+uyzz3Tuuefqtttu0+jRo3Xfffed9Pv1448/qnPnzgEft956a7mO1aJFC61Zs0Yej0e9e/dWx44dlZqaqkaNGlWrhC0AABXF4/EoJSWlQFJNOt4/LDU1VR6Pp7JDAwAAKJJhFvbbSyWZMmWK+vbtq9NPP11//fWXFi5cqBkzZuiDDz7QFVdcodtvv13Lli3T/PnzFRMTozvuuEOS9Mknn0jy/gJ23nnnqUWLFnriiSe0a9cuDR8+XDfddJMee+yxUsexb98+NWzYUHv37i10KujWrVvVqlUrpt1JevTRRzV37lxlZmaGOpSgy8vL0759+xQTE1Olk11ck6GRm5urZcuWqV+/ftztQQFcHygO10fpZGRklKrqasWKFUpMTKz4gCoR1wiKw/WB4nB9oDhcH+VXXJ7oRCGdCvrrr7/qhhtuUHZ2tho2bKhOnTr5k2qSt+F+WFiYBg0apCNHjqhPnz7+qibJOx1x6dKluv3229WtWzc1aNBAI0aM0LRp00L1kmqc2bNn68ILL9Spp56qNWvW6Mknn9S4ceNCHRYAAKhhsrOzgzoOAACgMoQ0sfbiiy8Wuz8iIkLPPfecnnvuuSLHtGzZktWOKtCmTZv0yCOP6I8//tDpp5+uu+++W1OmTAl1WAAAoIY5cZXykx0HAABQGUK+eAGqtlmzZmnWrFmhDgMAANRwNptNVqtVWVlZhfZZMwxDVqu12BXHAQAAKlvVbSQFAACAWsNisSg9PV2SN4mWn+9xWlpamVbSBgAAqGgk1kophGs8AAG4FgEANZXdbpfT6VRcXFzAdqvVKqfTKbvdHqLIAAAACsdU0BL47orm5OSofv36IY4GkA4ePChJrOoCAKiR7Ha7kpOT5Xa7lZ2drdjYWNlsNirVAABAlURirQR16tRRZGSkfvvtN4WHhyssjCK/miovL085OTk6fPhwlfw6m6apgwcP6tdff1WjRo34AwMAUGNZLBYlJiaGOgwAAIASkVgrgWEYio2N1datW7V9+/ZQh4MKZJqmDh06pPr16xfo7VKVNGrUSM2bNw91GAAAAAAA1Hok1kqhbt26atu2rXJyckIdCipQbm6uVq1ape7du1fZaZbh4eFUqgEAAAAAUEWQWCulsLAwRUREhDoMVCCLxaKjR48qIiKiyibWAAAAAABA1VH1GkkBAAAAAAAA1QCJNQAAAAAAAKAcSKwBAAAAAAAA5UBiDQAAAAAAACgHEmsAAAAAAABAOZBYAwAAAAAAAMqBxBoAAAAAAABQDiTWAAAAAAAAgHIgsQYAAAAAAACUA4k1AAAAAAAAoBzqhDoAAAAAAIE8Ho/cbreys7MVGxsrm80mi8US6rAAAMAJSKwBAAAAVYjL5VJKSop27tzp32a1WpWeni673R7CyAAAwImYCgoAAABUES6XSw6HIyCpJklZWVlyOBxyuVwhigwAABSGxBoAAABQBXg8HqWkpMg0zQL7fNtSU1Pl8XgqOzQAAFAEEmsAAABAETwejzIyMrRo0SJlZGRUaFJr7dq1BSrV8jNNU5mZmXK73RUWAwAAKBt6rAEAAACFqOxeZ7t27SrVuOzs7KCfGwAAlA8VawAAAMAJQtHrrHnz5qUaFxsbG/RzAwCA8iGxBgAAAOQTql5n3bp1k9VqlWEYhe43DEPx8fGy2WxBPS8AACg/EmsAAABAPm63OyS9ziwWi9LT0yWpQHLN9zgtLU0WiyWo5wUAAOVHYg0AAADIp7Q9zCqi15ndbpfT6VRcXFzAdqvVKqfTWSG93QAAQPmxeAEAAACQT2l7mFVUrzO73a7k5GS53W5lZ2crNjZWNpuNSjUAAKogEmsAAABAPjabTVarVVlZWYX2WTMMQ1artUJ7nVksFiUmJlbY8QEAQHAwFRQAAADIh15nAACgtEisAQAAIGg8Ho8yMjK0aNEiZWRkBH3lzMpCrzMAAFAaTAUFAABAULhcLqWkpASsqGm1WpWenl4tE1H0OgMAhJLH4+H/oGqAxBoAAABOmsvlksPhKNCTLCsrSw6Ho9pWedHrDAAQCjXtZlVNxlRQAAAAnBSPx6OUlJRCG/37tqWmplbbaaEAAFQm382q/Ek16fjNKpfLFaLIUBgSawAAADgpbre7wC//+ZmmqczMTLnd7kqMCgCA6oebVdUPiTUAAACclOzs7KCOAwCgtuJmVfVDYg0AAAAnJTY2NqjjAACorbhZVf2QWAMAAMBJsdlsslqtMgyj0P2GYSg+Pl42m62SIwMAoHrhZlX1Q2INAAAAJ8VisSg9PV2SCiTXfI/T0tJksVgqPTYAAKoTblZVPyTWAAAAcNLsdrucTqfi4uICtlutVjmdTtnt9hBFBgBA9cHNquqnTqgDAAAAQM1gt9uVnJwst9ut7OxsxcbGymaz8ct/DeXxePhaA0AF8N2sSklJCVjIwGq1Ki0tjZtVVQyJNQAAAASNxWJRYmJiqMNABXO5XIX+wZeens4ffAAQBNysqj5IrAEAAAAoNZfLJYfDIdM0A7ZnZWXJ4XAw9RcAgoSbVdUDPdYAAAAAlIrH41FKSkqBpJok/7bU1FR5PJ7KDg0AgJAgsQYAAACgVNxud8D0zxOZpqnMzEy53e5KjAoAgNAhsQYAAACgVLKzs4M6DgCA6o7EGgAAAIBSiY2NDeo4AACqOxJrAAAAAErFZrPJarXKMIxC9xuGofj4eNlstkqODACA0CCxBgAAAKBULBaL0tPTJalAcs33OC0tTRaLpdJjAwAgFEisAQAAACg1u90up9OpuLi4gO1Wq1VOp1N2uz1EkQEAUPnqhDoAAAAAANWL3W5XcnKy3G63srOzFRsbK5vNRqUaAKDWIbEGAAAAoMwsFosSExNDHQYAFMvj8XATABWKxBoAAAAAAKhxXC6XUlJStHPnTv82q9Wq9PR0pq0jaOixBgAAAAAAahSXyyWHwxGQVJOkrKwsORwOuVyuEEWGmobEGgAAAAAAqDE8Ho9SUlJkmmaBfb5tqamp8ng8lR0aaiASawAAAAAAoMZwu90FKtXyM01TmZmZcrvdlRgVaioSawAAAAAAoMbIzs4O6jigOCTWAAAAAABAjREbGxvUcUBxSKwBAAAAAIAaw2azyWq1yjCMQvcbhqH4+HjZbLZKjgw1EYk1AAAAAABQY1gsFqWnp0tSgeSa73FaWposFkulx4aah8QaAAAAAACoUex2u5xOp+Li4gK2W61WOZ1O2e32EEWGmqZOqAMAAAAAAAAINrvdruTkZLndbmVnZys2NlY2m41KNQQViTUAAAAAAFAjWSwWJSYmhjoM1GBMBQUAAAAAAADKgYo1AABQpXg8HqZsAAAAoFogsQYAAKoMl8ullJQU7dy507/NarUqPT2dJsMAAACocpgKCgAAqgSXyyWHwxGQVJOkrKwsORwOuVyuEEUGAAAAFI7EGgAACDmPx6OUlBSZpllgn29bamqqPB5PZYcGAACAong8UkaGtGiR93Mt/F2NxBoAAAg5t9tdoFItP9M0lZmZKbfbXYlRAQAAoEgul5SQICUlSUOHej8nJHi31yIk1gAAQMhlZ2cHdRwAAAAqkMslORzSiTdGs7K822tRco3EGgAACLnY2NigjgMAAEAF8XiklBTpWLuOPBn6VBcrV3X825SaWmumhZJYAwAAIWez2WS1WmUYRqH7DcNQfHy8bDZbJUcGAACAAG63ju7MVoZ66A49rdO1Q930qVapu3e/aUqZmVItaeFRJ9QBAAAAWCwWpaeny+FwyDCMgEUMfMm2tLQ0WSyWUIUIAABQq+XkSB9/LC1+Il7/VrZ2q4l/X5T+0na1DHxCLWnhQWINQEh4PB653W5lZ2crNjZWNpuNP5iBWs5ut8vpdColJSVgIQOr1aq0tDTZ7fYQRgcAAFD7HDwoffCBtHix9M470r59ktRaktRYvytZ/5ZdLvXSR4rQkcAn15IWHiTWAFQ6l8tV6B/O6enp/OEM1HJ2u13Jyckk3gEAAEJk3z5p6VLv+gPvvedNrvk0by5dMzBPg5xD1X23S+HKLXgAw5CsVqmWtPAgsQagUrlcLjkcjoBpXpKUlZUlh8Mhp9NJcg2o5SwWixITE0MdBgAAQK2xe7f09tveyrSPPvJO+/Rp2VIaNEiy26Vu3aSwsDDpisGS4w1JxvEFCyRvUk2S0tKkWnJjlMQagErj8XiUkpJSIKkmSaZpyjAMpaamKjk5meoUAAAAAKhAWVnSkiXeyrSVKwMX8WzXzptMGzRI6tz5eL7Mz26XnE7v6qD5ZiLJavUm1WpRsURIVwWdPn26LrzwQkVHR6tp06YaOHCgNm7cGDAmMTFRhmEEfNx2220BY3bs2KH+/fsrMjJSTZs21cSJE3X06NHKfCkASsHtdgdM/zyRaZrKzMyUu5asHgMAAAAAlWnrVukf/5AuucSbAxs3TvrPf7xJtc6dpYcflr79VvrhB+nRR6Xzzy8kqeZjt0vbtkkrVkgLF3o/b91aq5JqUogr1lauXKmxY8fqwgsv1NGjR3Xvvfeqd+/e+u6779SgQQP/uJtvvlnTpk3zP46MjPT/2+PxqH///mrevLk++eQTZWdn64YbblB4eLgee+yxSn09AIqXXcpVYUo7DgAAAABQvO+/907zdLmk//0vcF+3bt48mN0unXFGOQ5usUi1vIVHSBNr77//fsDj+fPnq2nTplq3bp26d+/u3x4ZGanmzZsXeowPP/xQ3333nT766CM1a9ZM5513nh5++GFNnjxZU6dOVd26dSv0NQAovdhSrgpT2nEAAAAAgECm6U2gvflmmF555XLt3Bnu3xcWJvXo4Z3iOXCgFBcXujhriirVY23v3r2SpMaNGwdsf/XVV/XKK6+oefPmGjBggO6//35/1dratWvVsWNHNWvWzD++T58+uv322/Xtt9+qc+fOBc5z5MgRHTlyfBnYfd71YpWbm6vc3EJWtECt4Pvacw1UnK5du6pNmzb6+eefC+2zZhiG4uLi1LVr1yr3deD6QHG4PlAcrg+UhGsExeH6QHG4Pmo4j0dau1batcu7HGe3bkUuCJCXJ/33v4beesvQkiVh2rbNkGSRFK3wcFO9epkaODBPAwaYOu2048/j0ilcWb6nDLOwv25DIC8vT1dffbX27Nmj1atX+7f/3//9n1q2bKkWLVpow4YNmjx5si666CK5XC5J0i233KLt27frgw8+8D/n4MGDatCggZYtW6a+ffsWONfUqVP10EMPFdi+cOHCgGmmAAAAAAAAVZHHY+ibb07Vp5+20KefxurPPyP8++rWParzz/9V3br9rAsu+EUNGtCHviwOHjyooUOHau/evYqJiSl2bJWpWBs7dqy++eabgKSa5E2c+XTs2FGxsbHq2bOntmzZotatW5frXFOmTNFdd93lf7xv3z7Fx8erd+/eJb5hqLlyc3O1fPlyXXHFFQoPDy/5CSi3d955R5MnT1ZWVpZ/m9Vq1eOPP64BAwaEMLKicX2gOFwfKA7XB0rCNYLicH2gOFwfNdQ770jDh3vndOZnGDpi1tXH49/VW1ld9c47hv744/jKAjExpvr391am9eljKjy8kZYv/5zroxx8MxtLo0ok1saNG6elS5dq1apVslqtxY69+OKLJUmbN29W69at1bx5c3322WcBY3755RdJKrIvW7169VSvXr0C28PDw7nYwHVQCex2u5KTk+V2u5Wdna3Y2FjZbDZZiihrrkq4PlAcrg8Uh+sDJeEaQXG4PlAcro8axOORUlKkgwf9mw4oUu+pr1yya6mu0l+PHS8IOu00b680u13q2dNQ3bqGpDBJx6d5cn2UXVner5Am1kzT1B133KG33npLGRkZatWqVYnPWb9+vaTjzc27deumRx99VL/++quaNm0qSVq+fLliYmLUoUOHCosdwMmxWCxKrOWrxwAAAABAALdb2rlT63WuOmt9oUNaKEv2a0zZ77DKZpPqVImSqdorpG//2LFjtXDhQv373/9WdHS0du3aJUlq2LCh6tevry1btmjhwoXq16+fTj31VG3YsEHjx49X9+7d1alTJ0lS79691aFDBw0fPlxPPPGEdu3apfvuu09jx44ttCoNAAAAAACgqlmxQrr88kRJhbfCn6AnNUiLdZE+U9i1r0pJQyo1PhQupIm1OXPmSFKBqpV58+Zp5MiRqlu3rj766COlpaXpwIEDio+P16BBg3Tffff5x1osFi1dulS33367unXrpgYNGmjEiBGaNm1aZb4UAAAAAACAMnE6pWuvLX7MVD2oBzRNRv6Nx2bxIfRCPhW0OPHx8Vq5cmWJx2nZsqWWLVsWrLAAAACAGsvj8VTLPqcAUFM895w0blzxY57QJE3UkwV3GIZktUo2W8UEhzILC3UAAAAAACqHy+VSQkKCkpKSNHToUCUlJSkhIUEulyvUoQFAjWWa0n33eXNihlF0Um3BAu9Yc7FLE41/eAfn53ucliZxQ6TKILEGAAAA1AIul0sOh0M7d+4M2J6VlSWHw0FyDQCCyOORRo3y5sLCwqRHHy183LJlx5JppnTDDcc22u3eOaJxcYGDrVbvdru9QmNH2bB2BAAAAFDDeTwepaSkFNqKxTRNGYah1NRUJScnMy0UAMrpyBFp4EDp/feLH/fpp9LFF5dwMLtdSk72rhKane3tqWazUalWBZFYAwAAAGo4t9tdoFItP9M0lZmZKbfbXWBhMQBA0fbulXr0kL76qvhxP/wgtWtXxoNbLBI/k6s8EmsAAABADZednR3UcQBQm2VnS+eeK/32W9FjTj1V2rBBatGi8uJCaNBjDQAAAKjhYmNjgzoOAGqbTZuOLz7QokXhSbVzzpH+/NPbL233bpJqtQWJNQAAAKCGs9lsslqtMk5cYe4YwzAUHx8vm81WyZEBQNX1xRfHk2lnnln4mN69pUOHvMm0r7+WGjWq1BBRBZBYAwAAAGo4i8Wi9PR0SSqQXPM9TktLY+ECADWPxyNlZEiLFnk/ezzFDv/ww+PJtAsvLHzMiBHS0aPeZNoHH0gREUGPGtUIiTUAAACgFrDb7XI6nYqLiwvYbrVa5XQ6ZbfbQxQZAFQQl0tKSJCSkqShQ72fExK82/N59dXjybQ+fQo/1JQpUl6eN5k2fz6Lc+I4Fi8AAAAAagm73a7k5GS53W5lZ2crNjZWNpuNSjUANY/LJTkc3kxYfllZksOhp25Yr7sXdCr2EOnp0p13VmCMqBFIrAEAAAC1iMViUWJiYqjDAICK4/FIKSkBSTVT0kQ9qZnmBO+GBYU/ddEi6W9/q/gQUXOQWAMAAAAAADWH2y3t3Kkchaueckoc/tFHUs+elRAXaiR6rAEAAAAAgBph717JSEqUIbPYpNo6nS9z4SKZJkk1nBwq1gAAAAAAQLWVmSmdfnrJ4zartVrrp+MbYmMrLijUGlSsAQAAAACAamXDhuMreRaXVNuoM2XKkCnjeFLNMKT4eMlmq5xgUaNRsQYAAIAK5fF4WIUSAHDSli+Xevcuedwvv0hNVx9bFVTyrlzgYxjez2lpEv8XIQioWAMAAECFcblcSkhIUFJSkoYOHaqkpCQlJCTI5XKFOjQAQDWwYMHxyrTikmoHDngXATVNqWlTSXa75HRKcXGBA61W73a7vULjRu1BxRoAAAAqhMvlksPhkGmaAduzsrLkcDjkdDpl5w8bAMAJHnpImjq1+DFhYVJOTglFZ3a7lJzsXSU0O9vbU81mo1INQUViDQAAAEHn8XiUkpJSIKkmSaZpyjAMpaamKjk5mWmhAACNGCG9/HLxY84553hvtVKzWKTExJMJDSgWU0EBAAAQdG63Wzt37ixyv2mayszMlNvtrsSoAABVyUUXHZ/mWVRSbdCg41M8v/66jEk1oBJQsQYAAICgy87ODuq46oKFGgCgaHl5UnS0dPBg8eOmTJEee6xyYgJOFok1AAAABF1sbGxQx1UHLpdLKSkpAZV6VqtV6enp9JIDUDN5PCX2Lzt8WKpfv+RDzZ0r3XprBcUJVCCmggIAACDobDabrFarjCLm7BiGofj4eNlstkqOrGL4Fmo4cfqrb6EGVkEFUOO4XFJCgpSUJA0d6v2ckCC5XPr99+NTPItLqr377vFpniTVUF2RWAMAAEDQWSwWpaenS1KB5JrvcVpaWo2YJlnSQg2SlJqaKo/HU9mhAUDFcLkkh0PKdzNhqxJk7MyUMciu004r+qmff348mdavXyXEClQwEmsAAKDW8Hg8ysjI0KJFi5SRkUGio4LZ7XY5nU7FxcUFbLdarXI6nTVmeiQLNQCoVTweKSVFMk0tU18ZMmXI1BnaWuRTtm49nky74IJKjBWoBPRYAwAAtQL9r0LDbrcrOTm5Rjf0r60LNQConWbfvUVjd2aWOO73f69W46svq4SIgNAisQYAAGo8X/+rE6fq+fpf1aTqqarIYrEoMTEx1GFUmNq4UAOA2uXOO6VnnvE9OrPIcYcUoQgd8T44sLDC4wKqAqaCAgCAGo3+V6hotW2hBgC1w+WXH1+A4HhSraCjshybDGocT6pJ3lVCgVqAxBoAAKjR6H+FilabFmoAULNFRx9Ppq1YUfQ40xov0wiTKUMW5QXuNAwpPl7iZgJqCRJrAACgRqP/FSpDbVmoAUDNYprHE2mGIe3fX/i4li2PLz5gmpKO3UzQiZW6vsdpaRI3E1BLkFgDAAA1Gv2vUFnsdru2bdumFStWaOHChVqxYoW2bt1KUg1AlZKbezyRFlZMRmDgwOOJtG3bTthpt0tOp3TCzQRZrd7t/NxDLcLiBQAAoEbz9b/KysoqtM+aYRiyWq30v0JQ1PSFGgBUT3v3So0alTzu73+XHnmklAe126XkZMntlrKzvT3VbDYq1VDrkFgDAAA1mq//lcPhkGEYAck1+l8BAGqq7dulhISSx82fL40YUc6TWCwSNxNQyzEVFAAA1Hj0vwIA1AaffXZ8mmdxSbUVK45P8yx3Ug2AJCrWAABALWG325WcnCy3263s7GzFxsbKZrNRqQYAqNbWro3VwIHhJY774QepXbtKCAioZUisAQCAWoP+VwCAmuDJJ6VJkyQpXNJFRY777TfptNMqKyqgdiKxBgAAAABAFTd6tPTSSyWPO3RIioio+HgAeJFYAwAAAACgCurSRfryy5LHHTmSq7p1S54OCiD4SKwBAAAAAFBFHFuwukSmKeXm5mrZsmUyjH4VGxSAIrEqKAAAAAAAIWKax1fyLC6p1rHj8ZU8TbPy4gNQPBJrAAAAAABUoiNHjifSwor5q3z48OOJtA0bKi8+AKVHYg0AAAAAgAr2++/Hk2nFLS7w2GPHk2kvv1x58QEoH3qsAQAAAABQATZtks48s+Rxb7whXXttxccDIPjKnVjLycnRr7/+qry8vIDtp59++kkHBQAAAABAdeR2S927lzxu7Vqpa9eKjwdAxSpzYm3Tpk0aNWqUPvnkk4DtpmnKMAx5PJ6gBQcAAFBeHo9Hbrdb2dnZio2Nlc1mk8ViCXVYAIAa6JVXvP3QSvLTT1KrVhUfD4DKU+bE2siRI1WnTh0tXbpUsbGxMkq7FjAAAEAlcblcSklJ0c6dO/3brFar0tPTZbfbQxgZAKCmmDpVeuihksf9+afUqFFFRwMgVMqcWFu/fr3WrVun9u3bV0Q8AAAAJ8XlcsnhcMg0zYDtWVlZcjgccjqdJNcAAOVy7bWS01nyuJwcKTy84uMBEHplTqx16NBBu3fvrohYAAAATorH41FKSkqBpJp0vG1FamqqkpOTSzUtlOmkAIC2baXNm0sel5fnXfETQO0SVtYnzJgxQ5MmTVJGRoZ+//137du3L+ADAAAgVNxud8D0zxOZpqnMzEy53e4Sj+VyuZSQkKCkpCQNHTpUSUlJSkhIkMvlCmbIAIAqyDCOfxSVVIuIkEzz+AdJNaB2KnPFWq9evSRJPXv2DNjO4gUAACDUsrOzgzKO6aQAULvk5UmlKUi+7DLvqp8A4FPmxNqKFSsqIg4AAICTFhsbe9Ljgj2dFABQNR08KDVoUPK4MWOk556r+HgAVE9lTqz16NGjIuIAAAA4aTabTVarVVlZWYUmxgzDkNVqlc1mK/IYZZlOmpiYGIywAaBWq8x+lrt2SaW5B/P009Idd1RICABqmDIn1iRpz549evHFF/X9999Lks4++2yNGjVKDRs2DGpwAAAAZWGxWJSeni6HwyHDMAKSa8ax5jdpaWnF/sEWrOmkAICSuVwupaSkBNzQsFqtSk9PD9qU+2+/lc45p+Rx77wjXXVVUE4JoBYp8+IFX3zxhVq3bq1Zs2bpjz/+0B9//KGnnnpKrVu31pdfflkRMQIAgCJ4PB5lZGRo0aJFysjIoNepJLvdLqfTqbi4uIDtVqu1VL3RgjGdFABQMl8/yxOrhH39LE9msZiPPjq++EBxSbX//e/44gMk1QCUR5kr1saPH6+rr75a//znP1WnjvfpR48e1U033aTU1FStWrUq6EECAICCKuMuf3Vlt9uVnJxcrqlFwZhOCgAoXkX0s/znP6Vbbil53M6d0gn3XgCg3MpVsTZ58mR/Uk2S6tSpo0mTJumLL74IanAAAKBwFXmXv6awWCxKTEzUkCFDlJiYWOo/zHzTSaXj00d9SjudFABQvLL0syzOhAnHK9OKS6rt23e8Mo2kGoBgKnNiLSYmRjt27CiwPTMzU9HR0UEJCgAAFK2ku/ySlJqayrTQk3Cy00kBAMU7mX6WV155PJk2c2bRzz169HgyjT9VAVSUMk8Fve666zR69Gj94x//0CWXXCJJWrNmjSZOnKghQ4YEPUAAABCIVSsrx8lMJwUAFC9/n8q6kmZKaiNps6S7JeWcMK5JE2n37pKPW8g9JwCoUGVOrP3jH/+QYRi64YYbdPToUUlSeHi4br/9dj3++ONBDxAAAARi1crK45tOCgAILl8/y6d37tRASfkn3o+VtESSXaaSkoo/Tmys9PPPFRUlAJSszIm1unXrKj09XdOnT9eWLVskSa1bt1ZkZGTQgwMAAAWxaiUAoLqzWCz6NDZWLfJVYB+VReE6WuJz+/WT3n23IqMDgNIrc2LNJzIyUh07dgxmLAAAoBRYtRIAUKV5PJLbLWVne0vKbDbpxGn0hw4p7vPP9Yca6VT9WeIhJ0+WmCAFoCoqVWLNbrdr/vz5iomJKbFZL6uQAQBQsXyrVjocDhmGEZBcY9VKAEBIuVxSSoqUvxeo1Sqlp0vH/pbctEk688z6kopviPaCRmv02PrSs89WYMAAcHJKtSpow4YN/b+oN2zYsNgPAABQ8Vi1EgBQ5bhcksMRmFSTpKwsrRj0rH8lzzPPLPoQH6mnTBkyZWi0XvJm4QCgCitVxdq8efMK/TcAAAgdVq0EAFQZHo+3Ui1fFfULGq2b9UJJhWn6ry7SRfq88J1t2wYxSAAIvjL3WDt06JBM0/QvVrB9+3a99dZb6tChg3r37h30AAEAQNFYtRIAUCW43dLOnbJrsd5SyVXTmT8ekvXMUiyA9+STQQgOACpOqaaC5pecnKyXX35ZkrRnzx5ddNFFmjlzppKTkzVnzpygBwgAAAAAqLpOOUUykhJlyCw2qfaXomQuXCTTlKxt60vJycUfODlZql8/qLECQLCVObH25Zdf+lcZczqdat68ubZv366XX35ZTz/9dNADBAAAAABUAo9HysiQFi3yfvZ4ihzq65dmGNKePcUcUmH+nmlROuBdJdRnyZKik2vJyd79AFDFlXkq6MGDBxUdHS1J+vDDD2W32xUWFqauXbtq+/btQQ8QAAAAAFDBSrGa57H17EpkqpCBhuE93rEiDb8lS6RDh6SJE70LFbRt653+SaUagGqizIm1Nm3aaMmSJbrmmmv0wQcfaPz48ZKkX3/9VTExMUEPEAAAAAAQRB6Ptydadra3gmz3bmnw4ICFByTJ3JmlsEGlW2XaNHV8VVAZgcfyZeTS0qTCFtipX1969tlyvRQACLUyTwV94IEHNGHCBCUkJOjiiy9Wt27dJHmr1zp37hz0AAEAAAAAQeJySQkJUlKSNHSo9/Pf/uZPhB1WvWMTN02FKa/YQ5nm8Q9J3so2p1OKiwscaLV6t9tLl6QDgOqkzBVrDodDl112mbKzs3Xuuef6t/fs2VPXXHNNUIMDAAAAAASJr6LshMq0nz1NFaefS3z6JZdIa9aUMMhu9/ZHy18RZ7MVXqkGADVAmSvWJKl58+bq3LmzwsLCtG/fPi1ZskTR0dFq3759sOMDAAAAAJwsj8fbQ+1YUm2luvsr04pLqt2lmd5RCxeVnFTzsVikxERpyBDvZ5JqAGqwMifWBg8erGePzX8/dOiQLrjgAg0ePFidOnXS4sWLgx4gAAAAAOAkud2avXOAP5mWqJVFDn1Zw/0rec7UBO/G/Kt5AgD8ypxYW7VqlWzHVnJ56623ZJqm9uzZo6efflqPPPJI0AMEAAAAAJTPiBHetQOMpESN1ewix61VV38ybbheOb7DMKT4+IKreQIAJJUjsbZ37141btxYkvT+++9r0KBBioyMVP/+/bVp06agBwgAAAAAKL34+GPJNEN6+eWix/2kVv5kWlf9t+CAklbzBACUffGC+Ph4rV27Vo0bN9b777+v1157TZL0559/KiIiIugBAgAAAECt4/EcXwAgMtL7ODy8yOG+HFhJ9itKDXSg8J0Wi/c8PlarN6nGap4AUKQyJ9ZSU1M1bNgwRUVF6fTTT1diYqIk7xTRjh07Bjs+AAAAAKhdXC7vQgM7d0r160uLFkkdO0ozZgQkuUqbTMvLOzbW5ZIcByUZgSuD+g60aJHUpAmreQJAGZQ5sTZmzBhddNFFyszM1BVXXKGwMO9s0jPOOIMeawAAAABwMlwuyeEITHxJ0s8/Sw6HDDOvVIc58emSvEk5p/N40s6HyjQAKLcyJ9Yk6YILLlCnTp20detWtW7dWnXq1FH//v2DHRsAAKgBPB6P3G63srOzFRsbK5vNJgsVEABQkMfjTXrly4rlmYYGDkyWipq+mU+hybQT2e1ScvLxaaZUpgHASSnz4gUHDx7U6NGjFRkZqbPPPls7duyQJN1xxx16/PHHy3Ss6dOn68ILL1R0dLSaNm2qgQMHauPGjQFjDh8+rLFjx+rUU09VVFSUBg0apF9++SVgzI4dO9S/f39FRkaqadOmmjhxoo4ePVrWlwYAAILM5XIpISFBSUlJGjp0qJKSkpSQkCCXyxXq0ACgcnk8UkaGd7plRkZgLzMft1vauVN/qtGxJQVMRRwuPqFmmsc/Ss1ikRITpSFDvJ9JqgFAuZU5sTZlyhR99dVXysjICFisoFevXnr99dfLdKyVK1dq7Nix+vTTT7V8+XLl5uaqd+/eOnDg+H8e48eP1zvvvKM333xTK1eu1M8//yx7vhJlj8ej/v37KycnR5988okWLFig+fPn64EHHijrSwMAAEHkcrnkcDi0M/90I0lZWVlyOBwk1wDUHi6XlJAgJSVJQ4d6PyckeLcf8803kpGUKEOmGuvPIg/VURtkLlxU9mQaAKBClHkq6JIlS/T666+ra9euMvJ1yzz77LO1ZcuWMh3r/fffD3g8f/58NW3aVOvWrVP37t21d+9evfjii1q4cKEuv/xySdK8efN01lln6dNPP1XXrl314Ycf6rvvvtNHH32kZs2a6bzzztPDDz+syZMna+rUqapbt25ZXyIAADhJHo9HKSkpMgv5q880TRmGodTUVCUnJ1eJaaFMVwXKju+bIuTkSLNnS1u2SK1bSy1aSH/7W8EsWFaW3hz0mgar5L5m/fr9pCUrzlH4oUPeDbErKiBwAEB5lDmx9ttvv6lp06YFth84cCAg0VYee/fulSQ1btxYkrRu3Trl5uaqV69e/jHt27fX6aefrrVr16pr165au3atOnbsqGbNmvnH9OnTR7fffru+/fZbde7cucB5jhw5oiNHjvgf79u3T5KUm5ur3Nzck3oNqL58X3uuARSG6wPF4fooaPXq1fr9999Vv379Isfs3r1bq1at0mWXXVaJkRX0zjvvaPLkycrKyvJvi4uL04wZMzRgwICTPj7XB0pSHa+Riv6+qbYeeEB69tmC0zzzzfSZnPuYZh1NlUqoNpsZPkF31Jmt3Pr1tfyWl5T7aX3v6p1xcVLXrlI1ul5Qcarjzw9UHq6P8ivLe2aYhd1KLkb37t117bXX6o477lB0dLQ2bNigVq1a6Y477tCmTZsKVKGVVl5enq6++mrt2bNHq1evliQtXLhQN954Y0ASTJIuuugiJSUlacaMGbrlllu0fft2ffDBB/79Bw8eVIMGDbRs2TL17du3wLmmTp2qhx56qMD2hQsXKjIyslzxAwAAAEBhRoy4Unv31itx3COPrNY55/xeCREBAIpz8OBBDR06VHv37lVMTEyxY8tcsfbYY4+pb9+++u6773T06FGlp6fru+++0yeffKKVK1eWO+ixY8fqm2++8SfVKtKUKVN01113+R/v27dP8fHx6t27d4lvGGqu3NxcLV++XFdccYXCw8NDHQ6qGK4PFIfro6DVq1eXasXwd999N2QVax6PRx07dgyouMnPMAzFxcVpw4YNJzW9jesDJalO10hlfd9Uee+8I02eLBXxPkhS3UMHS3WozfXO1OnzHpIcDkkXFzh+bv36Wv7SS7rivvsU/tBDUm2uCEQB1ennByof10f5+WY2lkaZE2uXXXaZvvrqK02fPl0dO3bUhx9+qPPPP98/JbM8xo0bp6VLl2rVqlWyWq3+7c2bN1dOTo727NmjRo0a+bf/8ssvat68uX/MZ599FnA836qhvjEnqlevnurVK3jHKDw8nIsNXAcoFtcHisP1cVz37t116qmnKisrq9A+a4ZhyGq1qnv37iH743vNmjXavHlzsWM2bdqkTz/9VImJiSd9Pq4PlCT/NVJV+5dV9vdNleRyeZNghf1sK2l+5zGHFKEIHZuVc0RSbKyU/+eD3S4lJ3tXCc3OliSFf/65wvNNKQXy4/8YFIfro+zK8n6VaVXQ3NxcjRo1SoZh6J///Kc+++wzfffdd3rllVfKlVQzTVPjxo3TW2+9pf/85z9q1apVwP4uXbooPDxcH3/8sX/bxo0btWPHDnXr1k2S1K1bN3399df69ddf/WOWL1+umJgYdejQocwxAQCAk2exWJSeni5JBXqw+h6npaWFNFGQfeyP1WCNA4LF5XIpISFBSUlJGjp0qJKSkpSQkFAlVtKt9d83Ho+UkhKQVDNk+j+Kk5dvpD+pZhhSfLxksxV8gsUiJSYeq2Q79hgAUOWUKbEWHh6uxYsXB+3kY8eO1SuvvKKFCxcqOjpau3bt0q5du3To2Go3DRs21OjRo3XXXXdpxYoVWrdunW688UZ169ZNXbt2lST17t1bHTp00PDhw/XVV1/pgw8+0H333aexY8cWWpUGAAAqh91ul9PpVFxcXMB2q9Uqp9Mpu73klfAqUmxsbFDHAcHgcrnkcDi0c+fOgO1ZWVlyOBwhT67V9O8bz6FD2jxunH7s00ebx42Tx7cKp4/bLe3cWepkmplvZIFl3nw3HdLSSJoBQDVWpsSaJA0cOFBLliwJysnnzJmjvXv3KjExUbGxsf6P119/3T9m1qxZuuqqqzRo0CB1795dzZs3D/iFwmKxaOnSpbJYLOrWrZuuv/563XDDDZo2bVpQYgQAAOVnt9u1bds2rVixQgsXLtSKFSu0devWkCfVJMlms8lqtRa5qrlhGIqPj5etsEoSoAJ4PB6lpKQUOn3aty01NVWeE1ecrEQ1+ftm48CBUmSk2jz3nM788EO1ee45KTJSGwcO1JEj3jyYkZRYpmRasaxWyen0TvsEAFRbZe6x1rZtW02bNk1r1qxRly5d1KBBg4D9d955Z6mPVZoFSSMiIvTcc8/pueeeK3JMy5YttWzZslKfFwAAVB6LxVIley35pqs6HA4ZhhHwe0lVma6K2mXt2rUFKtXyM01TmZmZcrvdIfueqjHfNx7P8f5lsbHaOGuWznz77YAhOxSvltoh/VtSCa3NSkyiSdLdd0tXXeU/p2w2KtUAoAYoc2LtxRdfVKNGjbRu3TqtW7cuYJ9hGGVKrAEAAISSb7pqSkpKQELDarUqLS2tSlTWofbYtWtXqcaFun9Ztf++cbm8fdLyxX7msc+LNUjXylmqw5QqmSZ5k2d33SU98UQZAwUAVAdlTqxt3bq1IuIAAAAICbvdruTk5Cq5AiNql6JWtD9RVehfVm2+b06oTNPu3dLgwQGLD9ymOXpet5V4qItabNJ/s9oeXxVURuDKoL7psYsWec+3ZYvUurU0ZoxUt26QXxgAoKooc2INAACgpqmq01VRu3Tr1k1Wq1VZWVmFtkwxDENWq7XK9C+rUt83JybQbDbp3/8uUJkmi0UyTTXSn9qrRiUe9jFN0RQ9Lkn68Zzekj7w9kRzOgse22r1LkRQ1Sv2AABBVebE2l133VXodsMwFBERoTZt2ig5OVmNGzc+6eAAAACA2qLG9C+rbIVM7dSpp0q//x4wzJAplWLdh7c0UAP17wLbw9q2Pf7AbpeSkwsm8/jaAECtU+bE2v/+9z99+eWX8ng8ateunSTpxx9/lMViUfv27TV79mzdfffdWr16tTp06BD0gAEAAHCcx+Op+tPxUGrVvn9ZZfNNyzyxwu9YUq2kFTx9flIrtdK2QveZ8ubjWj35ZOAOi0WqKhV7AICQKXNizVeNNm/ePMXExEiS9u7dq5tuukmXXXaZbr75Zg0dOlTjx4/XBx98EPSAAQAA4OVyuQpNwKSnp5OAqcaqTf+yUPN4vJVqJyTVSptMO6x6qqecYsf4jrQlOVnt6tcvT5QAgBquzIm1J598UsuXL/cn1SSpYcOGmjp1qnr37q2UlBQ98MAD6t27d1ADBQAAwHEul0sOh6NAL66srCw5HA45nU6Sa9VYlepfVlW53f7pn6VNphW3kqfvCPlHeHQsqbZkSblCBADUfGFlfcLevXv166+/Ftj+22+/ad++fZKkRo0aKSen+Ls/AAAAKB+Px6OUlJRCG9z7tqWmpsrjKUVDKaAaMk3JSEqUIbPEpJrpH1V0Uk2GIcMwlLdokTaPHasfe/fW5rFjZRw8SFINAFCsck0FHTVqlGbOnKkLL7xQkvT5559rwoQJGjhwoCTps88+05lnnhnUQAEAAODldrsDpn+eyDRNZWZmyu12U/WEqq2w1TyLmPK6Z490yimlO2yxSTTJe478iedjK3pa7Ha1+dvfSncSAABUjsTa888/r/Hjx+tvf/ubjh496j1InToaMWKEZs2aJUlq3769XnjhheBGCgAAAElSdnZ2UMcBIVHYap5Wq5Se7l11U9Knn0rdupXucCUm0yTp2OqqWrRIatKEFT0BACetzIm1qKgo/fOf/9SsWbP0008/SZLOOOMMRUVF+cecd955QQsQAAAAgWJjY4M6Dqh0Ra3mmZWlxwd9rikqXX9Ac/Gx40gKmBFqGN5jn3qqf4VQSf7KNNF/EAAQJGVOrPlERUWpcePG/n8DAACgcthsNlmtVmVlZRXaZ80wDFmtVtlsthBEB5SgkNU8z9c6/U/nq6Q1CGJipL1782+xS05n4ZVvaWlScnKpp5oCAFAeZV68IC8vT9OmTVPDhg3VsmVLtWzZUo0aNdLDDz+svLy8iogRAAAA+VgsFqWnp0vyJtHy8z1OS0uThQQCqqJjq3ka+ZYV+J/OL3L4HXd4c3CmeWJS7Ri7Xdq2TVqxQlq40Pt561bvdotFSkyUhgzxfuZ7AgAQZGWuWPv73/+uF198UY8//rguvfRSSdLq1as1depUHT58WI8++mjQgwQAAEAgu90up9OplJSUgIUMrFar0tLSZGeqG6ogb943USWVpi1Vf/VfeL03IVYavgQaqiWPxyO3263s7GzFxsbKZrNxYwBAtVHmxNqCBQv0wgsv6Oqrr/Zv69Spk+Li4jRmzBgSawAAAJXEbrcrOTmZP0gRGjk50uzZ0pYtUuvW0pgxUt26BYYZpVhTQJIyZZVVWcc3xE4MUqCoylwuV6E3CNLT07lBAKBaKHNi7Y8//lD79u0LbG/fvr3++OOPoAQFAACA0rFYLEqkUgeVbdIk6amnvP3SfCZMkO66S3riiVIn03JVR3XkCdxoGN4eafQIrPFcLpccDkeBXpFZWVlyOBxyOp0k1wBUeWXusXbuuefq2WefLbD92Wef1bnnnhuUoAAAAABUUZMmSU8+GZhUk2R4jsp4suSkmml6V/M0jTDVMU7o0ex7cloa/dBqOI/Ho5SUlEIXYPFtS01NleeE6wwAqpoyV6w98cQT6t+/vz766CN169ZNkrR27VplZmZq2bJlQQ8QAAAAQBWRk+OtVJPkUVjBarMiFMid2EtYzZMqpRrP7XYHTP88kWmayszMlNvtpioXQJVW5sRajx499OOPP+q5557TDz/8IMnb32PMmDFq0aJF0AMEAAAAUDVsf+RfSvAcLdXYQgqRAtntUnKyd5XQ7GwpNtY7/ZNKtVohOzs7qOMAIFTKlFjLzc3VlVdeqblz57JIAQAAAFAdlXLRAZ/XX5f+9jffo9HFHtrUsamc48ZJeqbkWFjNs9aKjY0N6jgACJUy9VgLDw/Xhg0bKioWAAAAoFbxeDxavXq1JGn16tUV309q0iQpMlIaP1569lnv58hI7/Z8Bg3ytjszjPxJtcKZMvwffq1bV0DwqElsNpusVquMIpryGYah+Ph42VjEAkAVV+bFC66//nq9+OKLFRELAAAAUGu4XC4lJCSof//+kqT+/fsrISFBLperYk5YxKID8nikJ5/0J9IMQyophEKTaT4Wi7cKDiiGxWJRenq6JBVIrvkep6WlycLUYABVXJl7rB09elQvvfSSPvroI3Xp0kUNGjQI2P/UsWamAFDVeDweud1uZWdnKzY2VjabjV/WAAAh4XK55HA4ZJqm6tev79+elZUlh8Mhp9MpezAb+OdbdCA/QyU1QvO67TZpzpxjDyZNkp4sZvBddxU7tRTwsdvtcjqdSklJCVjIwGq1Ki0tLbjfAwBQQcqcWPvmm290/vnnS5J+/PHHgH1FlfECQKi5XK5Cf2lLT0/nlzYAQKXyeDxKSUmRWUh3f9M0ZRiGUlNTlZycXLobQKXpmTZ7tr9SrbTJtGXLpL59C9nxxBPez089FVj9ZrF4k2q+/UAp2O12JScnc/OzmuLGNVCOxNqKFSsqIg4AqDD5qwLyq7CqAAAAiuF2uwNu9JzINE1lZmbK7XYrsaTG/pMmFUxwTZhQIMFljE+VlFpibL+MmqKmL04vcZyeeEJ65JEyLYIAFMVisZR8raPK4cY14FWmxNrrr7+ut99+Wzk5OerZs6duu+22iooLAIIi6FUBqNa4q1q18PVAbZWdnR2ccb6eaSfy9Ux7snSVY3kyjndK6zirVM+R5E2ipaaWfjyAGoMb18BxpV68YM6cORoyZIi++OILbdq0SWPHjtXEiRMrMjYAOGllqQpAzeZrEp6UlKShQ4cqKSmpYpuEo1h8PVCbxcbGnvy4Ynqm+T6Kk3/xAX9SjUUHAJRCSTeuJSk1NbXiVzkGqohSJ9aeffZZPfjgg9q4caPWr1+vBQsWaPbs2RUZGwCctKBVBaBa891VPTHJ6rurSjKncvH1QG1ns9lktVqL7E9sGIZaxcXJtm6ddMcdUlqaN5GW37GeaQdVv/TJtImTil7JU2LRAQClwo1rIFCpE2s//fSTRowY4X88dOhQHT16lD9GAVRpQakKQLXGXdWqha8H4O0nlZ6eLqng4l+GYehx09Tm7GxZJkyQnn1WGj9eioz0Tv2U9OWX3p5phkw10MFiz2WOu0OmKZmmvH3RJk70VqYFBuTdzqIDAEqBG9dAoFIn1o4cOaIGDRocf2JYmOrWratDhw5VSGAAEAylqQqIj4+XzWar5MhQWbirWrXw9QC87Ha7nE6n4lu00GXHtl0maXaDBpooKSwvL2D8Y55JMp58QoYhdelS/LHzT/NU69aBO594Qjp4UJo1Sxo3zvv54EGSagBKjRvXQKAyLV5w//33KzIy0v84JydHjz76qBo2bOjf9lQhvR4AIFR8VQEOh0OGYQRUyfiSbWlpaTRMr8G4q1q18PUAjrNLusYwdFTSMknvSqqzf79/oma8dmin4kt1rEKndxbVM41FBwCcBN+N66ysrEIr0A3DkNVq5cY1ao1SJ9a6d++ujRs3Bmy75JJL9NNPP/kfF1URAgCh5KsKKGw58LS0NFYsquG4q1q18PVAreXxSG63lJ0txcZKv/0mXXedDNOU6tf3DwsroU+af1yY5Lm7iFVBfeiZBqACcOMaCFTqxFpGRkYFhgEAFctutys5OVlut1vZ2dmKjY2VzWbjP/xagLuqVQtfD9RKLpeUkiLlnwZtsRxrfCbVPXRQGiiphH5pd2mmZmqCdwrnM89IOjZ986mnvIm7/Me+6y6md1Ywj8fD7xWotbhxDRxXpqmgAFCdWSwWJSYmhjoMVDLuqlYtfD1Q451YmbZ7tzR4sD+J5mN4jpbqcBnqoR5aFbgxf9+0J56QHnnEu0roli3efWPGUKlWwVwuV6EJhfT0dBIKqDW4cQ14kVgDANR43FWtWvh6oMYqoTLNKOU0zz/VSI20t/CdhfVNo2dapXK5XHI4HAWqbrOysuRwOPT666+rSZMmJBpQK3DjGiCxBgCoJbirWrXw9UCN43JJDke5K9OWLPm3+g0ZovBDh4ofSN+0kPJ4PEpJSSl0Krtv25AhQ+TJNzWXSjYAqNlIrAEAag3uqlYtfD1QY3g83ko105Sp0i9A4FvJM7d+fS3TouIH0zetSnC73QGVtoXJn1STjleyOZ1OkmsAUAORWAMAAACKcmLPNJvNm+TK5/ela3XazsxSHc6XTCvSsV6DWrTIe076plUp2dnZZX6OaZoyDEOpqalKTk6mMhcAaphyJdbcbreef/55bdmyRU6nU3FxcfrXv/6lVq1a6bLLLgt2jAAAAEDlK6xnmtUqpafr/Ui7+vb1bSz+999ik2knJlmsViktTaKyqUqKjY0t1/NM01RmZqbcbjeVugBQw4SV9QmLFy9Wnz59VL9+ff3vf//TkSNHJEl79+7VY489FvQAAQBA2Xk8HmVkZGjRokXKyMgoMDUJQAl8PdPyJdVG6UUZOzNlDMqfVCucKcP/USjD8H689pr07rvebe++K23dSlKtCrPZbLJarf5VjMuqPBVvAICqrcyJtUceeURz587VP//5T4WHh/u3X3rppfryyy+DGhwAACg7l8ulhIQEJSUlaejQoUpKSlJCQoJcLleoQwOqBo9HysjwTrfMyPA+PnH/sZ5pRr4U2TyNKvawphFWdDKtsMo0p9ObvPPN+LjssoLjUKVYLBalp6dLUrmSa+WteAMAVF1lngq6ceNGde/evcD2hg0bas+ePcGICQCAKs3j8QSsZtm1a9dQh+TncrnkcDgKrFhH82zgmGKmd/oqxYw6Fkkl90yzNjmszF8jjh/XIW8VWv7vv/w905o0KbZXW3md+DOJFXYrlt1ul9PpVEpKSsBCBhaLpcjqYMMwZLVaZbPZKitMAEAlKXNirXnz5tq8ebMSEhICtq9evVpnnHFGsOICAKBKcrlcBf6YatOmjf7xj3+EMCovj8ejlJSUAkk1iebZqKVOXHhg925p8ODAxJckZWXJGFS6hPN03aN7NMP7IH2hpCHef9vt3gq0wpJ2FdgzrbCfSVarVenp6STRK5DdbldycnJAQnP37t0aPHiwJAX8HPZVtqWlpfGzFwBqoDIn1m6++WalpKTopZdekmEY+vnnn7V27VpNmDBB999/f0XECABAlVBUNdjPP/8sSXrnnXdC+oes2+0O+OP6RDTPRq1SWGWaxRKQVDN07N8Fc9EB1ul8na//Fdxx4rQ+u11KTi5xFdFgoUI1tCwWS4GfpYVVslmtVqWlpfG1AIAaqsyJtXvuuUd5eXnq2bOnDh48qO7du6tevXqaMGGC7rjjjoqIEQCAkCupGkzy/h8Zymqw0jbFpnk2ajzfwgMnfr96PMeTaSU4FNdGET//VPAYknd6p9XqTZqdyGKRKiFxTYVq1VRYJRtTcwGgZitzYs0wDP3973/XxIkTtXnzZu3fv18dOnRQVFRURcQHAECVUFI1mCTt3LkzpNVgpW2KXVWaZ9MXChUi38IDPqVNppkypIULpSFDJNcT3uRcUT3T0tJCutAAFapVV2GVbACAmqvMq4L61K1bVx06dFD79u310Ucf6fvvvw9mXAAAVCnVoRrMZrPJarUWuVKdYRiKj4+vEs2zWbkUFcbtVt7OrIDVPIuTf91PScend/p6psXFBT7Bt5pniKf1VYefSQAA1AZlTqwNHjxYzz77rCTp0KFDuvDCCzV48GB16tRJixcvDnqAAABUBdWhGsxisSg9PV2SCiTXqlLzbF9fqBOrbXx9oUiuoTy2bvUWkxlJibIor9ixBZJpkvfJ8fGB0zvtdmnbNmnFCm8l24oV3hNVgV5Z1eFnEgAAtUGZE2urVq3y3+l+6623lJeXpz179ujpp5/WI488EvQAAQCoCkqqBpO8DapDXQ1mt9vldDoVd0KVjdVqrRKNzEvTqy41NVUej6eyQ0NVkpPjnWp5xx3ezzk5hQ77v/87lkwzpJIWpy80meZT3PROX8+0IUO8n6vIdOXqVKEKAEBNVubE2t69e9W4cWNJ0vvvv69BgwYpMjJS/fv316ZNm4IeIAAAVUFpqsEef/zxkFeDSd7k2rZt27RixQotXLhQK1as0NatW0OeVJPK1hcKtdSkSVJkpDR+vPTss97PkZHe7ZLOPfd4Mu3WW4s/VJHJtBO/T6vI9M6yqC4VqgAA1HRlTqzFx8dr7dq1OnDggN5//3317t1bkvTnn38qIiIi6AECAFBVFFUN5ns8YMCAUIRVKF/z7CFDhigxMbHK/HFNXygUa9Ik6cknvQsQ5GN4jsp48gkZhrRhQ/GHME3JXOySaYQdr0TzH+hYRm7Roio5vbOsqnqFKgAAtUGZVwVNTU3VsGHDFBUVpZYtW/pXvFm1apU6duwY7PgAAKhS7Ha7kpOTA1az7Nq1qz744INQh1Yt0BcKRcrJkZ56yv+wtCt5duggffvtCRt9Cw+kpEj5KyStVu90zxqUcCrsZxIr7AIAUHnKnFgbM2aMLr74Yu3YsUNXXHGFwsK8RW9nnHEGPdYAALWCrxrMJzc3N3TBVDO+vlBZWVmF9lkzDKNK9KpDkHk8ktstZWd7V9202QpOx5w9W4bnaKkON3u2dPvtJQyy26Xk5JLPWwOc+DMJAABUnjIn1iSpS5cu6tKlS8C2/v37ByUgAABQc/n6QjkcDhmGEZBcoy9UDeVyFV45lp4u2e35ZmumFnuYzWqt1vpJGjdOuv2Z0p3bt/AAAABABSlXYm3nzp16++23tWPHDuWcsErTU/lK+AEAqE08Ho/WrFnDdKwS+PpCpaSkBCxkYLValZaWRl+o6i5/ddqmTdLUqd7GZ/kYOzOlQSUf6qgssigvcGPr1sGLFQAA4CSVObH28ccf6+qrr9YZZ5yhH374Qeecc462bdsm0zR1/vnnV0SMAABUCx07dtTmzZv9j61Wq9LT00kUFYK+UDVAYdM7//3vgtVpx5S2Z1qBFTzzs1ikMWPKGzEAAEDQlTmxNmXKFE2YMEEPPfSQoqOjtXjxYjVt2lTDhg3TlVdeWRExAgBQpb3zzjuyWCzKysoK2J6VlSWHw8HqfEWgL1Q1Vtj0zlNPlX7/3f/wsOqpvg6X6nD+grZJk6Qnixl4111S3bpljxcAAKCChJX1Cd9//71uuOEGSVKdOnV06NAhRUVFadq0aZoxY0bQAwQAoCrzeDyaPHlyoft8/cNSU1Pl8XgqMywgeDweKSNDWrTI+9nplByOglVpv/+uL9RFhkwZMktMqpm+kQsXHd/4xBPSxIkFFxiwWLzbn3giKC8JAAAgWMpcsdagQQN/X7XY2Fht2bJFZ599tiRp9+7dwY0OAIAqzu12F6hUy880TWVmZsrtdlOdheqnsMo0iyWgZ9rf9Yge099LdbhCp3nGxgY+fuIJ6ZFHvEt/btni7ak2ZgyVagAAoEoqc2Kta9euWr16tc466yz169dPd999t77++mu5XC517dq1ImIEAKDKys7ODuo4oMpwubyVaScsPCCPp9T90qRieqYZhnd1UJut4L66daXU1NLHCgAAECJlTqw99dRT2r9/vyTpoYce0v79+/X666+rbdu2rAgKAKh1Yk+stjnJcUCV4PF4K9XyJdWCkkzzH+zY/rS0gtM+AQAAqpEyJ9bOOOMM/78bNGiguXPnBjUgAACqE5vNpri4uCL3G4Yhq9UqW2FVOUBV5XZLO3eWOpnWS8u1XL1Lf3yr1ZtUY1EPAABQzZU5sSZJe/bskdPp1JYtWzRx4kQ1btxYX375pZo1a1bsHxcAANQ0FovFv3iPYQRW6fgep6WlyUJVDqoJ72WbKJWQVHtVQzVUi4od4z+gaUoPPSS1bevtqWazUakGAABqhDIn1jZs2KBevXqpYcOG2rZtm26++WY1btxYLpdLO3bs0Msvv1wRcQIAUGUNGDBAy5YtU4sWLbR582b/dqvVqrS0NNmpykEoeDzeyrPs7BKTWUYJMzd9flasYrWr8J2+BNqpp0q//358O9VpAACgBitzYu2uu+7SyJEj9cQTTyg6Otq/vV+/fho6dGhQgwMAoDr5+uuv9emnnyo7O1uxsbGy2WxUqiE0ClvN02qV0tP9Ca7SJtPyZBTeMc1i8Sbv8h8/LU1KTi51Qg8AAKC6K3Ni7fPPP9fzzz9fYHtcXJx27SriDiYAALWAxWJRYmJiqMNAbXNiZdru3dLgwQVX88zKkjGodFVjpqnjq4LKCDyWLyO3aJHUpEnhCTS+DwAAQC1R5sRavXr1tG/fvgLbf/zxRzVp0iQoQQEAUBt4PB653W4q3FB+hVWmWSz+RNgfOkWn6g/v9hLWITgxDye7XXI6C698Y2onAACAJCmsrE+4+uqrNW3aNOXm5kryNmbesWOHJk+erEGDBgU9QAAAaiKXy6WEhAQlJSVp6NChSkpKUkJCglwuV6hDQ3XhqyjLn/SS9K6njwyZMmQeT6oVwTSPfxTKbpe2bZNWrJAWLvR+3rqVpBoAAMAxZU6szZw5U/v371fTpk116NAh9ejRQ23atFF0dLQeffTRiogRAIAaxeVyyeFwaOcJCZGsrCw5HA6SayiZx+OtJDuWEbNrsT+ZdpXeLfappgyZCxcVnUw7kcXindo5ZIj3M1WVqII8Ho8yMjK0aNEiZWRkyJO//x8AABWozFNBGzZsqOXLl2vNmjX66quvtH//fp1//vnq1atXRcQHAECN4vF4lJKSIrOQrIZpmjIMQ6mpqUpOTmZaKIrmdsvYmVnq4eaJyw/ExgY5ICB0XC6XUlJSAm5WWK1WpaensyozAKDClTmx5nPppZfq0ksvlSTt2bMnWPEAAFCjud3uApVq+ZmmqczMTLndbhZCQAHHV/JMLHFsgWSa7wBWq3ehAaAG8FUAn3izwlcB7HQ6Sa4BACpUmaeCzpgxQ6+//rr/8eDBg3XqqacqLi5OX331VVCDAwCgpsnOzg7qOFRzHo+UkeFdYTMjw/v4BIZx/KM4IzT/2GRQo+ikmuRdeIBqSNQAJVUAS1JqairTQgEAFarMibW5c+cqPj5ekrR8+XItX75c7733nvr27auJEycGPUAAAGqS2FJOwSvtOFRjLpeUkCAlJUlDh3o/JyRILlepk2kfq6c/kTZfNwbuPDF5ZrV6V/mkegc1RFkqgAEAqChlngq6a9cuf2Jt6dKlGjx4sHr37q2EhARdfPHFQQ8QAICaxGazyWq1Kisrq9AqC8MwZLVaZWOqXs3mW9Ez3zVgyJR2SiphkfV9+6ToaN8xVkgyApf19GXjFi2SmjSRsrO9PdVsNirVUKNQAQwAqArKXLF2yimnKDPT2yz3/fff9y9aYJomZdYAAJTAYrEoPT1dkjeJlp/vcVpaGgsX1GT5VvQ08k3eLI5pHv+Ijj620W73VqDFxQUO9lWmXXstq3miRqMCGABQFZQ5sWa32zV06FBdccUV+v3339W3b19J0v/+9z+1adMm6AECAFDT2O12OZ1OxZ2QELFarSFrtO3xeJSRkaFFixYpIyODm2UVxDQlo45Fxs7MkpNpKzL8ybQi2e3Stm3SihXSwoXez1u3Mt0TtYKvAvjEmxQ+hmEoPj6eCmAAQIUq81TQWbNmKSEhQZmZmXriiScUFRUlyVtiPWbMmKAHCABATWS325WcnCy3263s7GzFxsbKZrOFpFLN5XIpJSUloFeR1WpVeno6q+kFQWamNHBgcqnGBiw6kL2wdCewWLwVaUAt46sAdjgcMgwjYHo9FcAAgMpS5sRaeHi4JkyYUGD7+PHjgxIQAAC1hcViUWKIEyIul0sOh6NAv7esrCw5HI6QVdBVdy+8IN18s+9ReLFjC13BU/L2RavCPB5PlUgMo3bzVQAXdnMgLS2Nn18AgApXqqmgb7/9tnJzc/3/Lu6jLFatWqUBAwaoRYsWMgxDS5YsCdg/cuRIGYYR8HHllVcGjPnjjz80bNgwxcTEqFGjRho9erT2799fpjgAAKiNPB6PUlJSCl1EwbctNTW1dk8LzcmR0tKkO+7wfs7JKXLoueceX8nzeFKtcKY1XqYRVnhSzTCk+HjvYgNVlMvlUkJCgpKSkjR06FAlJSUpISFBLpcr1KGhFrLb7dq2bZtWrFihhQsXasWKFdq6dStJNQBApShVxdrAgQO1a9cuNW3aVAP/v717j2+yvvs//r6ILUcRObaQQhEU0aECToau2goq4rAaMpU6p+jQiW7tGEPd7QG9N8fBYTtvj/cEDxugdlHHPGyI7QwHnfITPMDNkIGjteAEESunkn5/f4SkTZumSUiaQ1/Px6OPkuv65sqV9tsr5JPP9/O57LIWx1mWFdF/vr/55hudfvrpuv7661t84ZswYYIWLVrkv92xY8eA/VdffbVqamq0fPly1dXVaerUqbrxxhu1eHGYyycAAGin3G53QIZHU8YYbd++XW63O+GZdQkxa5a0YIG32YDPzJnSjBnSvHmSGhpwhuPQoTplZBzJXnOVebuCWi109CwtTdpmA2Q5IhklQwYwAKB9CiuwVl9fH/TfR+viiy/2Nz9oSceOHZWVlRV038aNG/X666/r3Xff1ZlnnilJeuihhzRx4kQ98MAD6t+/f8zOFQCAdFNTUxPTcSnt0CHpkUekLVukIUO8hdEWLGg+zuORNX+eNL/1Q2ZkeA9bV1enV199VdLEhp2+jp7FxVLj4Kbd7g2qJWlgqrUsR8uyVFJSosLCQpaFAgCAdiHiGmttrbKyUn379tXxxx+v888/X7/61a/Uq1cvSdKaNWvUo0cPf1BNksaPH68OHTronXfe0eWXXx70mAcPHtTBgwf9t/fu3SvJ+x9f35JXtD++3z1zAMEwPxBKqs6PrKwsde7cOaxxqfbcInL33dL//E9gZpokNfrZZO7fF9ah7rzTo7vvbvgQsq4uxPyYNEmaOFFas0basUPKypLGjvVmqiXpz3vlypXatWtXyHnzxRdf6K233tJ3v/vdNjyz1Jaq1xC0DeYHQmF+IBTmR/Qi+ZlZJthHji2or6/XU089JZfLpW3btsmyLA0ePFhOp1PXXHNNi62uwzoRy9KLL74YsNR06dKl6tKliwYPHqwtW7bol7/8pbp166Y1a9bIZrPp/vvv19NPP61NmzYFHKtv37669957dfPNNwd9rNmzZ+vee+9ttn3x4sXq0qVL1M8BAACkj3A7eZaWVig3d2+czwYAAABtZd++fSoqKtJXX32l7t27hxwbdsaaMUaXXnqpXn31VZ1++ukaMWKEjDHauHGjrrvuOrlcrmbNB47WVVdd5f/3iBEjdNppp2nIkCGqrKzUuHHjoj7uHXfcoRkzZvhv7927Vzk5Obrwwgtb/YEhfdXV1Wn58uW64IILGmrgAEcwPxBKKs+PZcuW6ZprrpGkgOV9vg/Lnn32WU2aNCkh5xZzy5ZJt90mVVe3OCTczLTaTscp86ap0vz5kkJnZqXy/Ghq5cqVuuSSS1od98orr5CxFoF0miOIPeYHQmF+IBTmR/R8KxvDEXZg7amnntJbb72lFStWqKCgIGDfm2++qcsuu0zPPPOMfvjDH4Z/phE64YQT1Lt3b33yyScaN26csrKy9PnnnweMOXz4sHbv3t1iXTbJW7etaRMEScrIyGCygXmAkJgfCCUV54evyHxxcXFAI4OcnByVlpamdhF6j0dyu6WaGmnzZmn27MBGAUdYCi95P6CD5wFJubneQmphSsX50dS5556rXr16qbq6OmidNcuyZLfbde6551JjLQrpMEcQP8wPhML8QCjMj8hF8vPqEO7AJUuW6Je//GWzoJoknX/++br99tv1xz/+MewHjkZVVZV27dql7OxsSdLYsWO1Z88erV271j/mzTffVH19vcaMGRPXcwEAIF04HA5t27ZNFRUVWrx4sSoqKrR169bUDqq5XN7AV0GBVFQk3XOPP6hWp2Nkyfi/QjGNRgaw2aTp0+N08snLZrOprKxMkpqVAPHdLi0tJagGAADajbAz1j744APNO9JaPpiLL75Yv/vd7yJ68NraWn3yySf+21u3btW6devUs2dP9ezZU/fee68mT56srKwsbdmyRbNmzdLQoUN10UUXSZKGDx+uCRMmaNq0aXrsscdUV1enW2+9VVdddRUdQQEAiIDNZlN+fn6iTyM6jTPTsrOl//xHuvLKgOy0DRquU7UhrMM1C6IFM2OGlJkZ7RmnNIfDofLy8mZZjna7PfWzHAEAACIUdmBt9+7d6tevX4v7+/Xrpy+//DKiB3/vvfcCMuB8dc+uvfZaPfroo/rggw/09NNPa8+ePerfv78uvPBC/fd//3fAMs4//vGPuvXWWzVu3Dh16NBBkydPjjjABwAAUpTLJRUXS40CPLLZJGP0W83QTP02rMOEFUzzHXvGDCnEh43tgcPhUGFhodxut2pqapSdna28vDwy1QAAQLsTdmDN4/HomGNaHm6z2XT48OGIHjw/Pz9ofQ6fv/71r60eo2fPnlq8eHFEjwsAAFJQGJlpA1SlzzwDwjpc2JlpOTnSli3SkCHe5Z/tNFOtqZTOcgRSgMfj8Qevu3TpIo/HQ40kAEhCEXUFve6664IW/ZekgwcPxuykAAAAAoTITAu3+YBEZhqA1OByufzLrTt37qwlS5ZoxIgRmjt3LsutASDJhB1Yu/baa1sdE8+OoAAAoJ04dEh65JGGLLHsbGnKlIDMNEtG8rR+qO/KLbfObXmArwD/0qXSZ5+RmQYg4Vwul5xOZ7OVPZ999pmcTqfKy8sJrgFAEgk7sLZo0aJ4ngcAAGhvmgbQpk+X7rxTWrDAu+yziXAz057VD/QDhdmp3G6XSksl3qQmlcZL4KjfhvbE4/GouLg4aLkc37aSkhIVFhYe1d8Ef2MAEDthB9YAAABiZtas5gG0GTMCstKk8INp22WXXdWhB1mW9/j33iudeKI3Ey4vz7vsE0mj8RI4H7vdrrKyMrJ0kPbcbnfA3G/KGKPt27fL7XZHXeOQvzEAiC0CawAAIL6aNh34y1+k3wbp1nkkqBZuMK1eVuiKaTZbYOAuiuw0sjraVktL4Kqrq1kCh3ahpqYmpuOa4m8MAGKPwBoAAIifYE0Hggg3mBZW84HGddN6924I6EWYnUZWR9tqbQmcZVkxWQIHJLPs7OyYjmuMvzEAiI8OiT4BAACQplwuyekMGlT7Rl1kyfi/QjGNRgbV9A2g3S6Vl3sfOz/f2/ggPz/ioJrT6Wy2JMuX1eFyucI+FsITyRI4IF3l5eXJbrfLsoJf7yzLUk5OjvLy8iI+Nn9jABAfBNYAAEDseTzeTLVGmRGrNdYfIuumb0LevdVgmuTNTLMsb2ZaRYW0eLH3+9atR9WMINzi4Z4gDRYQvXgvgQNSgc1mU1lZmSQ1C675bpeWlkaVUcbfGADEB4E1AAAQe263VFWlO3S/P0R2jlaHvEtYwbTGYpCZFvzUyepIhHgugQNSicPhUHl5uQYMGBCwfcCAAUdVA42/MQCID2qsAUAcUfgc7VGnTtLBg/lSGHXTwg6iSdLPfy5973tR10wLF1kdieFbAlddXR00W9CyLNnt9qiWwAGpxuFwqLCw0P9/CEn64IMP1KlTp6iPyd8YAMQHGWsAECcul0u5ubkqKChQUVGRCgoKlJubS20mpCXfqkzLkg4eDD221cy0prWFbDbpF7+QHnggpplpLSGrIzHiuQQOSEU2m035+flyOp3+20d7PP7GACD2CKwBQBxQ+BztQeNgWijT9XB4yzx9AbQDB6QHH5RuvdX7fd8+ad682J58CPEsHo7QWloCZ7fbj2oJHNCUx+NRZWWllixZosrKynZTM5G/MQCIPZaCAkCM0c4eKenQIemRR6QtW6QhQ6Tp06XMzGbDWgui+bz5plTw5ZGuoFLgqlDfQZYs8S7rDPaYJSVRP5Wj5cvqcDqdsiwr4G+ZrI74a7oEjmX0iDWXy6Xi4uKAD7/sdrvKysraRWCJvzEAiC0CawAQY5EUPs/Pz2+7EwNaMmuWtGCBt5Onz8yZ0owZ0rx5YQfTvvxS6tGj8RaHt7lAcbHU+G/CbpdKS4+qc2e8+bI6gr35Li0tbRdvvhPJtwQOiDVfRnnTD798GeXtJWsr3n9j1JgF0J4QWAOAGKPwOVLKrFnS/PnNNluew9J8eb9CCJKYGcjhkAoLvV1C49x0INbI6gDSCxnlbaO9ZwQCaH8IrAFAjFH4HCnj0CFvppq8KzU7hNHFUwojmNaUzeZtNpCCyJwC0gcZ5fFHRiCA9ojmBQAQYxQ+R1LweKTKSm8ds8rKwGWeR+yav1CW57AsmVaDasY0fAFAKiKjPL5aywiUpJKSknbTKAJA+0FgDQBijHb2SDiXS8rNlQoKpKIi7/fcXMnl0l//2tDJs/edPw55GH8nz1t/0ianDQDxREZ5fEWSEQgA6YTAGgDEAe3s0WaaZqaVl3s7cTZ6c/Mj/a+squ2yJjs0YULow/mDaWoUFB4yJC6nDgBtiYzy+CIjEEB7RY01AIgTCp8jpjye5g0AXn65ecdNm00y3tBYuAKCaE3ZbNL06Udx4gCQHHwZ5U6nU5ZlBSxZJKP86JERCKC9IrAGAHFE4XPEhMvVPIDWq5e0a1fAMEtGCqN0zYn2ffrn9i7eG7Nmhe78OWOGlJkZ+TkDQBLyZZQH61pZWlpKRvlR8GUEVldXB62zZlmW7HZ70IxAj8fDB5EAUhaBNQAAkknTzLQvvpCuuKJ514AjQbVwM9Me0M/1c3k7gGreYklTjvx7nvf7ggWBDQ5sNm9QzbcfANIEGeXxEW1GoMvlChroLCsrI9AJICUQWAMAIFkEy0w7srSzsXCDaR/rFJ2ijc13NF2GM2+e9KtfSY88Im3Z4q2pNn160mWqkdEAIFbIKI+PSDMCXS6XnE5nswy36upqOZ1O6tICSAkE1gAASJRDhxqCWd98Iz31VPPMtCNZZOEG0w6oozrqUPCdliXZ7d76bE1lZkolJeGfexsjowEAUkO4GYEej0fFxcVBl40aY2RZlkpKSlRYWMiHKACSGoE1AAASYdas5ssvmwg3mBay+YD/YEfGlJZ6s+BSCBkNAJBawskIdLvdAR+WNGWM0fbt2+V2u8kuBJDUCKwBABBvTeumvfKK9MADzYbVy5JN9WEdstVgms0WGLSz271BtRQLQJHRAADpqaamJqbjACBRCKwBACJCnasIBaub1shnytYAfRbWoSLKTFuyROrTpyGYl5eXcplqEhkNAJCuspvW+zzKcQCQKATWAABho85VKw4dkh5+uKEBQHa2NGVKs7ppy/Q9XaplYR2yxWCaZXmP26uXv0OopJTNTGsJGQ04GnwQACSvvLw82e12VVdXB81KtixLdrtdecHqggJAEiGwBgAIC3WuwpCVJdXWBt01VQv1lKaGdZigwbSWlnYWFgYuM03RzLSWkNGAaPFBAJDcbDabysrK5HQ6ZVlWwP8vrCPZ16WlpQTDASQ9AmsAgFZR56qJxt08hwyRPvtMOuecZo0IOuqADqljWIcMmZkmhV7amcZLIMloSLxUzPrigwAgNTgcDpWXlwcNgpeWlvJ3CiAlEFgDALSKOleNBOvm2bmzN7Cm8Dt53qDf6/ea1vrANFvaGSkyGhIrFbO++CAASC0Oh0OFhYUpF8AHAB8CawCAVlHn6ohZs6T585ttzty/T7pMkvaFvPsyfU/f0yutP86VV3qXeKbh0s5okNGQGKma9cUHAUDqsdls/D0CSFkE1gAAraLOlbzLPxcs8N8MNzOtRlnK0s7wHsNmk2bMkObNi+YM0xoZDW0rlbO++CAAAAC0JQJrAIBWUedK0iOPyPIcDmuoRx3UIVTgrXHdtJqahlpt06dLmZkxONn0REZD20nlrC8+CAAAAG2JwBoAoFXtuc6V5e8pUBJy3EsvvayJU6YoY//+1g/azuumIfmlctYXHwQAAIC21CHRJwAASA2+OlcDBgwI2G6325O21lIzHo9UWenNFKusbNbFU/Ku+LSshq9QjCwZWTrUuUvogTNnShUV0uLF3u9btxJUQ1JL5awv3wcBUkPg3yfdPwgAAABtj4w1AEDYUqbOlccjud3eZZa+BgAvvywVF0uNl7fZ7VJZmbaOdOiEE8I7tFEr0bbGqJmGFJXqWV80vAAAAG2FwBoAICJJX+fK5WoeQOvVS9q1K2DY8/q+rqx6Xprc+iH9cYVZs6TmTUEb3Hqr1L8/NdOQ8tJh+XfKfBAAAABSGoE1AED6cLkkp7NRJOyII0G1m/WIHtPNYR0qSJJOQ+bZggWBy0h9b9R//WspIyPCkwaSUzpkfSX9BwEJ4vF4CDgCABAjBNYAAOnB4/FmqjWJiHXRN9qvVmqgSTrr5L16Z2P31h9n3jzpV7+SHnmkITNt2jTpjTeiPXMgaZH1lX5cLlfQYGlZWVlKBEsBAEg2BNYAAOnB7fYv/7QULN2sud9qhmboQe+NuxdLmhLeY2VmSiUlDbfr6sI/TyDFkPUVG8mQJeZyueR0OpvVzauurpbT6UydRjQAACQRuoICANKCVZB/pEdn6KDa+zrD383TH1STvE0OACAOXC6XcnNzVVBQoKKiIhUUFCg3N1cul6vNzsHj8ai4uDhoMwrftpKSEnmCdEsGAAAtI7AGAEguHo9UWSktWeL9HuJNnmU1fIWyV8f6g2lnaH3zg+TkeDuHAkCM+bLEGi+9lBqyxNoquOZ2u5udQ2PGGG3fvl1ut7tNzgcAgHRBYA0AkDxcLik3VyookIqKvN9zc73bjwg3mGb8+WuWjlVt8EG+g5SWNjQgAIAYSaYssZqampiOAwAAXgTWAADJwdfRs2lGRXW1rMmO8IJpf3LJWB1krCYvb7479uoVuN1ul8rLJWoKAYiDcLPE1qxZE/dzyQ5zuXu44wAAgBeBNQBA4jXp6LlfnRryzUx9yLsa0/Alh8MbKBswIHCQ3S796U/Szp1SRYW0eLH3+9atBNUAxE242V87duyI85lIeXl5stvtslr4hMKyLOXk5CiPZfEAAESErqAAgMRzu7W5qpNOCrObZ5BVVQ0cDqmw0NsltKbG25QgL69hqSfdDQG0kXCzv7KysrR37964novNZlNZWZmcTqcsywpYnuoLtpWWlrZ5p1IAAFIdGWsAgIT505+O1EsryNdJ2hxyrJEls3hJ6KCaj83mDaBNmeL9zhtFAAkQbpbY2LFj2+R8HA6HysvLNaBJVq/dbld5ebkcZPACABAxMtYAAG3qllukRx5pfVxf7dROZQVupPYPgBSSjFliDodDhYWFcrvdqqmpUXZ2tvLy8shUAwAgSgTWAABx17ev9J//tD7uNs3VHN3efIdleeukUfsHQIrxZYkVFxcHNDKw2+0qLS2Vw+FQXV1dm56TzWZTPsviAQCICQJrAIDIeDwt1y9rpLUOnj6vvipdfLGOdAW9Q5IVWETNd6DSUpZ0AkhJZIkBAJC+CKwBAMLncnm7dzbKupDdLpWVSQ5H2MG0Tz+VBg5sstHX0TPY8UtL6d4JIKWRJQYAQHoisAYACI/LJTmdzVpyWlXbpcmt3/3gQSkzs5VBrXX0BAAAAIAkQmANANA6j8ebSXYkqGYpnNaczWJw4fF19AQAAACAJEdgDQDQKvOWWx2qtoc3NppgGgC0IY/HQ70zAAAQEx0SfQIAgOT01VfevgGWJXU4Pz/kWCPL+7V4SducHABEyeVyKTc3VwUFBSoqKlJBQYFyc3PlcrkSfWoAACAFEVgDAPitW9cQTOvRI/RYfzBNjToWZGfH8/QA4Ki4XC45nU5VNW6QIqm6ulpOp5PgGgAAiBiBNQBIRx6PVFkpLVni/e7xtDj0f/+3IZg2cmTowxqrQ/NgmuS9c06Ot9EAACQhj8ej4uJimSDr1X3bSkpK5AlxvQQAAGiKwBoApBuXS8rNlQoKpKIi7/fcXO/2I5zOhmDajTe2fKjzzvPWTDNGMn86cn8rSFBNkkpL6d4JIGm53e5mmWqNGWO0fft2ud3uNjwrAACQ6gisAUA6cbm8UbOmbx6rq2VNdviDaX/6U8uHeOCBhmBaZWWjHQ6HVF4uDRgQeAe73bvd4YjVswCAmKupqYnpOAAAAImuoACQPjweqbg4oC2npSP/bqVT58qV0jnnhPEYDodUWCi53VJNjbemWl4emWpHeDwerVq1ik6DQBLKDrMGZLjjAAAAJAJrAJA+3G6pqqohmNaKzz+X+vSJ4nFsNik/P4o7pr8RI0bok08+8d+22+0qKyuTg2w+IOHy8vJkt9tVXV0dtM6aZVmy2+3Ko1YkAACIAEtBASANWJZkFeS3GlQ7LJvM4iUyJsqgGoJatmyZJG9nwcboNAgkD5vNprKyMkneIFpjvtulpaVkmQIAgIgQWAOAZBJBN09fvbSmvQSa8nXxNLJkU713+SZixuPx6Lbbbgu6j06DQHJxOBwqLy/XgCa1Iu12u8rLy8kuBQAAEWMpKAAkC5fLWyOtceMBu10qK5McDnk80jFhXrWNgkTbLMt7PJY5xZTb7W6WqdZY406D+SyhBRLO4XCosLBQbrebeogAAOCoEVgDgETweAIbAHzxhXTFFQGNByTp86pD6jc5vAwKY9TQFVRW4LF8aW2lpTQaiLFYdxr0eDy84QfizGazEegGAAAxQWANANpasMw0m80fCFuls/VdrQrrUM3qbzscUnl58My30lLvfsRULDsNulwuFRcXq6rR744GCAAAAEDyIrAGAPHUNDPtP/+RrryyWUTsIc/N+qkeCuuQQZrZBXI4pMLCwMfNyyNTLU7y8vKa1WtqLNxOgy6XS06ns1m3Ql8DBOo/AQAAAMmHwBoAxEsrmWk/0LP6o37Q6mGu1FIt1RRp8WJpypTwHttmk1jm1CZsNpvmzp0rKfpOgx6PR8XFxc2CapK3RptlWSopKVFhYSHLQgEAAIAkQldQAIgHX62zxkE1ST08X/h7dIYKqi3WFH8nz6U6Ekyjm2fSmjRpkiSpf//+AdvD7TTodrsDln821bgBAgAAAIDkQcZamqHoNZAEPB5vptqR7CNLra3d9PpYp+gUbWy+g26eKePDDz/U22+/HfE1ONYNEKLB6wcAAAAQOQJraYSi10CScLtlVW0Pa2ituqqr9rU8gG6eKSXaToOxbIAQDV4/AAAAgOiwFDRN+IpeN11K5Ct67XK5EnRmQPthWUe+CvJDjqv3Lwa1mgfVmgbP7HZvl88Igxsej0eVlZVasmSJKisr5fF4Iro/2lZeXp7sdnuzGm0+lmUpJyen1QYI0eD1AwAa8PoJAIgUgbU00FrRa0kqKSnhPwZAHPiDacHjIX6mUTAt6FDfQZYskSoqvI0KKiqkrVsjDqq5XC7l5uaqoKBARUVFKigoUG5uLgGSJGaz2VRWViYp+gYI0eD1AwAa8PoJAIgGgbU0QNFr4Ch5PFJlpTeoVVnpvd2CuroIgmlWB38wrZmWMtO+/31vN88pU7zfIwykkH2UuhwOh8rLyzVgwICA7eE2QIgGrx8A4MXrJwAgWtRYSwPJUPQaSFkul7fRQOP/SNvtUlmZP1Ns504pKytDUmGrh/Mn/rhcklPe6FvjbCBfNG7pUql3b6mmxtvtMy/vqGuotZZ9ZFmWSkpKVFhYSFH6JOVwOFRYWNhmTQR4/QAAXj8BAEeHwFoaSHTRa4luckgRHo/kdjcEs/7zH+nKKwMDX5JUXa23J8/XWLWeIdStm/T110F2OBzeDLRgQbvS0oiXd4YjkuyjaArso21E2wAhGsnw+gEAicbrJwDgaBBYSwO+otfV1dVBP2mzLEt2uz0uRa8luskhRQTLTLPZAoJqT2iabtITUvM/owBXXulNOGuVwyEVFgYG82KQmdYSso8QqUS/fgBAMuD1EwBwNKixlgYSVfRaoh4FUoTLJTmdgUE1SfJ4NFGv+NsK3KQnWjzE737n0UsvvaxDh+rCC6r52GxHVTMtEmQfIVKJfP0AgGTB6ycA4GgkNLD21ltvadKkSerfv78sy9JLL70UsN8Yo7vvvlvZ2dnq3Lmzxo8fr82bNweM2b17t66++mp1795dPXr00A033KDa2to2fBbJIRFFr+kmh5Tg8Xgz1RrNU6tRj87XNLHFu67UOTKLl8gY6cc/rm+Lsz0qvuyjpgESH8uylJOTQ/YRAiTi9QMAkkmsXz89Ho8qKyu1ZMkSVVZW8n9hAEhzCQ2sffPNNzr99NP18MMPB90/b948/e53v9Njjz2md955R127dtVFF12kAwcO+MdcffXV+vjjj7V8+XL95S9/0VtvvaUbb7yxrZ5CUnE4HNq2bZsqKiq0ePFiVVRUaOvWrXF7U0Q3OaQEt1uqqgoIpoVSrf7+kedotXf5Zoog+wjRauvXDwBIJrF8/XS5XMrNzVVBQYGKiopUUFCg3NxcVnEAQBpLaI21iy++WBdffHHQfcYYlZaW6s4771RhobcT3zPPPKN+/frppZde0lVXXaWNGzfq9ddf17vvvqszzzxTkvTQQw9p4sSJeuCBB9S/f/+gxz548KAOHjzov713715JUl1dnerq6mL5FBPinHPO8f+7vr5e9fXxybSpqalR586dwxqXCj9X3zmmwrkiPJmZGZLy1VrRtK879VBH65D/dp06e7t3Dhggfec7UqNrQ7LPj0mTJqm8vFy33Xabqqur/dvtdrvmzJmjSZMmJf1zSAUej0dr1qzRjh07lJWVpW9/+9uSkn9+tKatXj/am1S5fiBxmCOJF4vXz2XLlumaa66RMSbg/8i7d+/WNddc43+cSDE/EArzA6EwP6IXyc/MMsHW8SWAZVl68cUXddlll0mS/vWvf2nIkCF6//33dcYZZ/jHnXfeeTrjjDNUVlamhQsX6uc//7m+/PJL//7Dhw+rU6dOeuGFF3T55ZcHfazZs2fr3nvvbbZ98eLF6tKlS0yfF4C2ddllhWGNe+mll+N8JgAAAACAVLRv3z4VFRXpq6++Uvfu3UOOTdquoDt27JAk9evXL2B7v379/Pt27Nihvn37Buw/5phj1LNnT/+YYO644w7NmDHDf3vv3r3KycnRhRde2OoPDA08Ho9GjBihzz77rMVucgMGDNAHH3yQEkvP6urqtHz5cl1wwQXKyMhI9OkgTMZIHTuG9/s61LlR4HxKox02m7cWm4/dLs2ZIzX6VJn5ASkwG6GxLl266Mknn5TH44kqGwHpjesHWsMcSX0rV67UJZdc0uq4V155Rd/97ncjOjbzA6EwPxAK8yN6vpWN4UjawFo8dezYUR07dmy2PSMjg8kWgYyMDM2dO1dOp1OSAt5o+upRzJkzR506dUrI+UWLeZD89u+Xwk0uNUYNXUEPKKCJgXx1VJ5/XurdW6qp8dZUy8trsXsn86P98jVs2bdvX4tjbr/9dhUWFqbEhwloe1w/0BrmSOrasWOH9u/fH9a4aH/HzA+EwvxAKMyPyEXy80po84JQsrKyJEk7d+4M2L5z507/vqysLH3++ecB+w8fPqzdu3f7xyC+6CaXnNKxG9Wnn3rjYJbVelDNmIYvSZLDIZWXe2umNWa3e7c7nVJ+vjRlivc7QREE0VrDFkmqqqqiYQsAtEPZYTY7CnccACB1JG3G2uDBg5WVlaUVK1b4a6zt3btX77zzjm6++WZJ0tixY7Vnzx6tXbtWo0ePliS9+eabqq+v15gxYxJ16u2Ow+FQYWGh3G63ampqlJ2drby8PDI2EsTlcqm4uDggAGC321VWVpZcgU6Px9uxM0SW2BtvSBdc0PqhhgyRPvmklUEOh1RY2OpjAi2pqamJ6TjEjsfj4TUIQELl5eXJbrerurq6xRIpdrtdeXl5CTg7AEA8JTSwVltbq08avRveunWr1q1bp549e2rgwIEqKSnRr371K5144okaPHiw7rrrLvXv39/f4GD48OGaMGGCpk2bpscee0x1dXW69dZbddVVV7XYERTxYbPZlJ+fn+jTaPdcLpecTmez/9BVV1fL6XQmTxahyyUVF0uNs3/sdqmsTPM+cei221o/xPTp0sMPR/i4Nps3Iw2IAtkIySllPkwAkNZsNpvKysrkdDplWVbQEimlpaUE/QEgDSV0Keh7772nkSNHauTIkZKkGTNmaOTIkbr77rslSbNmzdJPfvIT3Xjjjfr2t7+t2tpavf766wE1u/74xz/q5JNP1rhx4zRx4kR997vf1RNPPJGQ5wMkkq/+U7BPSX3bSkpK2n5ZqMcjVVZKS5Z4v7/wgnfpZaM3wRP1iqyq7bImhw6q/eEPDUs8Iw6qAUfJl43ge4MUDNkIbcv3YULTJbq+DxNcLleCzgxAe0SJFABonxKasZafnx80COBjWZbuu+8+3XfffS2O6dmzpxYvXhyP0wNSSmv1n4wx2r59u9xud9tlFwbLTLPZJGOUo3+rSjmtHuL996Ujq8GBhAonG2HOnDlkI7SR1j5MsCxLJSUlNJMA0KYokQIA7U/S1lgDEJmkq//k68TZOPggI4WRMLfr5ZXqeWlkrejTBbWikpsvG6Hp0kNfdsKkSZMSdWrtTlJ+mAAAokQKALQ3BNaANNFm9Z/CaDogj8ebqWaMN5gWhsOyyaZ6741v2mcWKrWiUkOwbITvfOc7+utf/5roU2tXku7DBAAAALRLBNaANNEm3ahCNB1Qo8CPdYxN0vZWD2fUQq2qdlj8PWUaT0BS82yEurq6xJ1MO0UzCQAAACSDhDYvABA7vvpPkpoVV4+qG1UYTQckSdXVMpOdsiz5v0Lx5rBZwYNqliXl5Hiz4NqRpG08ASSx1ppJWJalnJwcmkkAAAAgrgisAWkkZt2oXC4pN1cqKJCKirzfp0wJqJe2T5294TFTrw6+JZwtCBlM8/G9OS4tbb60NM1FUisKgFfMP0wAAAAAokBgDUgzDodD27ZtU0VFhRYvXqyKigpt3bo1sqBasMw0j0c1yvKHyLpqX4uHGDHCyNhzZKwOLQfTmr7Ztdul8vKAJaXtBbWigOjE7MMEAAnj8XhUWVmpJUuWqLKykuxsAEDKocYakIai7kbVqOmAz1qN0pla2+pdp+thPby4pzezTZbkKvMG6Cwr4Hj+zLSlS6XevUM3QWgnqBUFRC9YMwm66QKpgaY9AIB0QGANQAO3W6qq0hsapwv0RqvDn9T1ul6LGjZkVzT82+HwZqAFa3ZQWtouM9Na0iaNJ4A0FvWHCQAShqY9AIB0wVJQAJKkJ56QrIJ8WTIhg2r/TyP99dJ8QTUjBW864HBI27ZJFRXS4sXe71u3ElRrglpRAID2hKY9AIB0QmANSEdNO3q28B/Tn/2soZPnTTe1fLgaZfmDaSO1LmBfvbyBtbevuir4Uk6bTcrP9y4Rzc9vt8s9W0OtqNiiZg8AJC+a9gAA0glLQYF043IFX35ZViY5HCoo8MbaWnNAHdVRhwK21R/5anzhqJL0M0nvLl2qrb/5DVlVR4FaUbFBzR4ASG407QEApBMCa0A68XX0bLK0okvVJu2f3KXVu9fXS9aLR44hHVnjeWTfke9XSfpCUrakGklu374jnyxT5+joUCvq6FCzBwCSH017AADphKWgQLpo0tHT8i/eNNqvloNqxjR8WZYamg40WZJYJckp6U+S/i5p6ZHv9Y3GBPtkmSV5aCvU7AGA1OBr2tO0rqiPZVnKycmhaQ8AICUQWAPSRP3f3bKqtvuDaS3J6XsgIJgWVJOmA+sefFCDJb3Yyjk0/WTZ5XIpNzdXBQUFKioqUkFBgXJzc+VyuSJ5akBYqNkDAKmBpj0AgHRCYA1IYQcONDQfsI3Lb3GcQ3/y56/9u7S18NgRjZoOjPjJT9Q/wk+WfUvymgY6fEvyCK4h1qjZAwCpg6Y9AIB0QWANSDG7djUE0zp3bnncIl3nD6b9Sc6GHVHUK4n0k2WW5CERqNkDAKnF4XBo27Ztqqio0OLFi1VRUaGtW7cSVAMApBQCa0AK2LKlIZjWu3fL41b0vlLG6iAjS9fp6cCdliXl5EhR1iuJ5JNlluThaERbl4+aPQCQenxNe6ZMmaL8/HyWfwIAUg6BNSBJrV7dEEwbOrTlcR991FAv7fzHr/RubBpY8N0uLfUu8YxSuJ8ssyQP0TqaunzU7AEAAADQ1gisAfHk8UiVldKSJd7vrWTelJc3BNPOOaflcTU1DcG0U09ttKOFjp6y273bY7C0IpxPllmSh2jEoi4fNXsAAAAAtKVjEn0CQNpyuaTiYqlxkMBul8rKAgJc8+dLs2a1frjaWqlr1zAe1+GQCgslt9sbgcvO9i7/bMMsHd+SvOrq6qB11izLkt1uZ0ke/Fqry2dZlkpKSlRYWNhqxpnD4VBhYaHcbrdqamqUnZ2tvLw8MtUAAAAAxByBNSAeXC7J6fSmlDVWXS05nZo2bot+/8bgVg9z+HCU8TBfR88E8S3JczqdsiwrIFjCkjwEE0ldvvww5rYvsxIAAAAA4omloECseTzeTLUmQbVztFKWqZdl6lsMqnXq1LDE05g2TTKLOZbkIRLU5QMAAACQishYAyLl8YReZul2+5d/dlWt9in0+s0xY6S3347nCScOS/IQLuryAQAAAEhFBNaASLRSN83jkY4pyJfUvE5UY9frST25uIs0ZUo8zzYpsCQP4aAuHwAAAIBUxFJQIFy+umlN6kDtq9ota7JDliUdEyJU/RvdLiNLRpae1I+82W4AJDXU5ZMa6vD5UJcPAAAAQLIisAaEo0ndtJ3qeyREZtRV37R4t+d0hT+YdrvmejdalpST411CCsCPunwAAAAAUg1LQYFwuN2qqjLKaWWJpyStXCmds/NIdpsUuCrUl4lTWpranQmAOKEuHwAAAIBUQmANCOHjj6VvfUuS8iVVtThus4ZqqLZIixdL50yR5JDKy4PXYystlci8AVpEXT4AAAAAqYLAGtCE221p3LjWx/1HvdVbuwI3Nq6b5nBIhYWhO4gCAAAAAICURWANkPTCC9IVV2RIKmxxTK7t39rkOVGZOtR8p2V5s9Ga1k2z2SQybwAAAAAASEs0L0C7VVbmjYdZlnTFFcHHnH++VF/v7Vmw9fn3lGnVNdRJ86FuGgAAAAAA7RKBNbQrM2c2BNNKSoKPmTq1XsZ4g2krVjSKozmO1E1r0rFQdrt3O3XTAAAAAABoV1gKirRmjDR5svTii6HH3XefdPvtdXr11Vc1ceJEtRhzpm5aWvJ4PHShBAAAAABEjMAa0o7HI40eLa1fH3rcwoXS1KkNt+vqwnwA6qalFZfLpeLiYlU16t5qt9tVVlYmB1mIAAAAAIAQCKwhLezfL/XrJ339dehxr74qXXxx25wTkp/L5ZLT6ZQxJmB7dXW1nE6nysvL4xZcI0sOAAAAAFIfNdaQsnbtaqiX1qVLy0G1d9+Vv2YaQTX4eDweFRcXNwuqSfJvKykpkcfjiflju1wu5ebmqqCgQEVFRSooKFBubq5cLlfMHwsAAAAAED8E1pBStm1rCKb17t3yuE8+aQimnXlmm50eUojb7Q5Y/tmUMUbbt2+X2+2O6eP6suSaPrYvS47gGgAAAACkDgJrSHrr1jUE0wYPbnnc5583BNOGDGmz00OKqqmpiem4cCQySw4AAAAAEHsE1pCUli9vCKaNHBl8TKdOUm1tQzCtT5+2PUektuzs7JiOC0eisuQAAAAAAPFBYA1J4w9/aAimXXhh8DGnnOLt3mmMt2FB165te45IH3l5ebLb7bIsK+h+y7KUk5OjvLy8mD1mIrLkAAAAAADxQ2ANCTV3bkMw7Zprgo/53vek+npvMO3jj6Vj6GWLGLDZbCorK5OkZsE13+3S0tKYdupMRJYcAAAAACB+CKwhNjweqbJSWrLE+z1Ejajp0xuCabffHnzMT37SsMRz2TLvWCDWHA6HysvLNWDAgIDtdrtd5eXlcjgcMX28RGTJAQAAAADih9wfHD2XSyoulhrXjrLbpbIyyeGQMdLFF0t//Wvow8ybJ/3iF/E9VaAph8OhwsJCud1u1dTUKDs7W3l5eTHNVPPxZck5nU5ZlhXQxCBeWXIAAAAAgPghsIaj43JJTqc3tayRuqqdOnXyt7S5lbsvXixNmRK/0wPCYbPZlJ+f3yaP5cuSKy4uDmhkYLfbVVpaGvMsOQAAAABA/BBYQ/Q8Hm+m2pGgWq26qof2yNPKtFqxQjr//LY4QSA5tWWWHAAAAAAgfgisIXput2qrvtSdelBlKgk5dN066fTT2+SsgJTQlllyAAAA4fB4PHzwBwARIrCGiO3aJc2YIT3zTL6k2hbHfaqBGqjt3vWep7PeEwCAtsQbZACRcLlcQUtVlJWVUaoCAEKgKyjCUlUlXXqptztn797SM880H/MLzdNeHSsjS0aWN6gmSdnZbXuyAAC0cy6XS7m5uSooKFBRUZEKCgqUm5srl8uV6FMDkIRcLpecTmdAUE2Sqqur5XQ6uXYAQAgE1tCif/5TysvzBtNycqRly5qPmXvcr3VImTKyNE+36djGGWy+O+bltd1JAwDQzvEGGUAkPB6PiouLA7qV+/i2lZSUyOPxtPWpAUBKILCGAGvXSt/6ljcmNmyYtHJl8zFPPOHtW2CMNGvhcGVYh713aMx3u7RUYtkJAABtgjfIACLldrubBeIbM8Zo+/btcrvdbXhWAJA6CKxBFRXSgAHeWNiZZ0offxy4PyNDev55qb7eG0ybNk3q4Js5DodUXu49QGN2u3c79RgAAGgzvEEGEKmampqYjgOA9obmBenG45HcbqmmxlvbLC8vaMbYiy9KV18t7d8f/DD9+knPPitdcEEYj+lwSIWFYT0uAACIH94gA4hUdpj1kMMdBwDtDYG1dOJyScXF3k4DPna7VFYmc7lDixZJN9zQ8t1PPll6+mnprLOieGybTcrPj+KOAJD+6M6ItsIbZACRysvLk91uV3V1ddBl5JZlyW63K4+6yQAQFEtB04XLJTmdAUG1w7Lpt1VXyprsUIcOwYNqY8d6l34aI23cGGVQDQDQIrozoi353iBbTWufHmFZlnJycniDDMDPZrOprKxMkppdO3y3S0tL+UAIAFpAYC0deDzeTLUjnzDt0XGyZJShw5qpB5oNnzhR+vRT7/DVq6VTTmnrEwaA9oHujGhrvEEGEA2Hw6Hy8nINaFI32W63q7y8XA7qJgNAiwispQO3OyBT7X81rdmQq/UHff7iKhkjvfKKNHBgW54gALQ/dGdEovAGGUA0HA6Htm3bpoqKCi1evFgVFRXaunUr1wwAaAU11tJBkwLEU7VI/6eT1UX7dL9+qWNV692xf7Gkc9r+/ACgHYqkO2M+NSoRYw6HQ4WFhdT2AxARm83GaxIARIjAWjpoUoC4t3bpSf2o1XEAgPihO2NqSccGE7xBBgAAiD+WgqaDvDxv988WChXLsqScHO84AECboDtj6qDBBAAAAKJFYC0d2GzSkULFzYJrvtulpd5xAIA2QXfG1ECDCQAAABwNAmvpwuGQysulJoWKZbd7t1N0FADaFN0Zkx8NJgAAAHC0CKylE4dD2rZNqqiQFi/2ft+6laAaACQI3Rmj4/F4VFlZqSVLlqiysjJuga1IGkwAAAAAwdC8IN3YbBKFigEgadCdMTIul0vFxcUBAS+73a6ysrKYByJpMAEAAICjRWANAIA4oztjeHz1zpouzfTVO4t1lh8NJgAAAHC0WAoKRKitligBQHuSiHpnNJgAAADA0SKwBkTA5XIpNzdXBQUFKioqUkFBgXJzc+kaBwBHKRH1zmgwAQAAgKNFYA0Ik2+JUtM3fr4lSgTXACB6iap3RoMJAAAAHA1qrAFhaG2JkmVZKikpUWFhIZkNABCFRNY7o8EEAAAAokVgDQhDJEuUKFAOAJHz1Turrq4O+iGGZVmy2+1xq3dGgwkAAABEg6WgQBgStUQJANoL6p0BAAAgFRFYA8KQyCVKANBeUO8MAAAAqYaloEAYEr1EKRE8Hg/1hgC0OeqdAQAAIJUQWAPC4Fui5HQ6ZVlWQHAtHZcouVwuFRcXB9SVs9vtKisrI2MEQNxR7wwAAACpgqWgQJjayxIll8slp9PZrFlDdXW1nE6nXC5Xgs4MAAAgMh6PR5WVlVqyZIkqKyvl8XgSfUoAgDRDxhoQgXRfouTxeFRcXBx0uasxRpZlqaSkRIWFhWnznAEAQHoiAx8A0BYIrAERSuclSm63u1mmWmPGGG3fvl1utzttfwYAACD1+TLwm35Y6MvAT6fVBgCAxGIpKAC/mpqamI4DAABoa61l4EtSSUkJy0IBADFBYA2AX3Z2dkzHAQAAtLVIMvABADhaSR1Ymz17tizLCvg6+eST/fsPHDigW265Rb169VK3bt00efJk7dy5M4FnDKS2vLw82e12f6fTpizLUk5OjvLy8tr4zAAAAMJDBj4AoC0lfY21U089VW+88Yb/9jHHNJzyz372M73yyit64YUXdNxxx+nWW2+Vw+HQqlWrEnGqQDMejyelGh3YbDaVlZXJ6XTKsqyAJRS+YFtpaWlSPwcglaTaNQKxxxwAYo8MfABAW0rqjDXJG0jLysryf/Xu3VuS9NVXX+nJJ5/UggULdP7552v06NFatGiRVq9erbfffjvBZw14i+bm5uaqoKBARUVFKigoUG5urlwuV6JPLSSHw6Hy8nINGDAgYLvdbqfQLxBDqXqNQOwwB4D4IAMfANCWkj5jbfPmzerfv786deqksWPH6je/+Y0GDhyotWvXqq6uTuPHj/ePPfnkkzVw4ECtWbNG3/nOd1o85sGDB3Xw4EH/7b1790qS6urqVFdXF78ng6Tm+93HYg4sW7ZM11xzjYwx6ty5s3/77t27dc0110iSJk2adNSPEy+TJk3SxIkTtWbNGu3YsUNZWVkaO3asbDZbu/0bieX8QPqJdH6k+jUCkQk2P5gDaIzXmNgrKyvz/y21lIFfX1+v+vr6hJxfJJgfCIX5gVCYH9GL5GdmmWDtcpLEa6+9ptraWg0bNkw1NTW69957VV1drY8++kjLli3T1KlTAwJkknTWWWepoKBAc+fObfG4s2fP1r333tts++LFi9WlS5eYPw8AAAAAAACkhn379qmoqEhfffWVunfvHnJsUgfWmtqzZ48GDRqkBQsWqHPnzlEH1oJlrOXk5OiLL75o9QeG9FVXV6fly5frggsuUEZGRtTHWblypS655JJWx73yyiv67ne/G/XjoG3Fan4gPUUyP6K5Rixbtky33Xabqqur/fsHDBiguXPnktWUAprOD14n0BSvMfHj8XiCZuCnEuYHQmF+IBTmR/T27t2r3r17hxVYS/qloI316NFDJ510kj755BNdcMEFOnTokPbs2aMePXr4x+zcuVNZWVkhj9OxY0d17Nix2faMjAwmG456HuzYsUP79+8PaxzzLfVwnUAo4cyPSK8RLpdLTqdTTT8H27Jli5xOJ7UPU4hvfvA6gZbwGhN7GRkZKigoSPRpxATzA6EwPxAK8yNykfy8kr55QWO1tbXasmWLsrOzNXr0aGVkZGjFihX+/Zs2bdK///1vjR07NoFnifaOTlQAQonkGuHxeFRcXNwsqCY11AwqKSmRx+OJ6TkivnidAAAASB9JHVibOXOm/v73v2vbtm1avXq1Lr/8ctlsNk2ZMkXHHXecbrjhBs2YMUMVFRVau3atpk6dqrFjx4ZsXADEG52oAIQSyTXC7XarqqqqxWMZY7R9+3a53e54nS7igNcJAACA9JHUgbWqqipNmTJFw4YN0xVXXKFevXrp7bffVp8+fSRJDz74oL73ve9p8uTJOvfcc5WVlUWLeiSczWZTWVmZJDV709S4E1Wq1fcAEBuRXCNqamrCOma445AceJ0AAABIH0kdWFu6dKk+++wzHTx4UFVVVVq6dKmGDBni39+pUyc9/PDD2r17t7755hu5XK5W66sBbcHhcKi8vFwDBgwI2G6326mHBCDsawRLBtMXrxMAAADpIaWaFwCpxOFwqLCwUG63WzU1NcrOzlZeXh4ZCAAkhXeN8C0ZrK6uDlpnzbIs2e12lgymKF4nAAAAUh+BNSCObDab8vPzE30aAJJUa9cI35JBp9Mpy7ICgmssGUwPvE4AAACktqReCgoAQHvHkkEAAAAgeZGxBgBAkmPJIAAAAJCcCKwBAJACWDIIAAAAJB+WggIAAAAAAABRILAGAAAAAAAARIHAGgAAAAAAABAFAmsAAAAAAABAFAisAQAAAAAAAFEgsAYAAAAAAABEgcAaAAAAAAAAEAUCawAAAAAAAEAUCKwBAAAAAAAAUSCwBgAAAAAAAESBwBoAAAAAAAAQBQJrAAAAAAAAQBQIrAEAAAAAAABRILAGAAAAAAAARIHAGgAAAAAAABAFAmsAAAAAAABAFAisAQAAAAAAAFE4JtEnkAyMMZKkvXv3JvhMkEh1dXXat2+f9u7dq4yMjESfDpIM8wOhMD8QCvMDrWGOIBTmB0JhfiAU5kf0fPEhX7woFAJrkr7++mtJUk5OToLPBAAAAAAAAMng66+/1nHHHRdyjGXCCb+lufr6en322Wc69thjZVlWok8HCbJ3717l5ORo+/bt6t69e6JPB0mG+YFQmB8IhfmB1jBHEArzA6EwPxAK8yN6xhh9/fXX6t+/vzp0CF1FjYw1SR06dJDdbk/0aSBJdO/enYsOWsT8QCjMD4TC/EBrmCMIhfmBUJgfCIX5EZ3WMtV8aF4AAAAAAAAARIHAGgAAAAAAABAFAmvAER07dtQ999yjjh07JvpUkISYHwiF+YFQmB9oDXMEoTA/EArzA6EwP9oGzQsAAAAAAACAKJCxBgAAAAAAAESBwBoAAAAAAAAQBQJrAAAAAAAAQBQIrAEAAAAAAABRILCGtLV7925dffXV6t69u3r06KEbbrhBtbW1Ie9z4MAB3XLLLerVq5e6deumyZMna+fOnf79Tz31lCzLCvr1+eefS5IqKyuD7t+xY0dcny8iE4/5ISno737p0qUBYyorKzVq1Ch17NhRQ4cO1VNPPRXrp4ejFI/5sX79ek2ZMkU5OTnq3Lmzhg8frrKysoBjcP1IXg8//LByc3PVqVMnjRkzRv/4xz9Cjn/hhRd08sknq1OnThoxYoReffXVgP3GGN19993Kzs5W586dNX78eG3evDlgTDTzEIkRy/lRV1en2267TSNGjFDXrl3Vv39//fCHP9Rnn30WcIzc3Nxm14o5c+bE5fnh6MT6+nHdddc1+91PmDAhYAzXj9QR6/nR0nuV+fPn+8dw/UgdkcyPjz/+WJMnT/b/fktLS6M6ZjjvedCEAdLUhAkTzOmnn27efvtt43a7zdChQ82UKVNC3ufHP/6xycnJMStWrDDvvfee+c53vmPOPvts//59+/aZmpqagK+LLrrInHfeef4xFRUVRpLZtGlTwDiPxxOvp4ooxGN+GGOMJLNo0aKA3/3+/fv9+//1r3+ZLl26mBkzZpgNGzaYhx56yNhsNvP666/H5XkiOvGYH08++aT56U9/aiorK82WLVvMs88+azp37mweeugh/xiuH8lp6dKlJjMz0yxcuNB8/PHHZtq0aaZHjx5m586dQcevWrXK2Gw2M2/ePLNhwwZz5513moyMDPPhhx/6x8yZM8ccd9xx5qWXXjLr1683l156qRk8eHDA9SKaeYi2F+v5sWfPHjN+/Hjz3HPPmf/7v/8za9asMWeddZYZPXp0wHEGDRpk7rvvvoBrRW1tbdyfLyITj+vHtddeayZMmBDwu9+9e3fAcbh+pIZ4zI+m71UWLlxoLMsyW7Zs8Y/h+pEaIp0f//jHP8zMmTPNkiVLTFZWlnnwwQejOmY473kQiMAa0tKGDRuMJPPuu+/6t7322mvGsixTXV0d9D579uwxGRkZ5oUXXvBv27hxo5Fk1qxZE/Q+n3/+ucnIyDDPPPOMf5vvjfGXX34ZmyeDmIvn/JBkXnzxxRYfe9asWebUU08N2HbllVeaiy66KMpng1hrq+uHMcZMnz7dFBQU+G9z/UhOZ511lrnlllv8tz0ej+nfv7/5zW9+E3T8FVdcYS655JKAbWPGjDE33XSTMcaY+vp6k5WVZebPn+/fv2fPHtOxY0ezZMkSY0x08xCJEev5Ecw//vEPI8l8+umn/m2DBg0K+qYJySUe8+Paa681hYWFLT4m14/U0RbXj8LCQnP++ecHbOP6kRoinR+NtfQ7bu2Y0f6ftr1jKSjS0po1a9SjRw+deeaZ/m3jx49Xhw4d9M477wS9z9q1a1VXV6fx48f7t5188skaOHCg1qxZE/Q+zzzzjLp06SKn09ls3xlnnKHs7GxdcMEFWrVq1VE+I8RSvOfHLbfcot69e+uss87SwoULZYwJeOzGx5Ckiy66qMU5hrbXVtcPSfrqq6/Us2fPZtu5fiSPQ4cOae3atQG/2w4dOmj8+PEt/m5b+zvfunWrduzYETDmuOOO05gxY/xjopmHaHvxmB/BfPXVV7IsSz169AjYPmfOHPXq1UsjR47U/Pnzdfjw4eifDGIunvOjsrJSffv21bBhw3TzzTdr165dAcfg+pH82uL6sXPnTr3yyiu64YYbmu3j+pHcopkfsThmtP+nbe+OSfQJAPGwY8cO9e3bN2DbMccco549e7ZYq2jHjh3KzMxs9p/Wfv36tXifJ598UkVFRercubN/W3Z2th577DGdeeaZOnjwoH7/+98rPz9f77zzjkaNGnV0TwwxEc/5cd999+n8889Xly5d9Le//U3Tp09XbW2tfvrTn/qP069fv2bH2Lt3r/bv3x8wl5AYbXX9WL16tZ577jm98sor/m1cP5LPF198IY/HE/Tv9v/+7/+C3qelv3PfXPB9b21MpPMQbS8e86OpAwcO6LbbbtOUKVPUvXt3//af/vSnGjVqlHr27KnVq1frjjvuUE1NjRYsWHCUzwqxEq/5MWHCBDkcDg0ePFhbtmzRL3/5S1188cVas2aNbDYb148U0RbXj6efflrHHnusHA5HwHauH8kvmvkRi2NG839aEFhDirn99ts1d+7ckGM2btzYJueyZs0abdy4Uc8++2zA9mHDhmnYsGH+22effba2bNmiBx98sNlYxFYyzI+77rrL/++RI0fqm2++0fz58/2BNSROMswPn48++kiFhYW65557dOGFF/q3c/0A0FhdXZ2uuOIKGWP06KOPBuybMWOG/9+nnXaaMjMzddNNN+k3v/mNOnbs2NanijZ01VVX+f89YsQInXbaaRoyZIgqKys1bty4BJ4Zks3ChQt19dVXq1OnTgHbuX4AsUVgDSnl5z//ua677rqQY0444QRlZWX5u3T6HD58WLt371ZWVlbQ+2VlZenQoUPas2dPQIR+586dQe/z+9//XmeccYZGjx7d6nmfddZZWrlyZavjcHSSaX74jBkzRv/93/+tgwcPqmPHjsrKymrWVWfnzp3q3r072WpxlizzY8OGDRo3bpxuvPFG3Xnnna2eN9ePxOrdu7dsNlvQv9tQ8yHUeN/3nTt3Kjs7O2DMGWec4R8T6TxE24vH/PDxBdU+/fRTvfnmmwHZasGMGTNGhw8f1rZt2wIC9EiceM6Pxk444QT17t1bn3zyicaNG8f1I0XEe3643W5t2rRJzz33XKvnwvUj+UQzP2JxzGjf87R31FhDSunTp49OPvnkkF+ZmZkaO3as9uzZo7Vr1/rv++abb6q+vl5jxowJeuzRo0crIyNDK1as8G/btGmT/v3vf2vs2LEBY2tra/X8888HrVcQzLp16wLePCE+kmV+NLZu3Todf/zx/k//xo4dG3AMSVq+fHnIYyA2kmF+fPzxxyooKNC1116rX//612GdN9ePxMrMzNTo0aMDfrf19fVasWJFi3+3rf2dDx48WFlZWQFj9u7dq3feecc/Jpp5iLYXj/khNQTVNm/erDfeeEO9evVq9VzWrVunDh06NFsCiMSJ1/xoqqqqSrt27fK/VnD9SA3xnh9PPvmkRo8erdNPP73Vc+H6kXyimR+xOGa073navUR3TwDiZcKECWbkyJHmnXfeMStXrjQnnnhiQJvxqqoqM2zYMPPOO+/4t/34xz82AwcONG+++aZ57733zNixY83YsWObHfv3v/+96dSpU9DOfQ8++KB56aWXzObNm82HH35oiouLTYcOHcwbb7wRl+eJ6MRjfvz5z382//u//2s+/PBDs3nzZvPII4+YLl26mLvvvts/5l//+pfp0qWL+cUvfmE2btxoHn74YWOz2czrr7/eNk8cYYnH/Pjwww9Nnz59zA9+8IOA9vaff/65fwzXj+S0dOlS07FjR/PUU0+ZDRs2mBtvvNH06NHD7NixwxhjzDXXXGNuv/12//hVq1aZY445xjzwwANm48aN5p577jEZGRnmww8/9I+ZM2eO6dGjh3n55ZfNBx98YAoLC83gwYPN/v37/WNam4dIDrGeH4cOHTKXXnqpsdvtZt26dQHXi4MHDxpjjFm9erV58MEHzbp168yWLVvMH/7wB9OnTx/zwx/+sO1/AAgp1vPj66+/NjNnzjRr1qwxW7duNW+88YYZNWqUOfHEE82BAwf8x+H6kRri8fpijDFfffWV6dKli3n00UebPSbXj9QR6fw4ePCgef/99837779vsrOzzcyZM837779vNm/eHPYxjQn/PTEaEFhD2tq1a5eZMmWK6datm+nevbuZOnWq+frrr/37t27daiSZiooK/7b9+/eb6dOnm+OPP9506dLFXH755aampqbZsceOHWuKioqCPu7cuXPNkCFDTKdOnUzPnj1Nfn6+efPNN2P+/HB04jE/XnvtNXPGGWeYbt26ma5du5rTTz/dPPbYY8bj8QQ8dkVFhTnjjDNMZmamOeGEE8yiRYvi/XQRoXjMj3vuucdIavY1aNAg/xiuH8nroYceMgMHDjSZmZnmrLPOMm+//bZ/33nnnWeuvfbagPHPP/+8Oemkk0xmZqY59dRTzSuvvBKwv76+3tx1112mX79+pmPHjmbcuHFm06ZNAWNam4dIHrGcH77rS7Av3zVn7dq1ZsyYMea4444znTp1MsOHDzf3339/QGAFySOW82Pfvn3mwgsvNH369DEZGRlm0KBBZtq0aQFvio3h+pFKYv36Yowxjz/+uOncubPZs2dPs31cP1JLJPOjpdeP8847L+xjGhP+e2I0sIwxpo2T5AAAAAAAAICUR401AAAAAAAAIAoE1gAAAAAAAIAoEFgDAAAAAAAAokBgDQAAAAAAAIgCgTUAAAAAAAAgCgTWAAAAAAAAgCgQWAMAAAAAAACiQGANAAAAAAAAiAKBNQAAgDjZtm2bLMvSunXr4n7syspKWZalPXv2xPyxfGbPnq0zzjgjbscHAABINQTWAABA2vjPf/6jm2++WQMHDlTHjh2VlZWliy66SKtWrfKPsSxLL730UuJOMk7OPvts1dTU6LjjjkvYOfiCfb6vzMxMDR06VL/61a9kjPGPmz17tizL0oQJE5odY/78+bIsS/n5+QHjCegBAIBkdEyiTwAAACBWJk+erEOHDunpp5/WCSecoJ07d2rFihXatWtXok8taocOHVJmZmar4zIzM5WVldUGZ9S6N954Q6eeeqoOHjyolStX6kc/+pGys7N1ww03+MdkZ2eroqJCVVVVstvt/u0LFy7UwIEDE3HaYaurq1NGRkaiTwMAACQBMtYAAEBa2LNnj9xut+bOnauCggINGjRIZ511lu644w5deumlkqTc3FxJ0uWXXy7Lsvy3t2zZosLCQvXr10/dunXTt7/9bb3xxhsBx8/NzdX999+v66+/Xscee6wGDhyoJ554ImDMP/7xD40cOVKdOnXSmWeeqffffz9gv8fj0Q033KDBgwerc+fOGjZsmMrKygLGXHfddbrsssv061//Wv3799ewYcPCOnbTpaD5+fkB2WO+r23btvl/Xj/60Y/Up08fde/eXeeff77Wr18fcMw5c+aoX79+OvbYY3XDDTfowIEDYf0uevXqpaysLA0aNEhXX321zjnnHP2///f/Asb07dtXF154oZ5++mn/ttWrV+uLL77QJZdcEtbj+Hz55Ze6+uqr1adPH3Xu3FknnniiFi1a5N9fVVWlKVOmqGfPnuratavOPPNMvfPOO/79jz76qIYMGaLMzEwNGzZMzz77bMDxLcvSo48+qksvvVRdu3bVr3/9a0nSyy+/rFGjRqlTp0464YQTdO+99+rw4cMRnTsAAEhtBNYAAEBa6Natm7p166aXXnpJBw8eDDrm3XfflSQtWrRINTU1/tu1tbWaOHGiVqxYoffff18TJkzQpEmT9O9//zvg/r/97W/9Qa3p06fr5ptv1qZNm/zH+N73vqdTTjlFa9eu1ezZszVz5syA+9fX18tut+uFF17Qhg0bdPfdd+uXv/ylnn/++YBxK1as0KZNm7R8+XL95S9/CevYTblcLtXU1Pi/HA6Hhg0bpn79+kmSvv/97+vzzz/Xa6+9prVr12rUqFEaN26cdu/eLUl6/vnnNXv2bN1///167733lJ2drUceeSScX0WA9957T2vXrtWYMWOa7bv++uv11FNP+W8vXLhQV199dVgZeo3ddddd2rBhg1577TVt3LhRjz76qHr37i3J+3s577zzVF1drT//+c9av369Zs2apfr6eknSiy++qOLiYv385z/XRx99pJtuuklTp05VRUVFwGPMnj1bl19+uT788ENdf/31crvd+uEPf6ji4mJt2LBBjz/+uJ566il/0A0AALQTBgAAIE2Ul5eb448/3nTq1MmcffbZ5o477jDr168PGCPJvPjii60e69RTTzUPPfSQ//agQYPMD37wA//t+vp607dvX/Poo48aY4x5/PHHTa9evcz+/fv9Yx599FEjybz//vstPs4tt9xiJk+e7L997bXXmn79+pmDBw/6t4Vz7IqKCiPJfPnll80eY8GCBaZHjx5m06ZNxhhj3G636d69uzlw4EDAuCFDhpjHH3/cGGPM2LFjzfTp0wP2jxkzxpx++uktPpetW7caSaZz586ma9euJiMjw0gyN954Y8C4e+65x5x++unm0KFDpm/fvubvf/+7qa2tNccee6xZv369KS4uNuedd16z8S2ZNGmSmTp1atB9jz/+uDn22GPNrl27gu4/++yzzbRp0wK2ff/73zcTJ07035ZkSkpKAsaMGzfO3H///QHbnn32WZOdnd3ieQIAgPRDxhoAAEgbkydP1meffaY///nPmjBhgiorKzVq1KiArKhgamtrNXPmTA0fPlw9evRQt27dtHHjxmYZa6eddpr/35ZlKSsrS59//rkkaePGjTrttNPUqVMn/5ixY8c2e6yHH35Yo0ePVp8+fdStWzc98cQTzR5nxIgRAVlb4R47mNdee0233367nnvuOZ100kmSpPXr16u2tla9evXyZ/p169ZNW7du1ZYtW/yP2TTLLNzHfO6557Ru3TqtX79ezz//vF5++WXdfvvtzcZlZGToBz/4gRYtWqQXXnhBJ510UsDPOFw333yzli5dqjPOOEOzZs3S6tWr/fvWrVunkSNHqmfPnkHvu3HjRp1zzjkB28455xxt3LgxYNuZZ54ZcHv9+vW67777An5+06ZNU01Njfbt2xfxcwAAAKmJ5gUAACCtdOrUSRdccIEuuOAC3XXXXfrRj36ke+65R9ddd12L95k5c6aWL1+uBx54QEOHDlXnzp3ldDp16NChgHFNC9ZbluVfUhiOpUuXaubMmfrtb3+rsWPH6thjj9X8+fMD6n1JUteuXcM+ZigbNmzQVVddpTlz5ujCCy/0b6+trVV2drYqKyub3adHjx5H/bg5OTkaOnSoJGn48OHasmWL7rrrLs2ePTsgOCh5l4OOGTNGH330ka6//vqoHu/iiy/Wp59+qldffVXLly/XuHHjdMstt+iBBx5Q586dj/r5SM1/J7W1tbr33nvlcDiajW36HAEAQPoiYw0AAKS1U045Rd98843/dkZGhjweT8CYVatW6brrrtPll1+uESNGKCsry1/kP1zDhw/XBx98EFDg/+233272OGeffbamT5+ukSNHaujQof4MsaM9dlNffPGFJk2apMmTJ+tnP/tZwL5Ro0Zpx44dOuaYYzR06NCAL19tsuHDhzcL+LX2mC2x2Ww6fPhws0ClJJ166qk69dRT9dFHH6moqCiq40tSnz59dO211+oPf/iDSktL/Y0lTjvtNK1bt85fO66p4cOHa9WqVQHbVq1apVNOOSXk440aNUqbNm1q9vMbOnSoOnTgv9gAALQXvOoDAIC0sGvXLp1//vn6wx/+oA8++EBbt27VCy+8oHnz5qmwsNA/Ljc3VytWrNCOHTv05ZdfSpJOPPFEuVwu//LFoqKiiDLRJKmoqEiWZWnatGnasGGDXn31VT3wwAMBY0488US99957+utf/6p//vOfuuuuu/wNFI722E1NnjxZXbp00ezZs7Vjxw7/l8fj0fjx4zV27Fhddtll+tvf/qZt27Zp9erV+q//+i+99957kqTi4mItXLhQixYt0j//+U/dc889+vjjj8P6WezatUs7duxQVVWVXnvtNZWVlamgoEDdu3cPOv7NN99UTU1N1Nlyd999t15++WV98skn+vjjj/WXv/xFw4cPlyRNmTJFWVlZuuyyy7Rq1Sr961//0p/+9CetWbNGkvSLX/xCTz31lB599FFt3rxZCxYskMvlarU5xN13361nnnlG9957rz7++GNt3LhRS5cu1Z133hnVcwAAAKmJwBoAAEgL3bp105gxY/Tggw/q3HPP1be+9S3dddddmjZtmv7nf/7HP+63v/2tli9frpycHI0cOVKStGDBAh1//PE6++yzNWnSJF100UUaNWpUxI+/bNkyffjhhxo5cqT+67/+S3Pnzg0Yc9NNN8nhcOjKK6/UmDFjtGvXLk2fPj0mx27qrbfe0kcffaRBgwYpOzvb/7V9+3ZZlqVXX31V5557rqZOnaqTTjpJV111lT799FN/19Arr7xSd911l2bNmqXRo0fr008/1c033xzWz2L8+PHKzs5Wbm6ubrzxRk2cOFHPPfdci+O7du16VEtQMzMzdccdd+i0007TueeeK5vNpqVLl/r3/e1vf1Pfvn01ceJEjRgxQnPmzJHNZpMkXXbZZSorK9MDDzygU089VY8//rgWLVqk/Pz8kI950UUX6S9/+Yv+9re/6dvf/ra+853v6MEHH9SgQYOifh4AACD1WMYYk+iTAAAAAAAAAFINGWsAAAAAAABAFAisAQAAAAAAAFEgsAYAAAAAAABEgcAaAAAAAAAAEAUCawAAAAAAAEAUCKwBAAAAAAAAUSCwBgAAAAAAAESBwBoAAAAAAAAQBQJrAAAAAAAAQBQIrAEAAAAAAABRILAGAAAAAAAAROH/AzmwKnVdnqdeAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create figure\n",
"fig, ax = plt.subplots(figsize=(15, 7))\n",
"\n",
"# Plot real values scatter plot\n",
"_ = plt.scatter(simple_X_test, y_test, color=\"black\", label=\"Real Values\")\n",
"\n",
"# Plot predicted values scatter plot\n",
"_ = plt.scatter(simple_X_test,\n",
" simple_y_pred,\n",
" color=\"red\",\n",
" label=\"Predicted Values\")\n",
"\n",
"# Plot regression line\n",
"_ = plt.plot(simple_X_test,\n",
" simple_y_pred,\n",
" color=\"blue\",\n",
" label=\"Regression Line\")\n",
"\n",
"# Show legend\n",
"_ = plt.legend()\n",
"\n",
"# Set title\n",
"title = \"Disease Progression by BMI\"\n",
"plt.title(title)\n",
"\n",
"# Sex axis labels\n",
"ax.set_xlabel(\"Standardized BMI score\")\n",
"_ = ax.set_ylabel(\"Disease Progression\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also use the [`sklearn.metrics`](https://scikit-learn.org/stable/modules/model_evaluation.html) module to calculate the [MSE](https://en.wikipedia.org/wiki/Mean_squared_error) and [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination) ($R^2$)."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Coefficient: 981.66\n",
"Intercept: 152.29\n",
"Mean Squared Error: 4150.68\n",
"Coefficient of Determination: 0.38\n"
]
}
],
"source": [
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"mse = mean_squared_error(y_test, simple_y_pred)\n",
"r_squared = r2_score(y_train, model.predict(simple_X_train))\n",
"print(f\"Coefficient: {model.coef_[0]:.2f}\")\n",
"print(f\"Intercept: {model.intercept_:.2f}\")\n",
"print(f'Mean Squared Error: {mse:.2f}')\n",
"print(f'Coefficient of Determination: {r_squared:.2f}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Multiple Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"General notation:\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculating the coefficient vector of the least-squares hyperplane:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Multiple Linear Regression using `sklearn`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Model Creation"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
" y,\n",
" random_state=0,\n",
" test_size=0.2)\n",
"\n",
"multiple_model = LinearRegression()\n",
"_ = multiple_model.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Model Application"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"y_pred_all = multiple_model.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Model Evaluation"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"mse_all = mean_squared_error(y_train, multiple_model.predict(X_train))\n",
"r2_score_all = r2_score(y_train, multiple_model.predict(X_train))"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Coefficient: [-35.55, -243.17, 562.76, 305.46, -662.7, 324.21, 24.75, 170.32, 731.64, 43.03]\n",
"Mean Squared Error: 2734.75\n",
"Coefficient of Determination: 0.55\n"
]
}
],
"source": [
"betas_all = [beta.round(2) for beta in multiple_model.coef_.flatten()]\n",
"\n",
"print(f\"Coefficient: {betas_all}\")\n",
"print(f'Mean Squared Error: {mse_all:.2f}')\n",
"print(f'Coefficient of Determination: {r2_score_all:.2f}')"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}